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 After the division of the Korean peninsula, North Korea overexploited their natural resources 
especially the forest.  It lost about 23% of the total forest from 1990 to 2011, which continues 
today.  However, the country is inaccessible to monitor such changes.  Hence, in this study, 
we aim to use Landsat 8 imagery with the aid of Google Earth to map erosion-prone areas in 
a subset area of Kangwon Province, North Korea.  Pruned Decision Tree (DT) modeling was 
used in selecting the optimum ratio/index and threshold based on ground truth points extracted 
for Landsat scenes from May, October, and both months combined.  Pruned DT resulted in 
applying the normalized green, near-infrared (NIR), green ratio vegetation index (GRVI), 
red-green ratio index (RGRI), infrared percentage vegetation index (IPVI), and slope with 
the optimum threshold for the segmentation of the study area with reasonable accuracy.  The 
result shows that combining the ground truths from different seasons resulted in rules giving 
higher overall accuracy (OA) and kappa coefficient than the individual rule results.  However, 
interchanging ground truths of different months is not effective.  On average, out of the total 
land, high and medium erosion-prone areas are 15 and 20%, respectively.  The remaining 65% 
is covered by forest.  The result can be useful for estimating loss and restoring resources such as 
forest and land in the future.

1. Introduction

 Following the division of the Korean peninsula soon after World War II, North Korea 
remained isolated to the rest of the world.  Natural resources, such as forests, have been 
exploited extensively in many parts of North Korea owing to a limited supply of energy.  
According to the United Nations Environment Programme, it was reported that in 2003, forest 
covered about 73% of the total area of North Korea, 70% of which is on slopes greater than 
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20 degrees.(1)  Between 1990 and 2000, it lost 127 thousand hectares of forest with an annual 
average change rate of −1.7%.  Moreover, between 2000 and 2010, it again lost 127 thousand 
hectares of forest with an annual average change rate of −2%.(2)  In total, between 1990 and 
2011, North Korea lost 23.12% of its forest cover, which is the highest among countries in East 
Asia.(2,3)  The accelerated deforestation was due to the economic crisis in the 1990s; people 
turned to the forest to provide firewood and food.  Also, the government control over croplands 
has made people convert cultivable lands in remote hilly forest areas secretly.  These activities 
have put a lot of pressure on hilly areas, thus leading to soil depletion and erosion.  As the nation 
cannot be freely accessed, field work to investigate the position, type, and activity of erosion 
to develop an inventory and continuous monitoring system is impossible.  However, satellite-
based remote sensing technology can make this possible.  In this study, we assessed the impact 
of deforestation on hillslope erosion using remote sensing technologies.
 Remote sensing is a powerful and cost-effective technology that allows us to collect data 
and assess the spatial and temporal dynamics of Earth’s surface processes and hazards.(4–8) 
Remotely sensed data from legacy satellites such as Landsat have been continuously obtained 
for the past forty years.  With such a large collected redundant database, it is possible to monitor 
deforestation and thus erosion-prone areas in remote and inaccessible areas.  For mid-resolution 
satellite imagery, two approaches have been widely used to map the spatial distribution and 
characteristics of vegetation cover.  The first is by thresholding remote-sensing-based vegetation 
indexes, and the second is the classification of multiband satellite imagery either by using 
clustering techniques (i.e., ISODATA unsupervised classification) or using training data (i.e., 
supervised classification).  Although classification techniques have been widely used, they are 
unable to account for the image variation in land cover, cloud cover in different seasons, and 
weather conditions.  Moreover, the collection of data for each time and condition is costly and 
time-consuming.
 To address these drawbacks, new sets of input variables were derived for robust mapping.  
Owing to their simplicity, remote-sensing-image-based indices, such as NDVI, have widely 
been used as an effective approach to map certain land cover types.(7,9–12)  Despite being 
simple and fast, a major issue of this approach is the requirement of a threshold that could be 
used to segment target and nontarget classes.  Depending on the ratio of target to nontarget 
classes in the study area, neither standard nor automatic thresholds such as Otsu’s are always 
successful.  Thus, choosing the exact optimal threshold is also a challenging task depending 
on the large amount of ground truth and expert knowledge.  To assign an optimum threshold 
for a given set of attributes, the Decision Tree (DT) is better suited.  DT establishes a rule 
for the determination of a target and exhibits a high accuracy across many environments, 
allocating more homogenous datasets based on binary splits.(13)  Binary splitting nodes are 
based on conditions of explanatory variables that can be easily understood and implemented in 
Geographic Information System (GIS).(14)

