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	 Machine-vision-based reading and sorting devices have been used to measure and classify 
items.  Here, we extend their application to the sorting and assembling of items identified by 
their geometry and color.  In this study, we developed an improved machine vision system that 
is capable of discerning and categorizing items of distinct geometries and colors and utilizes 
a computer-controlled robotic system to manipulate and segregate these items.  Hence, a 
machine vision system for an automatic classification process while operating a robotic arm 
is hereby developed.  To obtain positioning information, the proposed system uses cameras 
that were mounted above the working platform to acquire images.  Perspective and quadratic 
transformations were used to transform the image coordinates of the calibration system to the 
world coordinates by using a calibration procedure.  By these methods, the proposed system can 
ascertain the two- and three-dimensional coordinates of the objects and automatically perform 
classification and assembly operations using the data collected from the visual recognition 
system.  

1.	 Introduction

	 With the rapidly growing demand for industrial automation, flexible automatic assembly 
systems are one of the most useful tools for automated manufacturing processes.  These systems 
are expected to integrate machine vision systems for various applications within automation 
systems and production lines.
	 Nowadays, machine vision has been widely applied in manufacturing technology for the 
inspection and defect detection of components and surfaces.  For instance, Kavitha and Ashok 
applied machine vision to measuring the radial error of a lathe spindle while turning a master 
cylinder.(1)  This system used a CMOS camera and a personal computer (PC).  An image 
processing system was used to obtain variations of the center position of a master cylinder 
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during spindle rotation.  The radial error values of the spindle were evaluated by the Fourier 
series analysis of the center position of the master cylinder.  Dworkin and Nye proposed a 
machine vision algorithm to measure hot-formed parts.(2)  In this study, the authors used 
CCD cameras to obtain desired images with visible light.  Then, thresholding operations were 
conducted.  Finally, the images were tested and processed.  Di Leo et al. used a machine vision 
apparatus to design a measurement system for the online inspection of electromechanical 
parts.(3)  This system used two cameras for obtaining images of the parts to be measured.  The 
measurement system was demonstrated to be efficient and to fully meet the specifications 
of the industrial-quality production control system.  Shuxia et al. presented a machine vision 
measurement method involving cutting device diameter and the maximum rotating diameter 
of a mini-milling machine.(4)  In this study, a subpixel threshold segmentation algorithm was 
used to detect the edges of the mini-milling cutter.  These two features were robustly and 
accurately determined through a successful application of the Hough transform and a linear 
regression.  Their proposed machine vision system allowed a fast and accurate assessment of 
the cutter head dimensions.  In a study by Ngo et al., a machine vision system using a double 
CMOS camera was built to measure the three-dimensional sizes of mechanical parts.(5)  The 
image data acquired from the double CMOS camera were transmitted to a computer for the 
calculation of parameters.  With this proposed system, the sizes of parts could be determined 
rapidly and accurately.  Xiang et al. proposed a measurement system using a two-camera 
machine vision setup to perform high-accuracy measurement of large automobile brake pad 
bayonets.(6)  After the edges of the linings were detected, the sizes were determined on the basis 
of a relative measurement principle by using a measurement equation and a linear fitting.  The 
experimental results showed that the repeatable precision was ± 0.019 mm, the average of biases 
was 0.003 mm, and the average measurement time was an impressive 0.396 s per brake pad.
	 Among these applications, generalized procedures for adapting cameras to robot control 
applications using machine vision have been developed by several researchers.  Blasco et al. 
used two vision systems mounted on an organic-produce-sorting machine.(7)  One of them was 
used to detect weeds and pass their coordinates to the controller of a robotic arm, and the other 
for correcting inertial perturbations induced in the position of the end effector.  The primary 
vision system was demonstrated to be capable of properly locating 84% of weeds and 99% of 
lettuce heads.  Nerakae et al. presented an automatic assembly system comprising a selective 
compliance assembly robot arm (SCARA) using machine vision.(8)  They designed the primary 
prototype of the flexible automatic assembly system to pick and place target objects.  Iscimen 
et al. presented a smart robotic arm motion using computer vision to identify objects from 
images automatically and perform the given tasks.(9)  Of special interest, an artificial neural 
network was used for object recognition, and an overall recognition accuracy of 98.30% was 
achieved.  Di Fulvio et al. proposed a stereoscopic vision system for conducting dimensional 
measurements in an industrial robotics application.(10)  In their research, a camera mounted on a 
six-axis robotic manipulator can calculate the world coordinates of target objects.  Experimental 
results have shown that the measurement accuracy was strongly affected by the calibration 
accuracy.  In addition, Rai et al. proposed a computer vision system for the detection and 
autonomous manipulation of objects on a target surface.(11)  Through an iterative training 
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algorithm, a robotic arm with six degrees of freedom (DOF) can pick up objects and place them 
toward a destination.  The system applied a center-of-mass-based computation, using a filtering 
and color segmentation algorithm, to locate both the target and position of the robotic arm.  In 
another research, Tsarouchi et al. used a vision system for the robotic handling of randomly 
placed objects.(12)  They developed a method of calculating the coordinates of a part’s features 
in the world coordinate system (WCS) using images captured by a camera.  Such a method was 
implemented within a software tool using MATLAB and tested on the feeding of shaver handles 
into industrial manufacturing equipment.
	 In machine vision technology, the performance of a vision system largely depends on the 
calibration accuracy.  You and Zheng presented an accurate and practical calibration method 
for a roadside camera using two vanishing points.(13)  To improve the accuracy of calibration 
results, they employed multiple observations of vanishing points and proposed a dynamic 
calibration method to correct the camera’s parameters.  The proposed method is suitable 
for outdoors, i.e., traffic scenarios.  Shin and Mun proposed a new calibration method for a 
multicamera setup by a wand dance procedure,(14) by which the calibration parameters were first 
estimated by the direct linear transformation (DLT) method.  Then, the parameters estimated 
in the first step were improved iteratively through a nonlinear optimization by the wand dance 
procedure.  Experimental results showed that the proposed wand method holds great promise 
for increasing the overall accuracy of the DLT algorithm and provides better user convenience.  

