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	 We propose to combine extension neural network type-3 (ENN-3) with the chaos theory 
and empirical mode decomposition (EMD) for electrocardiography (ECG) identification.  ECG 
signals are measured and captured by the developed hardware measuring circuit and LabVIEW 
human–machine interface, and the stored ECG data are subjected to EMD at high- and low-
frequency signals.  A chaos dynamic error scatter map is formed using master and slave chaotic 
systems in order to obtain the chaos eye coordinates of a specific ECG signal, and ENN-3 is 
used for identification.  There are 50 research participants in this study; the first half of the 
data are measured using a signal capturing circuit and a wrist patch-type ECG sensor (patch 
electrodes), while the second half are provided by Massachusetts Institute of Technology-Beth 
Israel Deaconess Medical Center (MIT-BIH).  Analysis results show that the method proposed 
in this study has a higher accuracy in the classification of ECG signals, and that the recognition 
rate is as high as 100%.  The recognition result was compared with those of ENN-3, the 
multilayer neural network, extension method, and ENN.  The results showed that ENN-3 has a 
higher recognition accuracy rate than the other three algorithms, the difference being as much 
as 8%.  Therefore, the autodiagnosis ECG system designed in this study can effectively classify 
arrhythmia and reduce the high cost of manual identification.

1.	 Introduction

	 The research on the prevention and diagnosis of heart diseases has been paid increasing 
attention in recent years.  In general, the catheters used and inserted into an artery placed in 
the wrist play a role in medicine for heart problems.(1)  Medical equipment that noninvasively 
capture the electrocardiography (ECG) signals of the human heart to determine the condition of 
the heart and to detect and diagnose different heart diseases is mostly used.
	 In recent years, many researchers have proposed different eigenvalue capture and diagnostic 
methods, and the ECG disease recognition method is gradually gaining attention.  Llamedo 
and Martinez(2) proposed the use of linear discrimination classification to identify the ECG 
eigenvalues of the ECG form and RR interval length on the basis of different combinations 
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of the three types of eigenvalues, where the most efficient feature combination is trained 
using training data, and the classification system was validated using test data.  Kozia et al.(3) 
identified the PQRST points in the ECG time domain, where the QRS complex wave and 
QT interval were used as features for identification.  It is noteworthy that the eigenvalue 
extraction methods mostly use the RR interval length and other types of eigenvalue, e.g., the 
morphological eigenvalue based on wavelet transform,(4) the coefficient based on the Hermite 
function,(5,6) or features directly extracted from the time and frequency domains of ECG.  The 
classification methods include linear discrimination classification,(7,8) support vector machine 
(SVM),(9,10) neural network,(11,12) and fuzzy theory(13,14) methods.  
	 Park et al.(15) proposed the use of statistics and Hermite function methods to extract the 
eigenvalue of heartbeat signals on the basis of the hierarchical classification method and then 
SVM to classify ECG signals.  Chen et al.(16) used chaotic ECG signals for disease identification 
and the combination of the correlation dimension and Lyapunov eigenvalues of the chaos theory 
with neural network learning and identification functions for identification.  Zhai and Tin(17) 
proposed an ECG-based arrhythmic beat classification system considering beat waveform and 
beat-to-beat correlation by using the convolutional neural network (CNN).  Li and Li(18) utilized 
a local deep field method to capture and use the class information hidden in the details of data 
space for ECG beat classification.  Chen et al.(19) presented a novel feature extraction method 
for the ECG classification based on a combination of projected and dynamic features.
	 In our study, the input data used are divided into two major parts.  One part is composed 
of arrhythmia data that form the Massachusetts Institute of Technology-Beth Israel Deaconess 
Medical Center (MIT-BIH) database, which is one of the internationally recognized standard 
ECG databases and also provides various other resources for research on arrhythmia.(20)  The 
other part is composed of the participantsʼ data of ECG signals measured and extracted using 
the developed hardware circuit with a wrist patch-type ECG patch electrode sensor.  As there 
are multiple types of feature extraction and calculation is complicated, in order to extract 
the eigenvalue of the original signal and effectively reduce the measured data volume, we 
combine extension neural network type-3 (ENN-3) with the chaos theory and empirical mode 
decomposition (EMD) to enable ECG disease identification.  In addition, for future signal 
extraction, analysis, and identification, we develop a human–machine interface, where real-
time measured signals are integrated with the proposed algorithm and displayed on the graphic 
control screen, using LabVIEW.
	 In Sect. 2, the overall system architecture will be given.  The proposed methods, including 
EMD, the chaos theory, and ENN-3, will be introduced in Sect. 3.  Experimental results will be 
discussed in Sect. 4.  Finally, conclusions will be given in Sect. 5.