 Despite few studies on land cover and forest monitoring in the past,(15–17) not much studies 
have efficacy in the assessment of erosion-prone areas using remote sensing and DT modeling 
approaches for highly rugged steep mountainous landscapes.  Moreover, studies that consider 
the remote sensing index in North Korea are also rare.  Hence, the aim of this study is to map 
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erosion-prone areas over an area of Kangwon Province, North Korea, using Landsat Imagery 
and DT.  Satellite-based digital elevation model (DEM) and imagery were selected, indices 
were derived along with slope, ground truth points were carefully chosen for optimum threshold 
and band using DT, and accuracy assessment was carried out.  The overall flow of the study is 
shown in Fig. 1.

2. Study Area and Data

2.1 Study area

 A rectangular area from Kangwon Province, North Korea, has been selected for this 
study (Fig. 2).  The area is geographically bounded between 38°18’41.45”N to 38°57’59.38”N 
and 126°47’49.73”E to 128° 0’14.97”E and is 7520 sq. km.  It has a rugged topography and a 
dendritic drainage pattern.  The elevation ranges from 0 to 1510 m.  Most of the area is forested 
with deforested patches, agricultural lands, and forest roads with few urban area.  It also has 
dammed reservoirs and coastal areas covering ~2.45% of its total area.  It was selected for 
two reasons; first, it is densely forested with extensively eroded landscapes that can be seen in 
Google Earth imagery, and it has very similar climate and topography to Gangwon Province of 
South Korea, so that a field observation of an area in South Korea adjacent to the study area can 
be carried out to better understand the geologic and geomorphic environments.

2.2 Data

 Three types of data, namely, Shuttle Radar Topography Mission (SRTM) Global DEM, 
Landsat Operational Land Imager (OLI) imagery, and high-resolution images available from 

Fig. 1. (Color online) Overall flow of the study to map erosion-prone areas.
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Google Earth (GE) ProTM (Google Inc., Menlo Park, CA, USA), were used.  The selection was 
carried out carefully considering cloud cover, phenology, and dryness of the ground that covers 
most parts of Kangwon Province, North Korea.  Landsat data from early May and October were 
selected because the study area in these images was observed with the lowest vegetation cover, 
thereby providing a relatively unobstructed view of the surface.  Both Landsat and DEM were 
resampled to a 30-m-resolution subset scene of 3541 rows and 2360 columns after preprocessing 
the data.
 For the extraction of elevation for the scene, the SRTM Global DEM of 30 m(18) was 
obtained from the OpenTopography portal.(19)  Its version 3.0 product is void-filled and the most 
complete high-resolution digital topographic database of Earth.  Their evaluation showed good 
representation with other data in hilly(20) and coastal(21) regions of Korea.  The data was used to 
provide the ground elevation and slope of the study area.
 Two Landsat scenes from path 116 and row 33 were obtained from the United States 
Geological Survey (USGS) Global Visualization Viewer (GLOVIS) portal.(23)  Table 1 shows 
the metadata of the Landsat scene used.  The Level 1 terrain-corrected multiband image 
contained coastal blue, blue, green, red, near-infrared (NIR), shortwave infrared 1 (SWIR1), 
and shortwave infrared 2 (SWIR2) bands at a resolution of 30 m.  The digitally numbered 
images were first converted to top-of-atmosphere radiance and then reflectance using the Fast 
Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) atmospheric correction tool in 
Environment for Visualizing Images (ENVI) version 5.3 (Exelis Visual Information Solutions, 
Boulder, CO, USA).  The required coefficients and values were obtained from the Landsat 
response function, metadata file, and SRTM DEM.