Deng et al. proposed a relationship model for camera calibration in which the geometric 
parameters and the lens distortion effect of the camera were taken into account to unify the 
WCS, the camera coordinate system (CCS), and the image coordinate system (ICS).(15)  In their 
study, the proposed algorithm can avoid local optimums and complete the visual identification 
tasks accurately.  Ji et al. presented a novel design for an automatic and complete parameter 
calibration system.(16)  By using information from camera sensor networks to construct a 3D 
texture map, they developed an intelligent space data-acquisition method.  The designed large-
scale scanning technique using a laser scanner was investigated by Wang et al., who performed 
both point and surface measurements to minimize errors, and the obtained values were used to 
calculate the uncertainty for the measurements.(17)  The measurement deviation and statistical 
values of variance were determined by Palousek et al. for the 3D digitization of glossy surfaces 
coated with a titanium oxide coating or a chalk powder spray.(18)  A 3D optical scanner, ATOS 
III Triple Scan, was used for capturing and evaluating the data, which revealed a significant 
difference between the chalk and the titanium matte coatings.  
	 In this study, a machine vision system was used in conjunction with a robotic arm with six 
DOF for the classification and assembly of color geometrical solids into a module.  This system 
included three high-resolution CMOS cameras and a PC.  Here, a double CMOS camera was 
used to capture the images of assembly parts and modules.  The assembly parts consisted of 
different geometric solids, including cubes, spheres, triangular prisms, and hexagonal prisms.  
The modules contained holes of different profile geometries, such as triangular, rectangular, and 
circular holes.  Before capturing the images, all three cameras had to be calibrated to increase 
their accuracies.  In the calibration work, the generalized perspective transformation and the 
quadratic transformation were used to determine the relationship between the ICS and the WCS.  
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Then, the images of the color objects were processed using image processing software.  After 
obtaining the desired images, the assembly parts were accurately recognized within the models 
by Blob analysis.  The proposed system can recognize any general 2D and 3D color objects.  
Both the accuracy and success rate of the proposed system were nearly 100%.
	 The remainder of this paper is organized as follows.  In Sect. 2, we present the materials  
and the experimental setup, including a description of the proposed model, the machine vision 
system, and the robotic workstation platform.  The implementation of the proposed technique 
is introduced in Sect. 3, as are the experimental procedures.  Here, we describe the research 
methodology, including coordinate calibration methods, the calculations of the web-cam 
resolution, and how the orientations of triangular holes (target objects) were determined.  The 
results and discussion, in which we evaluate the comprehensive performance of our proposed 
method, will be covered in Sects. 4 and 5, respectively.  In Sect. 6, we conclude this work.