2.	 System Flow

2.1	 Overall system architecture

	 The application of EMD, ENN-3, and the chaos theory to the ECG recognition system, as 
proposed in this paper, is divided into three major parts: the measurement and extraction of 
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ECG signals; the EMD and feature extraction of chaos eye coordinates of the chaos theory;  
identification using ENN-3 and the human–machine interface result display.  The overall system 
architecture is shown in Fig. 1.
Step 1: Signal measurement and acquisition
	 The first half of the data are from 25 participants.  The participants’ ECG signals are 
measured using a hardware circuit, and the data are transmitted to and stored in the server by 
the DAQ of LabVIEW.  The second half of the data are from the MIT-BIH arrhythmia database.  
The ECG signals are from 50 participants.
Step 2: EMD and chaos theory
	 The measured originals ECG signals and MIT-BIH data are used in the intrinsic mode 
function (IMF) of EMD.  The IMF is divided into six layers from high frequencies (IMF1) to 
low frequencies (IMF6).  The chaos dynamic error scatter map is derived from each layer by the 
master and slave chaotic systems of the chaos theory, and the extracted chaos eye coordinates 
are used as eigenvalues.  Here, we use the root mean square (RMS) value to determine the 
maximum distance between chaos eyes; thus, IMF6 is selected as the eigenvalue.  There are 50 
chaos-eye-coordinate eigenvalues.
Step 3: ENN-3 and human–machine interface
	 Next, the chaos eye coordinates are classified and identified using ENN-3.  Finally, the 
recognition result is displayed on the developed human–machine interface.

2.2	 ECG signal measurement and extraction hardware circuit

	 Figure 2 shows the physical circuit for ECG signal measurement and extraction, including 
the electrode patch, an extraction circuit composed of a preamplifier, a power amplifier, high- 
and low-pass filters, and a DAQ card for analog-to-digital signal conversion.  Finally, the signal 
is exported to the human–machine interface designed using LabVIEW.

Fig. 1.	 (Color online) System architecture flowchart.
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	 Preamplifier: As some measured signals are very weak, the ECG signal is usually amplified 
by a preamplifier circuit.  In this study, we use the AD620 instrument amplifier, which is a 
high-gain DC coupling amplifier characterized by a differential input, a single-ended output, a 
high input impedance, and a high common-mode rejection ratio (CMRR).  The accuracy of the 
amplified signal is high, the noise is low, the operation voltage is low, and it is easy to use.
	 Filter: The ECG signal is amplified by AD620, and then, the measurement range is designed 
to be in a certain frequency range using a filter.  In this study, a second-order Butterworth 
filter,(21) where the cutoff frequencies of low-pass and high-pass filters are designed as 100 and 
0.05 Hz, respectively, is used.
	 Power amplifier: After the signal is processed by the preamplifier and filter, the signal must 
be amplified by the power amplifier circuit.  We use the operational amplifier LM324 IC for 
Stage 2 circuit voltage gain.

3.	 Proposed Methods

3.1	 EMD 

	 The EMD(22,23) for signal preprocessing, as proposed in this paper, can effectively separate 
the frequency components of a signal from the time curve in the form of IMF, and the 
components of the original signal in different frequency bands are traced out by reconstruction.  
The important information contained in the original signal can be extracted during the course 
of decomposition.  The basic equation is described below.  If the time series signal is x(t), all 
the extreme points on x(t) are determined and joined by the curve, where the upper and lower 
envelope curves of signal x(t) are set as u0(t) and v0(t), respectively.  The average curve of the 
upper and lower envelopes is expressed as

