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	 The result of vegetation cover classification greatly depends on the classification methods.  
Accuracy analysis is mostly performed using the error matrix in remote sensing.  In recent 
remote sensing, image classification has been carried out on the basis of deep learning.  In 
the field of image processing in computer science, Intersection over Union (IoU) is mainly 
used for accuracy analysis.  In this study, the error matrix, which is frequently used in remote 
sensing, and IoU, which is mainly used for deep learning images, were compared and reviewed 
to analyze their accuracy levels for the results of vegetation index calculation.  The results of 
vegetation index calculation were applied to the comparison of the accuracy levels of IoU and 
the error matrix.  According to the results of accuracy analysis using the error matrix, which is 
based on random points, the accuracy of the normalized difference vegetation index (NDVI) 
was shown to be 82.4% and that of deep learning was shown to be 93.7%, with a difference of 
about 11.3%.

1.	 Introduction

	 Remote sensing is a technology for observing distant objects.  It measures physical 
properties by detecting electromagnetic waves that radiated from the target without direct 
contact with the target.  Remote sensing data are important for various types of decision making 
in various fields, in which they are used through processes such as maintenance, analysis, 
construction, and editing of spatial information.  In South Korea, it is very important to build 
accurate databases of forests, which occupy most of the territory, in order to prevent disasters 
and accidents.  The accuracy of image classification is examined using the error matrix 
technique.  However, when the accuracy is analyzed with the error matrix, which is based on 
experience points, the reliability of the accuracy declines.  Therefore, the accuracy is analyzed 
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by the Intersection over Union (IoU) method, but the difference in accuracy level between the 
vegetation cover type identified using the normalized difference vegetation index (NDVI) and 
that identified using the deep learning technique cannot be known.  IoU is the most popular 
evaluation metric used in object detection benchmarks.  Also known as the Jaccard index, it is 
the most commonly used metric for determining the similarity between two arbitrary shapes.  
Therefore, to solve this problem, in this study, the vegetation cover types were calculated by the 
deep learning method, and the accuracy of the vegetation index calculated using the existing 
error matrix and that by the IoU method were compared.

2.	 Experimental Methods

2.1	 Convolution neural network (CNN)

	 Before moving to specific solutions for NDVI estimation, in this section, we provide 
some basic notions and terminologies about CNNs.  Over the last few years, CNNs have 
been successfully applied to many classical image processing problems, such as denoising,(1) 
super-resolution,(2) pansharpening,(3,4) segmentation,(5,6) object detection,(7,8) change detection,(9) 
and classification.(10–13)  The main strengths of CNNs are (i) an extreme versatility that allows 
them to approximate any sort of linear or nonlinear transformation, including scaling or hard 
thresholding; (ii) no need to design handcrafted filters, replaced by machine learning; and 
(iii) high-speed processing, due to parallel computing.  On the downside, for correct training, 
CNNs require the availability of a large amount of data with the ground truth (examples).  In 
our specific case, data are not a problem, given the unlimited quantity of cloud-free Sentinel-2 
time series that can be downloaded from web repositories.  However, using large datasets has 
a cost in terms of complexity and may lead to unreasonably long training times.  Usually, a 
CNN is a chain (parallels, loops, or other combinations are also possible) of different layers, 
such as convolution, nonlinearities, pooling, and deconvolution.  For image processing tasks in 
which the desired output is an image at the same resolution of the input, as in this work, only 
convolutional layers that interleaved with nonlinear activations are typically employed.  
	 The generic l-th convolutional layer, with N-band input x(l), yields an M-band stack z(l) 
computed as

	 ( ) ( ) ( ) ( ) ,  *l l l lz w x b= + 	 (1)

whose m-th component can be written in terms of ordinary 2D convolutions:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1, , , , , * , , .Nl l l l
nz m w m n x n b m
=

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ +∑ 	 (2)

The tensor w is a set of M convolutional N × (K × K) kernels, with a K × K spatial support (receptive 

field), while b is an M-vector bias.  These parameters, compactly, ( ) ( )( ),l l
l w bΦ � , are learned 

during the training phase.  If the convolution is followed by a pointwise activation function gl(·), 
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then the overall layer output is given by

	 ( ) ( )( ) ( ) ( ) ( )( ) ( )( )  * ,l l l l l l
l l l ly g z g w x b f x= = + Φ� .	 (3)