2.	 Materials and Experimental Setup

2.1	 Platform description

	 Figure 1 shows the components of the vision system.  The overall hardware included a 
robotic arm (HIWIN), three CMOS cameras, and a PC.  The double CMOS camera C615 and 
the third camera C525 of the proposed system were mounted on a lattice above the platform.  
The double camera was used to capture the assembly modules, and the C525 camera was used 
to capture the assembly parts.  The 3D-image-based vision equipment required an intelligent 
image analysis software program and an object detection algorithm.  The proposed framework 
combined the control and image processing to perform the desired operations.

Fig. 1.	 (Color online) Experimental system.
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	 In a typical application, once a user’s command was encountered, the workspace was 
scanned, and the corresponding images were captured.  These images were processed to 
identify the target objects and make a center marker for each object.  The acquired coordinates 
were then sent to the robotic arm to reach toward the target position.  The various assembly 
parts, randomly placed within the workspace, included a sphere, a cube, a triangular prism, 
and a hexagonal prism, each of which was colored red, yellow, green, or blue.  The assembly 
modules included four boxes for the classification process.  Each box possessed circular, square, 
or triangular holes corresponding to the permutations of the first three aforementioned solid 
geometries and four colors.  The circular hole was intended to accommodate the spheres and  
hexagonal prisms.

2.2	 Flowchart progression of the proposed system

	 As shown in Fig. 2, once the proposed system received a command from the user, the camera 
calibration processes, including 2D and 3D calibrations, were implemented first, and then the 
workspace was scanned to acquire the desired images.  The acquired images were processed to 
classify the color, and then Blob analysis was used to calculate the properties of blobs, such as 
the area, perimeter, and compactness, to identify the target object, and formulate a marker for 
their centers.  Afterwards, the measurement data were sent to the robotic arm for manipulation.

3.	 Research Methodology

3.1	 Quadratic transformation

	 With the 2D coordinate calibration, we used a quadratic transformation in this study using 
a regression analysis to extract the point coordinates for the calibration process.  In this work,  
lens distortion was not considered.  However, it can be used to predict the positions of points 

Fig. 2.	 Flowchart schema of the proposed system.
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in the WCS from the information provided by images.(19)  By this method, we found that the 
relationship between the image coordinates of point I(x, y) and the world coordinates of point 
W(X, Y) obey the following equation:

	
2 2

1 1 1 1 1 1
2 2

2 2 2 2 2 2

X a x b xy c y e x f y g

Y a x b xy c y e x f y g

 = + + + + +


= + + + + +
,	 (1)

where a1, b1, c1, e1, f1, and g1, and a2, b2, c2, e2, f2, and g2 are the transformation coefficients.  
To find the two unknown variables in Eq. (1), (X, Y), the transformation coefficients should be 
determined by regression analysis.(20)

3.2	 Perspective transformation

	 With the 3D coordinate calibration, the perspective transformation was used to calibrate 
the coordinates.  As shown in Fig. 3, an arrangement was selected such that the origin is at the 
center of the image, and the lens center was at coordinates (0, 0, λ), where λ is the focal length 
of the lens.  Figure 4 shows a generalized perspective projection of a 3D point in the WCS (X, Y, Z), 
named wh, onto an image plane with coordinates (x, y, z), named ch.  In this figure, the camera 
was mounted at G0(X0, Y0, Z0).  The center of the image plane deviates from G0 and is denoted 
by the vector r.(5)

	 A generalized perspective transformation can be expressed as Eq. (2), which involves the 
transformation of the two coordinate systems.