Fig. 2.	 (Color online) ECG signal measurement and extraction hardware circuit diagram.
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	 After m0(t) is subtracted from x(t), h1(t) = x(t) − m0(t), the function may or may not be an IMF 
component.  In general, it does not satisfy the condition for IMF.
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	 In the aforesaid decomposition process, when a certain standard is reached after multiple 
repetitions, hk(t) becomes the first IMF of the original signal, which is set as y1(t), and the rest of 
the signal is set as r1(t).  Then,
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where y1(t) is the first component obtained by processing the original data, as well as the 
highest-frequency component in the x(t) of the original signal; r1(t) is the corresponding residual 
component.  r1(t) in the remainder is used as the new original signal in repeating the aforesaid 
process, and the EMD continues.  The second IMF y2(t) can be calculated, the process is 
repeated n times until the remainder becomes a monotonic signal or its value becomes smaller 
than the present value, upon which decomposition is completed, and the number n IMF yn(t) and 
residual component rn(t) are obtained.
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	 The important information in the fault signal can be extracted by repeated EMD and the 
noise interference can be eliminated.

3.2	 Chaos theory

	 The chaos theory proposed by the American meteorologist Edward Norton Lorenz discusses 
the unsteady behavior of a nonlinear dynamic system.  The chaotic attractor results in an 
orderly, but nonperiodic kinematic trajectory, of the signal generated by the chaos theory, 
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and this trajectory can change the result markedly through subtle changes.(24)  Therefore, it is 
applicable to the large data volume of the original signal and to values that change in a small 
range.  
	 The chaotic system is divided into a master system and a slave system, expressed as Eqs. (5) 
and (6), respectively.  The chaos dynamic error resulting from the difference between the values 
of the two systems leads to different operation trajectories of the master and slave systems.  In 
the engineering domain, when the master system is tracked by the slave system and the two 
system operation trajectories are coordinated gradually by the controller, the system is known 
as a chaotic synchronization system.(25) 
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Here, f1 is a nonlinear function and Eq. (6) is subtracted from Eq. (5) to obtain the following 
dynamic error equation.

	

( ) ( )
( ) ( )

( ) ( )

1 1 2 3

2

1 1 2 3

1 1 2 3 1 1 2 3

3

1

1 2 3 1 2

, , , , , , , ,
, , , , , , , ,

, , , , , , , ,

n n

n n

n n n n n

f y y y y f x x x x
f y y y y f x x x x

f y y y y f x x xe x

e
e

 = −
 = −


 = −

�

��
� �
�
�

� ��

	 (7)

	 The Lorenz master–slave chaos system used in this study is expressed as
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	 Equation (9) is subtracted from Eq. (8) to obtain the dynamic error equation of the Lorenz 
master–slave chaos system expressed as
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where x is the master system whose initial value is set as 0.  y is the slave system whose initial 
value is the ECG signal value.  The Lorenz primer coefficients are α = 10, β = 28, and γ = (−8/3).

3.3	 ENN-3

	 ENN-3(26) is an expansion of ENN-2,(27) which is a combination of a neural network(28) and 
the extension theory(29) introduced in our previous paper.  The extension theory provides a 
distance parameter (DP) for classification, while the neural network uses the features of parallel 
computation and learning capability.

3.3.1	 ENN-3 architecture

	 ENN-3 has been successfully employed in ECG diagnosis.  A schematic of the structure 
of ENN-3 is displayed in Fig. 3.  This network consists of two connection values between the 
input and competitive layers.  One of the connections denotes the lower bound and the other 
connection shows the upper bound.  The output nodes L

mjw  and U
mjw  provide the connections 

between the jth and mth input nodes.  The main goal of the competitive layer is to partition the 
subclusters of input features by unsupervised learning.  The output layer utilizes the logical ‘OR’ 
to combine similar subclusters on the basis of trained data when the clustering procedure in the 
competitive layer is convergent.

Fig. 3.	 (Color online) Structure of ENN-3.
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3.3.2	 ENN-3 algorithm 

	 The ENN-3 algorithm examines both the supervised and unsupervised learning methods.  In 
the first phase, ENN-3 employs the unsupervised learning method to generate subclusters in the 
competitive layer. A threshold called the DP λ and an extension distance (ED) function are used 
to dominate the clustering process.  λ is applied to measure the distance between the cluster 
center and the desired boundary.  A pattern is selected as the center of the first cluster, and the 
initial weights of the first cluster can be calculated from the center and the desired DP λ.  Then, 
the next pattern is compared and clustered with the first cluster if its distance is less than the 
threshold.  Otherwise, it constitutes the center of a new cluster.  This process is repeated for all 
patterns until a stable or desired cluster formation occurs.  In the second phase, ENN-3 utilizes 
the supervised learning method to combine similar clusters on the basis of the target output 
between the competitive and output layers.  The weights between the competitive and output 
layers can be set to 1.  A number of variables must be defined before examining the learning 
process, as shown in Table 1.  
	 The detailed ENN-3 algorithm is outlined below.
Step 1:	 After setting it, the desired DP is used to measure the distance between the center of the 
cluster and the desired boundary.  
Step 2:	 The first pattern is produced and M1 = 1.  The center coordinates and weights of the 
first cluster are then calculated.