Owing to the good convergence properties it ensures,(11) the rectified linear unit (ReLU), 
defined as ( ) ( )g ·  max 0, · � , is a typical activation function of choice for input or hidden layers.  
Assuming a simple L-layer cascade architecture, the overall processing will be

	 ( ) ( )( )( )1 1 1 1,   ... , , ..., ,L L L Lf x f f f x− −Φ = Φ Φ Φ ,	 (4)

where ( )1 , ..., LΦ Φ Φ�  is the whole set of parameters to learn.  In this chain, each layer l 
provides a set of so-called feature maps, y(l), to become more and more representative of 
abstract and global phenomena in subsequent ones (large l).  In this work, all proposed solutions 
are based on a simple three-layer architecture and differ only in the input layer, as different 
combinations of input bands are considered.  
	 Once the architecture has been chosen, its parameters are learned by means of some 
optimization strategy.  An example is the stochastic gradient descent (SGD) algorithm, 
specifying the cost to be minimized over a properly selected training dataset.  Details on 
training will be given below for our specific solution.

2.2	 Atrous convolution
 
	 Semantic image segmentation using existing CNNs such as AlexNet, VGGNet, and 
Googlenet is simpler than that using histograms or graphs or using machine learning methods, 
such as decision trees and clustering by identifying feature regions, and shows higher 
performance.  However, it has the shortcoming that when continuous layers such as fully 
convolution network (FCN) and DeconvNet are calculated, the sizes of features are reduced and 
the amount of computation and memory use increase.  To solve this problem, atrous convolution 
was devised for the deepLab model.  This method uses a filter made by increasing the size of 
the existing convolution filter and filling the spaces between weights with 0 so that holes are 
formed.  First, when signals are assumed as one-dimensional signals as shown in Eq. (1), the 
output of x[k] with a length k in the input signal ω[k] is equal to y[i].
	

	 [ ] [ ] [ ] 
K

k 1
y i x i r k k

=

= + ⋅ ω∑ ,	 (5)

where r is stride and is in the range of atrous convolution.  In the case of basic convolution 
operation, 1 is used as the stride.  It can be seen that, in the case of atrous convolution, the 
amount of calculation decreases even when the acceptance range is widened, as shown in Fig. 1.
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2.3	 Detailed structure of the model

	 To increase the amount of data used for learning, a method of additionally considering 
the original image and the R, G, and B channels are shown in Fig. 2.  We used the data 
augmentation and the R, G, B split channel in this paper.  ResNet has a problem that when it 
is used with the existing VGGNet and GoogleNet, more than 30 layers are not learned well.  
To solve this problem, a bottleneck structure is used so that the depth of the network can 
be increased to 50–150 layers.  In the case of the bottleneck structure, since 1 × 1 and 3 × 3 
convolutions are used, the effects of being able to reduce and expand the dimension while 
reducing the calculation amount can be obtained.  In addition, the residual connection that adds 
the previous values is used to solve the problem that the slope disappears when the network is 
deepened.  The ResNet-51 layer structure is used for the backbone network.  In this case, the 
51 layers of ResNet are calculated using convolution operation, and the remaining 50 layers are 
calculated using atrous convolution.  After using 3 × 3, which extracts features from the front 
layer as the atrous convolution, atrous spatial pyramid pooling (ASPP), which is a technique 
used in image pyramids, is applied to the last layer at different rates {2,4,6,8,10,12,14} to adjust 
the size of the image, and the results obtained are concatenated to produce the result.  In this 
case, the structure of the ASPP layer is as shown in Fig. 3.

2.4	 Generalized Intersection over Union (GIoU)

	 The IoU for determining the similarity between two arbitrary shapes (volumes) A, B ⊆ S ∈ 
Rn is attained as

	  
∩

=
∪

A B
IoU

A B .	 (6)

Here, A is the output result, B is the Ground Truth, S is overlapping space.  Two appealing 
features, which make this similarity measure popular for evaluating many 2D/3D computer 
vision tasks, are as follows:

Fig. 1. 	 (Color online) Atrous convolution structure.
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Algorithm 1: GIoU
Input: Two arbitrary convex shapes: A, B ⊆ S ∈ nR
Output: GIoU
1.	 For A and B, find the smallest enclosing convex object C, where C ⊆ S ∈ nR

2.	  
∩

=
∪

A B
IoU

A B 	

3.	 GIoU = IoU − 
( )/ ∪C A B

C

	 •	 IoU as a distance, = −1IoU IoU , is a metric by mathematical definition.(14)  It means that 
IoU  fulfills all properties of a metric such as non-negativity, the identity of indiscernibles, 

symmetry, and triangle inequality.
	 •	 IoU is invariant to the scale of the problem.  This means that the similarity between two 

arbitrary shapes A and B is independent of the scale of their space S (the proof is provided in 
Supplementary Material).