	 =h hc ACRGw ,	 (2)

where C and G are translation matrices, R is the rotation matrix, and A is a specific perspective 
transformation matrix.

Fig. 3.	 Specific perspective projection model.(5) Fig. 4.	 (Color online) Generalized perspective 
projection model.(5)
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	 The product of ACRG is recruited as P = ACRG.  A homogeneous 4 × 4 matrix 
representation for the P matrix can thus be described.  Therefore, the generalized perspective 
transformation can be expressed by Eq. (3), where s is the scale factor.

	

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44 1

p p p psx X
p p p psy Y
p p p psz Z
p p p ps

    
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    =
    
    

    

	 (3)

From Eq. (3), image coordinates (x, y) can be calculated using Eq. (4).

	

11 12 13 14

41 42 43 44

21 22 23 24

41 42 43 44

p X p Y p Z psxx
s p X p Y p Z p

p X p Y p Z psyy
s p X p Y p Z p

+ + + = = + + +
 + + + = =
 + + +

	 (4)

	 In Eq. (3), the P matrix includes 16 variables, but four of these variables (p31, p32, p33, p34) 
are not necessary in the calculation process.  Thus, only 12 variables remain to be found, which 
are pij (i = 1, 2, 4; j = 1, ..., 4).  To find the 12 variables of the P matrix, six calibration points in 
the WCS were used; these points correspond to the image points in each image plane.  After the 
12 variables of the P matrix were found, using the iteration pij (i = 1, 2, 4; j = 1, ..., 4), they were 
substituted into Eq. (4) to reconstruct the world coordinates.  As can be seen, there are three 
unknown variables (X, Y, Z) in Eq. (4).
	 To solve Eq. (4), a double camera was used to obtain two image planes, which were the left 
and right image planes.(5)  Each of these two image planes provides six points on the sample, 
which correspond to each other.  In Eq. (5), the superscript (1) represents the left image plane 
created by the left camera, and the superscript (2) represents the right image plane created by 
the right camera.
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	 (5)

3.3	 Determination of orientation of triangular holes

	 In the classification process, all the assembly parts should fit within the assembly modules 
with respect to their shape and color.  The orientations of the spheres and cubes were not 
distinct from the holes’ direction, so there was no need to identify their angle.  However, 
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the triangular prisms had a particular orientation that fit within the respective holes, so the 
orientations of these parts and triangular holes should be determined.  To detect the orientation 
of the triangular holes in this system, the pixels were scanned from left to right and from top to 
bottom of the binary images.  The first contact point between the scan line and the triangle was 
identified as the first point.  Scanning was performed on both the left and right image planes.  
An illustration of this technique for finding the first points of all the triangular holes is shown 
in Fig. 5.
	 Using this scanning technique, we found that the triangular holes have, at most, four 
orientations, as shown in Figs. 6(a)–6(d).  Figures 7(a) and 7(b) show images of the triangular 

Fig. 6.	 Orientations of triangular holes. The vertices are numbered to identify the orientation of the triangle.

Fig. 5.	 (Color online) Scanning lines to find the first point of a triangular hole.

(a) (b) (c) (d)

(a) (b)

Fig. 7.	 (Color online) Determination of the first point for the triangular holes of the first world orientation: (a) left  
and (b) right image planes.



Sensors and Materials, Vol. 31, No. 12 (2019)	 4143

(a) (b)

(c) (d)

Fig. 8.	 (Color online) Determination of the first points for triangular holes of the fourth orientation shown 
in Fig. 6(d): (a) and (c) left and (b) and (d) right image planes.