	 k = 1	 (11)

	 { } { }1 2 1 2, , , , , ,k k kn k k knk k z z zZ xX x x… == ⇒ … 	 (12)

	 L
kj kjw z λ= −  for j = 1, 2, …, n	 (13)

	 U
kj kjw z λ= +  for j = 1, 2, …, n	 (14)

Step 3:	 The input pattern vectors are read by setting i = 2.  Go to the next step.
Step 4:	 Read the ith input pattern { }21, , ...,i i inixX x x⇒  before calculating the extension 
distance EDm between Xi and the current mth cluster center as follows.

Table 1
Parameters of ENN-3 algorithm.
Variable Description
Xi  ith pattern
xij jth features of ith input pattern
Zk center of cluster k
λ distance parameter
Np total number of input patterns
n number of features
k number of existing clusters
Mk number of patterns belonging to cluster k

c
kO output of kth node in competitive layer
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Step 5:	 Find EDp as follows.

	 { }minp mED ED=  for m = 1, 2, …, k	 (16)

Step 6:	 If EDp > n, then create a new cluster center.  According to the definition of the 
proposed extension distance, if x lies in the interval, then the distance is smaller than 1.  Thus, if 

{ }1 2, , , nii i iX xx x= …  has n features in the clustering process, EDp > n indicates that Xi does not 
belong to the pth cluster.  Then, a new cluster center will be created.

	 1k k= + 	 (17)

	 { } { }1 2 1 2, , ..., , , ...,k k k k kn i i inZ X z z z x x x= ⇒ = 	 (18)

	  L
kj kjw z λ= −  for j = 1, 2, …, n	 (19)

	 U
kj kjw z λ= +  for j = 1, 2, …, n	 (20)

	 1; 0c c
k mO O= =  for all m ≠ k	 (21)

	 1kM = 	 (22)

Otherwise, the pattern Xi belongs to cluster s, and the weights are updated as follows.

	 ( ) ( ) ( )1
1

U new U old old
sj sj ij sj

s
w w x z

M
= + +

+
	 (23)

	 ( ) ( ) ( )1
1

L new L old old
sj sj ij sj

s
w w x z

M
= + +

+
	 (24)

	
( ) ( )

2

U new L new
sj sjnew

sj
w w

z
+

=  for j = 1, 2, …, n	 (25)

	 1; 0c c
s pO O= =  for all p ≠ s	 (26)

	 1p pM M= + 	 (27)

Note that only one node should be active to demonstrate a classification of the input pattern and 
the output of other nodes should be set to nonactive.
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Step 7:	 Change the input pattern Xi from cluster “o” (the old one) to cluster “k” (the new one).  
Then, the weights and center of cluster “o” are updated as follows.

	 ( ) ( ) ( )1U new U old old
oj oj ij oj

o
w w x z

M
= + + 	 (28)

	 ( ) ( ) ( )1L new L old old
oj oj ij oj

o
w w x z

M
= + + 	 (29)

	
( ) ( )

 
2

U new L new
oj ojnew

oj
w w

z
+

=  for j = 1, 2, …, n	 (30)

	 1o oM M= + 	 (31)

Step 8:	 Set i = i + 1 and repeat Steps 4 to 8 iteratively until all the patterns have been compared 
with the existing subclusters.  If the clustering process has converged, go to the next step; 
otherwise, return to Step 4.
Step 9:	Use the logical “Or” to obtain similar subclusters with similar output in accordance 
with the trained data.  The functions of this layer are shown below.

	 c
r rp pNET W O= ∑ 	 (32)

	 ( )min 1, r rO NET=  for r = 1, 2, …, m	 (33)