Fig. 2. (Color online) Location of the test area in North Korea with DEM and ground truth over Landsat images (right): 
natural color composite (R-G-B) acquired on 19 May 2016 (top) and false-color composite (NIR-G-B) acquired on 
10 October 2016 (bottom).
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 Google Earth has been widely used in various studies,(5,24–28) even in North Korea,(17) as 
a reference and validation data.  Because access to the area is limited, this study used Google 
Earth imagery for training and validation purposes in this study.  A total of 350 points were 
randomly sampled in the study area for forest cover, hill, and open land surface (Fig. 2).

3. Methods

3.1 Remote sensing indices

 Various vegetation indices based on remote sensing products or technologies were used to 
characterize vegetation cover (Table 2).  All these indices were taken from the Harris Geospatial 
Docs Centre website(41) where more details on them and their applications can be found.

3.2 DT

 DT is a hierarchical model that computes the probability of occurrence in various situations 
based on known information (Fig. 3).  It can also be a rule-based structure giving an answer 
for what happens if something in the model is modified.  The main advantage of the method 
is that it is a graphical representation of the overall model that could be easily constructed and 
is an intuitive application of probability analysis.  However, it does not allow multiple outputs 
and is limited to reducing the noise in data.(42)  There are various available algorithms such as 
Classification and Regression Tree,(43) Chi-square Automatic Interaction Detector Decision 
Tree,(44) ID3, J48,(45)and C4.5.(46)

 The classification of a new item in the algorithm first requires a DT based on the attribute 
values of the available training data.  On the basis of the available set of items in the training 
data, it identifies the attribute that classifies the various instances most clearly.  The feature 
that tells us most about the data instances, which could lead to the best classification, is said to 
have the highest information gain.  On the basis of the possible values of the feature, branches 
are terminated, and a target value is assigned.  In other cases, the algorithm searches for 
other attributes that provide the highest information gain.  The process continues until a clear 
decision regarding the combination of attributes that gives us a rule for the determination of a 
target value is achieved.  With the help of this DT, all the respective attributes and their values 
undergo checking, thereby assigning or predicting the target values of all new instances.

Table 1
Metadata of Landsat 8 OLI bands used.(22)

WRS Path/Row Bands Date acquired Scene cloud cover 
(%)

Land cloud cover 
(%)

116/33

Coastal Aerosol (CA): 0.435–0.451
Blue: 0.452–0.512

Green: 0.533–0.590
Red: 0.636–0.673
NIR: 0.851–0.879

SWIR1: 1.566–1.651
SWIR2: 2.107–2.294 

2016/05/19 7.86 0.03

2016/10/10 1.65 1.34
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 If DT becomes complicated, the tree structure and rules might be difficult to interpret and 
may result in a low accuracy.  A simple technique of pruning is not to continue splitting if the 
nodes receive a very small or minimum number of instances per leaf.  Building a full tree and 
pruning back are more reasonable than trying to forward pruning as a statistical test can also be 
applied to each stage.  The test considers a confidence factor of 0.25 by default, where a small 
value incurs more pruning.  It simplifies the results and gives manageable trees in addition to 
overfitting the training data without affecting the performance considerably.(47)

 In this study, pruned DT was used to generalize data from the root, i.e., the best attribute 
to split the first decision.  We used a minimum object of 10% of ground truth as the pruning 

Table 2
Multiband indices used in this study.
Multiband Index Formula Reference
Difference Vegetation (DV) NIR − red 29
Green Difference Vegetation (GDV) NIR − green 30
Simple Ratio (SR) also known as
Ratio Vegetation Index (RVI) NIR / red 31

Green Ratio Vegetation Index (GRVI) NIR / green 30
Red Green Ratio Index (RGRI) Red / green 32
Infrared Percentage Vegetation Index (IPVI) NIR / (NIR + red) 33
Normalized NIR (NNIR) NIR / (NIR + red + green) 30
Normalized Red (NR) Red / (NIR + red + green) 30
Normalized Green (NG) Green / (NIR + red + green) 30
Normalized Difference Vegetation Index 
(NDVI) (NIR − red) / (NIR + red) 34