holes, as illustrated in Figs. 6(a)–6(c), in the left and right image planes obtained from the 
double camera.  On the left side, the scan intersected the first point at vertex 1, and on the right 
side, the first point was also vertex 1.  Thus, the first point in this case was vertex 1.
	 However, a scanning anomaly was found in the case of the orientation depicted in Fig. 6(d), 
in which the first points included two different vertices.  Figures 8(a) and 8(b) show that in 
the left image plane, the proposed system could identify the first point at vertex 1, but on the 
right side, the first point was found to be vertex 2.  Similarly, Figs. 8(c) and 8(d) show that in 
the left image plane, the proposed system could identify the first point at vertex 2, but on the 
right image plane, the first point is vertex 1.  In this case, the system automatically obtained a 
point below the original first point (vertex 3) as the first point, because this was the first point 
scanned that offered congruency between the two image frames.
	 In the case shown in Fig. 8, Eq. (6) defines the condition necessary to determine the first 
points of the triangular holes by comparing the image coordinates 1(X1, Y1) and 2(X2, Y2), as 
follows.

	 1 2Y Y e− < 	 (6)

where e is a threshold that can be set by the user.  In this study, e = 10.  If Eq. (6) can be 
satisfied, then the first point I(XF, YF) of a triangular hole will be point 3(X3, Y3) as follows.

	 3

3

F

F

X X
Y Y

=
 =

	 (7)
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	 The results of the process for determining the first points of the triangular holes are shown 
in Fig. 9.  Here, the proposed system could identify and mark the positions of the first points of 
each triangular hole.  In Figs. 9(a), 9(c), and 9(d), the positions of the first points are above the 
horizontal axis, and in Fig. 9(b), the positions of the first points are under the vertical axis of 
the centers of the triangular holes.  The orientation of the triangle in Fig. 9(b) conforms to the 
examples illustrated in Figs. 6(d) and 8(a)–8(d).  The coordinates of these first points and the 
angular positions of the first point vertices are presented in Table 1.
	 After the first points were determined, the proposed system identified their coordinates as 
related to dx and dy in the X- and Y-directions, respectively.  To determine the orientations of 
the triangular holes, a reference angle in radians (dangle) was calculated as

	 (Atn ) 180

3.14angle

dy
dxd

 ×  =
	 (8)

where the Atn function returns the arctangent of a number.  The real orientations of the 
triangular holes can be determined as follows:
•	 If dy is smaller than 0, and the absolute value of dangle is larger than 75° and smaller than 

105°, then the orientation of the triangular hole is 60°.  
•	 If dy is larger than 0, and the absolute value of dangle is larger than 75° and smaller than 105°, 

then the orientation of the triangular hole is 60°.  

Fig. 9.	 (Color online) Results of the process for determining the first points of the triangular holes: (a) red, (b) green, (c) 
blue, and (d) yellow triangular holes.

Table 1
World coordinates of the first points of the triangular holes.
Color of
triangular hole

World coordinates of first points
X(mm) Y(mm) Z(mm) A(°)

Red 199.162 125.963 147.212 60
Green 609.981 150.618 166.356 60
Blue 836.157 126.725 152.339 90
Yellow 298.444 134.092 149.823 90

(a) (b)

(c) (d)
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•	 If dx is smaller than 0, and the absolute value of dangle is larger than 40° and smaller than 
75°, then the orientation of the triangular hole is 90°.  

•	 If dx is larger than 0, and the absolute value of dangle is larger than 40° and smaller than 75°, 
then the orientation of the triangular hole is 90°.

	 The real orientations of the triangular holes are shown in Table 1.

4.	 Experimental Procedure

4.1	 Calibration work

	 Camera calibration plays an important role in machine vision systems because it affects 
the accuracy of the coordinates of the target objects.  After completing the camera calibration, 
we can determine the relationship between the image and world coordinates.  Some standard 
methods for camera calibration were developed in previous studies.(21,22)  

	 In this study, we combined these calibration methods to form a coordinate calibration 
procedure for 2D and 3D spaces using the quadratic transformation(23) and the perspective 
transformation,(5) respectively.  This calibration procedure will be described in detail in Sects. 5.1 
and 5.2 of this paper.

4.2	 Image processing and object segmentation

	 In this section, the classification of the assembly parts and modules is described.  As shown 
in Fig. 10, the assembly modules featured circular, square, and triangular holes, which were 
color coded red, green, blue, or yellow.  The assembly parts are shown in Fig. 11, including 
spheres, cubes, triangular prisms, and hexagonal prisms, which were red, green, blue, or yellow.