However, IoU has a major weakness:
	 •	 If  ∩A B  = 0, IoU(A, B) = 0.  In this case, IoU does not reflect if two shapes are in the 

vicinity of each other or very far from each other.
	 To address this issue, we propose a general extension to IoU, namely, GIoU.  For two 
arbitrary convex shapes (volumes) A,B ⊆ S ∈ Rn, we first find the smallest convex shapes 
C ⊆ S ∈ Rn enclosing both A and B.  For comparing two specific types of geometric shapes, C 
can be from the same type.  For example, in the case of two arbitrary ellipsoids, C could be the 
smallest ellipsoids enclosing A and B.  Then, we calculate the ratio between the volumes (areas) 
occupied by C excluding A and B, and divide it by the total volume (area) occupied by C.  This 
represents a normalized measure that focuses on the empty volume (area) between A and B.  
Finally, GIoU is attained by subtracting this ratio from the IoU value.  The calculation of GIoU 
is summarized in measurement.
	 GIoU as a new metric has the following properties:
	 (1)	 Similarly to IoU, GIoU as a distance, e.g., = −1IoU IoU , holds all the properties of 

a metric such as non-negativity, the identity of indiscernibles, symmetry, and triangle 
inequality.

Fig. 2. 	 (Color online) Preprocessing considering R, 
G, and B channels.

Fig. 3.	 (Color online) Structure of ASPP layer.



3854	 Sensors and Materials, Vol. 31, No. 11 (2019)

	 (2)	 Similarly to IoU, GIoU is invariant to the scale of the problem.
	 (3)	 GIoU is always a lower bound for IoU, i.e., ∀A, B ⊆ S, GIoU(A, B) ≤ IoU(A, B), and 

this lower bound becomes tighter when A and B have stronger shape similarity and 

proximity, i.e, ( ) ( )lim , ,
→

=
A B

GIoU A B IoU A B .

	 (4)	 ∀A, B ⊆ S, 0 ≤ IoU(A, B) ≤ 1, but GIoU has a symmetric range, i.e, ∀A, B ⊆ S, −1 ≤ 
GIoU(A, B) ≤ 1.

	 I)	 Similarly to IoU, the value 1 occurs only when two objects overlay perfectly, i.e, if 
∪ = ∩A B  A B , then GIoU = IoU = 1

	 II)	The GIoU value asymptotically converges to −1 when the ratio between occupying 
regions of two shapes, ∪A B , and the volume (area) of the enclosing shape C  tends 
to be zero, i.e, ( )

0

lim ,
∪

→

=−1
A B

C

GIoU A B  

	 In summary, this generalization keeps the major properties of IoU while rectifying its 
weakness.  Therefore, GIoU can be a proper substitute for IoU in all performance measures 
used in 2D/3D computer vision tasks.  In this paper, we only focus on 2D object detection where 
we can easily derive an analytical solution for GIoU to apply it as both metric and loss.  The 
extension to non-axis aligned 3D cases is left as future work.

3.	 Experiment

3.1	 Study area

	 The classification images used in this study were taken from areas near Cheongju and 
Okcheon, Chungbuk, South Korea on November 24, 2016 with Kompsat – 3A (Fig. 4).  The 
images were rearranged into RMSE 0.6 m by the pan sharpening pretreatment process that 
make images clearer using PCI Geomatica. 

Fig. 4.	 (Color online) Satellite image used in this study.
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3.2	 Study method