Green Normalized Difference Vegetation 
Index (GNDVI) (NIR − green) / (NIR + green) 35, 36

Soil Adjusted Vegetation Index (SAVI) [(NIR − red) / (NIR + red + L)] × (1 + L), 
where L = 0.5 37

Green Soil Adjusted Vegetation Index (GSAVI) [(NIR − green) / (NIR + green +L)] × (1 + L),
 where L = 0.5 30

Enhanced Vegetation Index (EVI) 2.5*(NIR − Red) / (NIR + 6 × Red − 7.5 × Blue + 1) 38
Normalized Difference Water Index (NDWI) 
also known as Normalized Difference Moisture 
Index (NDMI)

(NIR − SWIR1) / (NIR + SWIR1) 39, 40

Fig. 3. Schematic of a basic DT.
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condition, i.e., 35 for May and October and 70 for both months combined.  It will help to pick 
a layer of band or ratio with the optimum threshold to segregate the target.  J48 DT, a java 
implementation of C4.5 DT in Waikato Environment for Knowledge Analysis (WEKA) Version 
3.8.1 (University of Waikato, Hamilton, New Zealand),(45) was used for this study.

3.3 Accuracy assessment

 To prevent overfitting and biased assessment, a k-fold cross-validation method has widely 
been used.  For given k folds, the method divides whole data into k parts, one piece, and trains 
the rest.  However, there are many ways to divide the data into k-folds.  The  stratified n-fold 
cross-validation is preferred to ensure that each fold has the right portion of each class value, 
which reduces the variance in the estimate.  In this study, we used the stratified 10-fold cross-
validation implanted in WEKA.
 An accuracy assessment was carried out using a confusion matrix.(48)  Table 3 shows 
a typical layout of the matrix, with the columns representing the classified data and the 
rows representing the ground truth values, although both can be interchanged.  In the table, 
the diagonal elements are the pixels of agreements, whereas the off-diagonal elements are 
disagreements.  From the confusion matrix, overall accuracy (OA) was calculated by dividing 
the sum of the entries along the diagonal by the total number of validation samples.  OA 
represents the current predictions and ranges from 0 to 1, where 1 is perfect.  However, it does 
not consider the agreements between datasets, which are due to chance alone.  Thus, the kappa 
coefficient (kappa) of the agreement was also derived from the confusion matrix.  Kappa is a 
measure of agreement based on the difference between the actual agreement in the error matrix 
and the chance agreement.(48)  Usually, kappa can range from −1 to +1, where 0 represents 
the degree of agreement that can be expected from random chance and 1 represents a perfect 
agreement between the raters.  In very rare cases, kappa can show a negative value, which 
signifies that there is no effective agreement between the two raters.(49)  OA and kappa are 
calculated using Eqs. (1) and (2), respectively.  Aside from OA, producer’s accuracy (PA) and 
user’s accuracy (UA) were also calculated on the basis of the confusion matrix.  

 
Number of correct predictionsOverall accuracy
Total number of predictions

=  (1)

 
Observed accuracy Chance agreementKappa coefficient =

1 Chance agreement
−

−
 (2)

Table 3
Typical layout of a confusion matrix.

Classified
Target Nontarget

Ground Truth Target True Positive False Negative
Non target False  Positive True Negative
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3.4 Erosion-prone area

 In this study, three conditions were considered to identify erosion-prone areas.  First, erosion 
occurs in open land; second, erosion is accelerated in hilly areas; third, erosion is controlled 
by forest/vegetation cover.  Hence, three separate maps were prepared and overlaid as per their 
relationship to erosion.  To better understand the erosion hazard, open space was given a value of 1, 
hill as 1, and nonforest areas as 1, such that their sum will give the hazard, as shown in Table 
4.  Pixels fulfilling all the  conditions were high erosion-prone areas and with two conditions 
fulfilled as medium and only one or none as low.