Fig. 10.	 (Color online) Color images of the assembly modules for (a) left and (b) right image planes.
(a) (b)

Fig. 11.	 (Color online) Color images of the assembly parts.



4146	 Sensors and Materials, Vol. 31, No. 12 (2019)

Table 2 
Color recognition algorithms.
Recognized 
color Algorithms

Red (R) R − G > a1 R − B > b1 G < c1 B < d1
Green (G) G − B > a2 G − R > b2 B < c2 R < d2
Blue (B) B − R > a3 B − G > b3 R < c3 G < d3
Yellow (Y) R − B > a4 G − B > b4 B < c4

Table 3 
Thresholds used in this study.

i Thresholds
ai bi ci di

1 60 60 90 90
2 15 15 150 150
3 15 15 90 128
4 30 30 128

	 During the image processing, an additive color model was used to specify the colors.  The 
various color models include the red, green, and blue (RGB) color model, the cyan, magenta, 
and yellow (CMY) color model, the cyan, magenta, and yellow, key (CMYK) color model, and 
the hue, saturation, and intensive component (HSI) color model.  In this study, the RGB model 
was used and was based on the Cartesian coordinate system.  The components of the color 
model were specified for each coordinate system and for a subspace within each image system, 
where each color was represented by a single point.  
	 Using the color subspace of the cube as an example of interest, the RGB values were 
identified at three corners of the cube, while other colors (cyan, magenta, and yellow) were 
conscripted at the three other corners.  Black was considered as the color of the origin, and 
white was defined as the opposite color.  In captured images, as shown in Figs. 10 and 11, each 
pixel has three intensities corresponding to red, green, and blue on the RGB model.  In a red 
area, the intensity of the color red is the highest, whereas those of the colors blue and green are 
lower.  In reading a green color, the intensity of green is the highest, while those of red and blue 
are smaller.  In a blue area, the intensity of blue is the highest, and those of red and green are 
lower.  However, in a yellow area, the intensity of blue is normally the lowest, and the intensities 
of red and green are higher.
	 To correctly assess the color obtained in the images, a color recognition algorithm 
was adopted.  Here, the values of R, G, and B were compared to a threshold using a set of 
inequalities appropriate for each specified color.  For example, Eq. (9) was used to recognize the 
color red, as follows:

	

1

1

1

1

R G a
R B b

G c
B d

− >
 − >
 <
 <

,	 (9)

where R, G, and B are the intensities of red, green, and blue, respectively, at each pixel in the 
image.  All values that satisfy the conditions given in Eq. (9) are set to be 255 (white).  If not, 
they will be set to 0 (black color).  Similarly, by comparing the intensity of one color with those 
of the other colors, green, blue, and yellow can be recognized.  The algorithms relative to each 
color are described in Table 2.
	 Here, ai, bi, ci, and di, are the thresholds of all the colors set in this study (i = 1, ..., 4).  These 
thresholds, as defined by the user, are shown in Table 3.
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	 After the binary image was obtained for Blob analysis, the threshold was controlled to obtain 
the best segments.  Then, the image processing began with the extraction of the perimeters of 
the profiles of the holes or objects.  The area was calculated as the number of pixels inside the 
perimeter.  A third measure, compactness, was defined as the ratio of the area to the perimeter.  
Also, the centroid was calculated as the average of the x- and y-coordinates of the pixels inside 
the perimeter.  The centroid was used to obtain the horizontal and vertical axes of the silhouette, 
which were used to estimate the length and orientation of the object.  Finally, the shapes of the 
objects and the coordinates of the centers were determined, as shown in Figs. 12(a)–12(d) and 
13(a)–13(d).

(a) (b)

(c) (d)
Fig. 12.	 Results of the binary right image plane recognition of the holes located on the assembly modules for (a) red, (b) 
green, (c) blue, and (d) yellow holes.

Fig. 13.	 Binary image recognition results of the assembly parts for (a) red, (b) green, (c) blue, and (d) yellow 
shapes.