	 The deep learning technique has mainly been used in remote sensing recently.  We were 
used to CNN classify vegetation cover types.  The CNN technique is a convolution-based neural 
network that extracts and learns various features from massive data.  Using this technique, 
spatial object items with similar spectral characteristics were extracted.  The colors were labeled 
according to a geographic feature (red: deciduous trees, yellow: coniferous trees, and black: 
watershed) by pixel by the semantic segmentation method, developed on the basis of deepLab, 
and the baseline model was used to improve the detection speed and performance.  To extract 
objects from satellite images, the objects were classified by the semantic image classification 
technique in the CNN technique using the deepLab model based on atrous convolution, which 
was selected because of its advantage of easy image classification, owing to its wide receptive 
field.  Since ResNet has a problem that more than 30 layers are not learned when VGGNET and 
GoogleNet are used, a bottleneck structure that can increase the depth of the network from to 
50 to 150 layers was used to solve the problem.  The bottleneck structure can reduce and expand 
the dimension while reducing the amount of analysis by using 1 × 1 and 3 × 3 convolutions.  
The computer environment was configured with a CPU i7-6700k, 32 GB of memory, and GPU 
TITAN × 2, and implemented by a fine tuning process using Image-net 2012 pretraining data.  
The rate of learning used was 0.001, Adam was used as a gradient descent method, and the 
number of repetitions was 100000.  The data used in classification were satellite images with 
a size of about 8000 × 8000 grids.  Since it would use a lot of GPU memory, each image was 
divided into 321 × 321 grid size pieces for efficient calculation.  Thereafter, about 700 images 
were used for learning and 294 images were used for tests.  In addition, a residual connection 
that adds previous results was used so that the learning was carried out stably.  For accuracy 
analysis, as shown in Fig. 5, the error matrix frequently used in remote sensing was compared 
and analyzed with IoU, which is mainly used in deep learning image quality analysis.

Fig. 5.	 Accuracy comparison analysis in this study.
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3.3	 Accuracy analysis

	 To extract objects from satellite images, conifers and deciduous trees were identified 
using the semantic image classification technique in the CNN technique using a deepLab 
model.  DeepLab models are based on atrous convolution.  These models have the advantage 
of easy image classification since their receptive field is wide and they can be used to carry 
out calculations if unpooling and convolution are combined.  To evaluate the performance of 
the model, the accuracy of classification was calculated using IoU, and the results are shown.  
To analyze performance, the results of classification were compared with the conifers and 
deciduous trees in the land cover map provided by the Environmental Geographic Information 
Service (EGIS) of South Korea.  According to the results of accuracy analysis using the error 
matrix, which was based on random points, the accuracy of NDVI was 82.4% and that of deep 
learning was 93.7%, with a difference of 11.3%.  According to the results of accuracy analysis 
using IoU, which is based on grids, the accuracy of NDVI was 49.4% and that of deep learning 
was 71.6%, with a difference of about 22.2%.  Figure 6 shows the results of the classification of 
trees into coniferous and deciduous for the test data.  Cases of misclassification occur because 
the pixels of conifers and deciduous trees are similar.  The resultant vegetation cover types 
obtained using NDVI and the resultant vegetation cover types obtained by the deep learning 
method were compared in terms of area (Table 1) and accuracy (Table 2).

Fig. 6.	 (Color online) Results of classification of trees into coniferous and deciduous trees for the test data.

Table 1
IoU and error matrix area ratio. (Unit: ha)

Total area
Deciduous 

trees
Coniferous 

trees
Watershed

Ground 
truth 11107.75 2187.29 4136.84 4783.62

Deep 
learning 11107.75 1900.32 4406.74 4800.69

NDVI 11107.75 1819.83 3474.95 5812.97

Table 2
IoU accuracy compared with the error matrix. (Unit: %)

Technique
Deciduous 

trees
Coniferous 

trees
Watershed

NDVI
Error 

matrix 83.2 84.0 80.0

IoU 48.7 49.2 50.4

Deep 
learning

Error 
matrix 94.0 94.1 93.0

IoU 72.0 72.0 71.0
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4.	 Conclusions

	 In this study, the accuracy of the classification result of vegetation cover is analyzed using 
IoU and the error matrix method; the accuracy of NDVI was 82.4% and that of deep learning 
was 93.7%, with a difference of 11.3%.  According to the results of accuracy analysis using IoU, 
which is based on grids, the accuracy of NDVI was 49.4% and that of deep learning was 71.6%, 
with a difference of about 22.2%.  Therefore, according to the results of the study on deep 
learning, the accuracy according to IoU was shown to be about 70% in the classification of the 
same image and about 60% when learned images were applied to other images.  In the analysis 
of the vegetation cover types, the accuracy of the results of analysis using the error matrix was 
shown to be higher according to the accuracy setting method, and it could be seen that if the 
deep learning technique was used, the accuracy was high.  In the case of the deep learning 
technique, studies to improve performance through learning the regional characteristics of 
conifers and deciduous trees are necessary.
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