4. Results and Discussion

 After preprocessing the data, different band ratios and indices were derived from Landsat 
8 images as per Table 2.  A similar slope in degree was also derived from DEM.  For a better 
analysis of the erosion-prone areas, water bodies were masked from the study area using NDWI.  
For the ground truth points, the corresponding bands, indices, and slopes were extracted for 
both 20160519 and 20161010 scenes.  In addition to the two extracted data, an additional dataset 
combining both May and October extracts was also prepared to understand the generalized 
ability of derivative bands in all-year-round scenes.  All these comma-separated values were 
converted to the attribute-relation file format (ARFF) for input in WEKA.
 With the above-mentioned ARFF points, first, the ground truth data were evaluated for their 
baseline accuracy by stratified 10-fold cross-validation in WEKA.  The baseline accuracy was 
tested using the ZeroR rule, which predicts the basic model for a class, i.e., if the data were all 
mode class, what could be the OA?  This gives the idea of how the mode class is in the input 
data.  From Table 5, it can be understood that out of the total ground truth data, 78.86% (276) 
are hills, 60.86% (213) are nonopen land and, 58% (253) are forest class.
 For each class, open land, hill, and forest, first, J48 pruned trees with a minimum of 10% 
ground truth data for two objects were built for three conditions i.e., May, October, and the two 

Table 4
(Color online) Overlaying class for determination of erosion-prone hazard (low: green; medium: yellow; red: high).
Open land 0 0 0 0 1 1 1 1
Hill 0 1 0 1 0 1 0 1
Nonforest 0 0 1 1 0 0 1 1
Erosion-prone hazard 0 1 1 2 1 2 2 3

Table 5
(Color online) OA, number of leaves, and size of tree based on ground truth using pruned DT. White color is the 
lowest and deep color is the highest in value.
 OA (%) No. of leaves Size of tree
Ground Truth / Class Open land Hill Forest Open land Hill Forest Open land Hill Forest
May 86.00 92.57 87.14 12 8 5 23 15 9
October 89.71 86.57 93.14 15 15 9 29 29 17
Combined 89.86 91.71 89.43 22 20 24 43 39 47
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months combined, as shown in Table 6.  The table shows good OA of around 90% or more with 
relatively large numbers of leaves and trees.  However, these trees are difficult to interpret.  For 
example, Fig. 4 shows the J48 pruned DT for a forest in the 20161010 scene using the ground 
truth extracted from the scene itself.  Hence, in this work, we focused on the use of binary 
left pruned DT for easy interpretation and application in mapping erosion-prone areas in the 
inaccessible area of North Korea.  This helps in the regular short-interval monitoring of land 
covers such as surface water, open land, and forest in areas with a high rate of change.
 As a result, from a pruned tree for 10% ground truth data, Table 6 shows the application 
of one band for each class segmentation.  On the basis of Table 6, three different maps were 
derived for both the 20160519 and 20161010 scenes.  Figures 5 and 6 respectively show the 
results of open land, hill, and forest cover for 20160519 and 20161010 scenes derived from the 
optimum band and threshold in Table 6.  Variations in optimum ratio/index and threshold for the 
different classes are seen in the table.  For the 20160519 scene, RGRI above 0.7822 was found to 
be the optimum band and threshold to segment open land from the rest.  It was interesting that 
NG was able to segment both the hill and forest classes with different thresholds.  As the May 

Table 6
Pruned DT for open land, hill, and forest covers using ground truth data from May, October, and the two months 
combined.

May October Combined

Open land RGRI > 0.7822 GRVI <= 5.4451
GNDVI <= 0.6897 NNIR <= 0.711

Hill NG <= 0.2105 Slope > 6.9263 Slope > 6.9263
Forest NG <= 0.1692 IPVI > 0.8227 NNIR > 0.711

Fig. 4. J48 pruned DT for 20161010 scene produced by ground truth data of October: (a) DT with minimum 2 
objects and (b) DT with minimum 35 objects, i.e., 10% of ground truth data.