(a) (b)

(c) (d)
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5.	 Results and Discussion

5.1	 Calibration and classification results of the assembly parts

	 For the 2D coordinate calibration process, a standardized calibration board was used to 
establish the relationship between the ICS and WCS using the quadratic transformation.  The 
calibration board, as shown in Fig. 14, consists of 60 black circles with a diameter of 17 mm, 
arranged in 6 rows and 10 columns.  The distance between any two black circles is 100 mm in 
the X-direction and 60 mm in the Y-direction.  Among them, the first point was defined as the 
origin of the world coordinates, which was used as a reference point.
	 The 2D coordinate calibration pattern of the proposed system shown in Fig. 15 consists of 
60 black circles numbered from top to bottom and from left to right.  The calibration results 
shown in Fig. 16 show that the positive maximum deviations are 1.29 and 1.12 mm in the X- and 
Y-directions, respectively.  The negative maximum deviations are −1.50 and −0.97 mm in the X- 
and Y-directions, respectively.
	 Concerning the results of the recognition process for the assembly parts, an RGB image of 
the parts being displayed on the workstation is presented in Fig. 12, while some examples of 
the recognition results are illustrated in Fig. 13.  For each image, the IDs 1, 2, 3, and 4 and the 
assigned names of the objects are presented.  The positions and orientations of all the assembly 
parts are presented in Table 4.

Fig. 14.	 (Color online) 2D calibration board.

Fig. 15.	 Image of 2D calibration board.
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Fig. 16.	 (Color online) Diagram of 2D calibration error.

5.2	 Calibration and classification results of the assembly modules

	 For the 3D coordinate calibration process, a calibration pattern was also used.  The 
calibration pattern, as shown in Fig. 17 included six red squares with a dimension of 30 mm in 
both the X- and Y-directions.  Each point was numbered from the back of the modules to the 
front and then from left to right using the proposed system.  In Fig. 14, the red rectangular center 
points of the calibration pattern are depicted as points P1 to P6.  Of note, the Z dimensions of 
P3 and P6 of the calibration pattern are shorter to test the variance of height on the basic of the 
dimensions of the assembly modules.  The world coordinates of the centers of all the red squares 
were measured using the coordinate measurement machine (CMM), as shown in Table 5.
	 With the 3D coordinate calibration, the forward test was carried out by converting the data 
from the world coordinates to the image coordinates, and the reverse test was performed from 
the ICS to the WCS.  The results showed that the calibration process yielded correct coordinates 
for five points (points 1 to 5).  However, the forward test for the last point (point 6) had an error 

Table 4 
World coordinates and orientations of assembly parts.

Shape Red Green
X (mm) Y (mm) Z (mm) A (°) X (mm) Y (mm) Z (mm) A (°)

Cubic 750.26 −84.94 0 23 639.28 −122.53 0 36
Sphere 564.59 −2.68 0 0 389.17 −2.19 0 0
Triangular 162.55 −229.66 0 114 835.30 6.74 0 25
Hexangular 379.48 −111.19 0 0 195.15 −103.48 0 0

Shape Blue Yellow
X (mm) Y (mm) Z (mm) A (°) X (mm) Y (mm) Z (mm) A (°)

Cubic 258.82 −8.71 0 38 509.35 −80.85 0 69
Sphere 87.65 −139.64 0 0 745.76 −193.65 0 0
Triangular 847.25 −126.61 0 31 301.12 −176.75 0 32
Hexangular 670.18 0.9 0 0 109.95 −7.89 0 0
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Fig. 17.	 (Color online) 3D calibration pattern.