4.	 Experimental Results

4.1	 Chaotic dynamic error scatter diagram

	 To validate the performance and accuracy of disease identification using the methods 
proposed in this paper, heartbeat rate data from 50 participants aged between 20–50-year-
old males and females, were tested.  Half of the test samples selected from the MIT-BIH(30) 
arrhythmia database were used to obtain disease identification data.  The participants’ heartbeat 
rates were further categorized into four classes, 25 being classified as normal beat (NB), 6 
as left bundle branch beat (LBBB), 19 as right bundle branch beat (RBBB), and 2 as atrial 
premature contraction beat (APCB).
	 The measured and collected ECG data were used for the IMF of EMD, as shown in Fig. 4, 
where the value of IMF6 after IMF was calculated using the Lorenz master–slave chaos system 
of the chaos theory to obtain the chaos dynamic error scatter map.  Figure 5 shows the chaos 
dynamic error scatter map of the heartbeat class LBBB, where each scatter diagram has two 
chaos eyes.  There are four coordinate values, C1 to C4.  In this study, we used the y-coordinate 
values of the left and right chaos eyes (C1 and C3) as new eigenvalues and obtained 50 chaos 
eye coordinate eigenvalues.  The distribution of the chaos eye coordinates of the four heartbeat 
classes is shown in Fig. 6.
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4.2	 ENN-3 identification classification results

	 The obtained 50 chaos eye coordinate eigenvalues and ENN-2 recognition results with λ = 
0.25 are shown in Fig. 7.  ENN-3 was further employed for clustering, as shown in Fig. 8.  The 
recognition accuracy is as high as 100%.

Fig. 4.	 (Color online) IMF of EMD.

Fig. 5.	 (Color online) LBBB chaos dynamic error scatter map.
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Fig. 6.	 (Color online) Distribution diagram of Y-coordinate values of left and right chaos eyes.

Fig. 7.	 (Color online) Distribution diagram of ENN-2 recognition results (λ = 0.25).

	 The neural networks of other architectures were tested using two eigenvalue inputs and 
seven fault-type outputs.  Only the hidden layer architecture setting was adjusted for 6, 8, and 
10 hidden layers and tested.  In terms of learning and overall recognition rates, the recognition 
accuracy rate for 10 hidden layers was the highest at 83.29%.  The recognition result was 
compared with those of ENN-3, the extension method, and ENN, as shown in Table 2.  The 
recognition rate of ENN-3 was the highest (100%), that of ENN was the second highest (92%), 
and that of the extension theory was 92%.  The results showed that ENN-3 has a higher 
recognition accuracy rate than the other three algorithms, the difference being as high as 8%.

4.3	 Human–machine interface signal measurement and result display

	 Figure 9 shows the display menu of the human–machine interface developed using LabVIEW 
graphic control software and the algorithm written by MATLAB, the ECG measurement signal, 
the dynamic error scatter diagram obtained using the chaos theory after EMD, the numerical 
display of chaos eye coordinates, and the classification recognition result of ENN-3.
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Fig. 8.	 ENN-3 classification result.

Table 2
Recognition results of ENN-3 and other algorithms.
Algorithm Training time Learning rate (%) Accuracy rate (%)
ENN-3 5 100
ENN 10 88 92
Multilayer neural network (2-6-7) 10000 99 83.25
Multilayer neural network (2-8-7) 10000 99 83.27
Multilayer neural network (2-10-4) 10000 99 83.29
Extension method 92

Fig. 9.	 (Color online) Human–machine interface display of ECG.

5.	 Conclusions

	 In this study, we developed the software and hardware of an ECG recognition system.  
The designed ECG measurement and extraction circuit architecture with an ECG patch 
electrode sensor is simple and includes the developed LabVIEW human–machine interface; 
the participants’ heart status can be known from analytical results.  In addition, signals are 
measured and extracted using the ECG hardware circuit, the stored data are processed by EMD 
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to form a dynamic error scatter diagram using the master and slave chaotic systems of the 
chaos theory, and the chaos eye is used as the eigenvalue and classified by ENN-3 in order to 
diagnose the subject’s heart status.  The recognition accuracy is as high as 100%.  According 
to experimental results, the master and slave chaotic systems are used in feature extraction 
to generate a chaos dynamic error scatter map and chaos eyes.  The left and right chaos eye 
coordinates are used as eigenvalues, and the feature extraction in the time domain of the 
traditional ECG is greatly reduced in order to reduce the computing time and system complexity 
of the identification system and achieve efficient diagnosis.
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