(a) (b)
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Fig. 5. (Color online) Open land, hill, and forest for 20160519 scene that was derived from the optimum band and 
threshold in Table 6.

Fig. 6. (Color online) Open land, hill, and forest for the 20161010 scene that was derived from the optimum band 
and threshold in Table 6.

May October Combined

Open land

Hill

Forest

May October Combined

Open land

Hill

Forest



Sensors and Materials, Vol. 31, No. 11 (2019) 3909

season lacked fully grown agricultural crops, the resulting land cover was mostly open land.  
Only the newly grown leaves of the forest absorbed blue and red lights but reflected NIR and 
green lights.  Thus, there is a sharp increase in reflectance between the red and NIR regions, 
which is known as the red edge and is used in plant stress detection.(50)  This process verifies 
the adoption of RGRI and NG for the 20160519 scene, while in the case of the 20161010 scene, 
the forest loses its chlorophyll; thus, deciduous plants reflect more NIR than in an earlier stage.  
This verifies the use of IPVI in segmenting forest.  The slope above 6.9263 degrees is selected 
as optimum to segment hill and flatlands.  As the autumn leaves are colorful, GRVI, i.e., red/
green ratio, is optimum for open land segregation.  Moreover, the GNDVI above 0.6897 was 
able to produce a similar result, which used NIR and green bands for the index.
 To further understand the effect of these optimum indexes, we combined both ground truths 
for the selection of the optimum ratio/index for segregation.  Using a minimum of 70 objects 
as pruning conditions, we found that NNIR alone is sufficient for segregating open land from 
forest cover, while the slope is optimum for hilly areas.  An NNIR value below and above the 
threshold segregates open land and forest; in other words, they are complementary in terms of 
cover.  The study areas can be considered complementary in terms of forest or open land as the 
area is rural with little build-up and some surface water.
 For accuracy assessment, on the basis of the confusion matrix, UA, PA, OA, and kappa were 
derived for each threshold in Table 6 for both scenes.  Table 7 shows the results of accuracy 
assessment based on ground truth points for open land, hill, and forest cover for 20160519 and 
20161010 scenes using the stratified 10-fold cross-validation.  For better understanding, we also 
plotted in Fig. 7 the densities of each target and nontarget based on the ground truth for the 
optimum band in Table 6.
 In Table 7, most of the measures are around 90% except for hill.  As the terrain is not known 
well and SRTM also has only a 30 m resolution, a misjudgment might occur while labeling the 
ground truth.  In Fig. 7, it is clearly visible that hill and nonhill ground truths have relatively 
large overlapping values in terms of NG and slope.  UA for the nonforest cover and PA for 

Table 7
Accuracy assessment based on ground truth points for open land, hill and forest cover for 20160519 and 20161010 
scenes using stratified 10-fold cross-validation.
Ground Truth Measures Open land Nonopen land Hill Nonhill Forest Nonforest

May

UA (%) 87.79 86.86 75.68 91.67 80.27 95.07
PA (%) 91.22 82.07 70.89 93.36 92.19 86.94
OA (%) 87.43 88.29 88.86
Kappa 0.74 0.66 0.77

October

UA (%) 87.79 84.67 66.22 93.84 85.71 94.09
PA (%) 89.90 81.69 74.24 91.20 91.30 90.09
OA (%) 86.57 88.00 90.57
Kappa 0.72 0.63 0.80

Combined

UA (%) 89.67 87.23 76.92 93.12 86.39 95.81
PA (%) 91.61 84.45 74.32 93.97 93.73 90.68
OA (%) 88.71 89.78 91.86
Kappa 0.93 0.80 0.82
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nonhill and forest covers are highest in the study area.  The combined ground truth shows 
better UA and PA for both scenes.  From the combined ground truth, forest cover produced 
the highest OA of 91.86% whereas open land was more consistent with 0.93 kappa compared 
with the others.  Using the combined ground truth improved OA and kappa in all the classes.  
Hence, using a multiple-season ground truth could be a better option than selecting only one for 
land cover mapping.  However, the improvement was clear, that is, without actual knowledge 
of the study area and field works, it is difficult to avoid the error, as shown in Fig. 7.  Most of 
the target and nontarget classes were overlapping.  This suggests that a careful selection of the 
ground truth should be carried out to ensure results with higher accuracy even for inaccessible 
areas.
 Finally, erosion-prone area maps were derived from binary maps, i.e., Figs. 5 and 6 of 
open land, hill, and forest derived from Table 6.  The erosion-prone areas were indexed as 
low, medium, and high hazards, as per the rule in Table 4.  The resulting maps of the erosion-
prone areas are shown in Fig. 8 with the corresponding areal coverage being given in Table 8.  
Except for the 20161010 scene with the May ground truth, all others show consistent erosion-

Fig. 7. (Color online) Density plots based on ground truth for optimum band ratio in Table 6.
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Fig. 8. (Color online) Erosion-prone hazard map produced by overlaying optimum band and threshold derived 
from Table 6 (Figs. 5 and 6) for the study area.

Table 8
Areal distribution (%) of the erosion-prone area in 20150519 and 20161010 scenes for maps in Fig. 8.

Erosion-prone 
hazard

20160519 20161010 Average area
(except May)May October Combined May October Combined

Low 63.35 57.18 66.76 19.40 67.80 71.98 65.41
Medium 22.29 27.76 15.44 70.13 19.47 14.10 19.81
High 14.36 15.06 17.81 10.47 12.73 13.92 14.77
Total 100 100 100 100 100 100 100
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prone areas.  Because we were unable to access the actual site, it is impossible to judge the 
accuracy of the results obtained; however, a decision can be made on the basis of the average 
areal distribution.  As shown in Table 4, we used the average of all the results to approximate 
the erosion-prone area in the study area.  Out of the total land area of 7338.61 km2 (excluding 
surface water) in the study area, around 20 and 15% are moderately and highly erosion-prone 
areas, respectively.  The remaining 65%, which does not include erosion-prone areas, is mostly 
forested.

5. Conclusions

 In this study, we applied remote sensing technology to investigate erosion-prone areas 
over an inaccessible area.  A subset area from Kangwon Province, North Korea, was used as 
a test study site and Landsat Imagery from May and October as data for mapping.  Satellite-
based DEM and imagery were selected, indices were derived along with slope, ground truth 
points were carefully chosen for optimum threshold and band using pruned DT, and accuracy 
assessment was carried out.  The results of this study can be summarized as follows:
(a) Using remotely sensed data from Landsat and high-resolution imagery in Google Earth, it 
is possible to map different land covers and thus derive erosion-prone maps with reasonable 
accuracy.
(b) Pruned J48 DT helped in the segmentation of the imagery based on single-band data of ratio/
index without degrading accuracy.  The optimum thresholds were much easier to understand 
than  a complex tree with a minimum of 2 objects for binary classification.
(c) Although the optimum band and threshold derived from the October ground truth were able 
to give acceptable results, they seemed ineffective for the interchange rule as demonstrated for 
the 20161010 scene using May rules.  However, combining the ground truths from different 
seasons resulted in rules giving better OA and kappa than the individual rule results.
(d) From the UA, PA, and density plots, we can understand that, despite a careful selection 
of ground truths from a high-resolution image, good knowledge of the study area and field 
investigations are necessary to select ground truths.
(e) The average of erosion-prone maps, except for the 20161010 scene with the May ground 
truth, shows that 15 and 20% are high and medium erosion-prone areas out of the total land, 
respectively.  The remaining 65% is due to forest cover.
 On the basis of these results, we found that remotely sensed satellite imagery could be used 
to obtain land cover and erosion-prone area maps with reasonable accuracy.  Although limited 
to one sensor image subset in a hilly area, satellite images could be very useful for monitoring 
changes in forest and open land covers over inaccessible areas.
 Such studies can be very useful for calculating the total cost for planning the recovery of 
North Korean mountains, especially the bare land identified from satellite images.  Future 
works will compare the green coverage and land cover pattern between Kangwon Province of 
North Korea and Gangwon Province of South Korea.
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