Table 5 
World coordinates of the calibration points measured 
by CMM.
Calibration 
point X (mm) Y (mm) Z (mm)

P1 14.374 363.813 249.691
P2 14.719 209.324 250.493
P3 15.353 65.901 120.068
P4 914.546 365.911 250.667
P5 915.494 210.093 249.483
P6 914.635 65.851 119.368

of 1 pixel.  In the reverse test for point 6 (from image coordinate to world coordinate), the world 
coordinate errors in the X-, Y-, and Z-directions were 0.07, −0.418 and −0.063 mm, respectively.  
Figure 18 depicts the calibration system verification screen.  The calibration results are shown 
in Fig. 19.
	 Concerning the results of the recognition process for the assembly modules, the RGB images 
of the modules are shown in Fig. 10, and some examples of the recognition results are illustrated 
in Fig. 11.  For each image, the ID, name, and center lines of the holes are presented.  The 
positions and orientations of all the holes in these assembly modules are presented in Table 6.

5.3	 Implementation

	 The robotic arm implemented in this work is depicted in Fig. 20.  This robotic arm and its 
motions are operated within the Cartesian coordinate system, in which the input was defined 
by the coordinate values (X, Y, Z, A, B, C).  Here, A, B, and C are the angles of rotation around 
the X-, Y-, and Z-axes, respectively.  Affixed to the robotic arm was an electric gripper, which 
was used to grasp and manipulate the solid geometric shapes.  The electric gripper, a point 
laser, and two vacuum pads were mounted erect on the Z-axis.  Two vacuum pads, activated by 
a pneumatic cylinder, were used to retrieve the triangular, cubic, and hexagonal shapes.  These 
pads could be moved out of the way to prevent them from picking up the balls.  The space 
between the pads was 22 mm, which proved to be ideal for gripping the triangular, cubic, and 
hexagonal shapes.
	 In this study, movements were performed point-to-point.  The robotic arm was moved to the 
first reference point of the calibration pattern, as shown in Fig. 9 (not to be confused with the 
first point of the triangles, as described in Sect. 5.1).  The laser pointer then radiated the light 
used to pinpoint the center of the first circle on the 2D calibration pattern, and then this position 
was set as a reference point for the robotic arm.
	 In the execution process, the robotic arm had to perform three steps.  In the first step, the 
robotic arm should pick up all the spheres and hexagonal prisms, and place them into the 
circular holes according to their respective colors.  For the second step, it should pick up the 
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Fig. 18.	 Calibration system verification screen for (a) left and (b) right image planes.

Fig. 19.	 (Color online) User interface showing the 3D calibration parameters and errors.

(a) (b)

Table 6 
World coordinates of assembly modules.

Hole shape Red Green
X (mm) Y (mm) Z (mm) A (°) X (mm) Y (mm) Z (mm) A (°)

Circular 795.77 284.52 217.21 0 187.10 294.38 218.52 0
Square 407.53 169.30 181.96 0 530.36 106.41 128.61 0
Triangular 201.52 99.25 126.53 60 822.63 103.49 133.51 60

Hole shape Blue Yellow
X (mm) Y (mm) Z (mm) A (°) X (mm) Y (mm) Z (mm) A (°)

Circular 390.25 291.06 213.12 0 593.52 288.16 216.15 0
Square 733.17 164.40 179.91 0 126.91 172.62 181.31 0
Triangular 607.23 176.13 188.90 90 315.77 110.81 130.24 90

cubic shapes, and place them into the square holes according to their respective colors.  The last 
step was to pick up the triangular prisms, and place them in the triangular holes according to 
their respective colors.
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Fig. 20.	 (Color online) Robotic arm implemented in this work.

	 In summary, the machine vision system proposed in this work was successfully implemented 
to ascertain the 2D and 3D coordinates of the objects.  Then, using the data collected from 
the visual recognition system, the robotic arm automatically performed the classification and 
assembly operations.

6.	 Conclusions

	 In this study, a color object classification and measurement system for a robotic arm was 
developed using a machine vision system.  With this system, the robotic arm could accurately 
recognize and classify different colored objects.  The conclusions drawn from this research are 
summarized as follows:
•	 For the 2D object classification and calibration work, the CMOS camera C525 successfully 

captured the data related to location.  The quadratic transformation, which is a plane-to-
plane transformation, was used to determine the relationship between the image and world 
coordinates.  

•	 For the 3D object recognition and calibration work, an automatic determination of a 
position of interest on the calibration pattern was performed successfully.  The perspective 
transformation was used to determine the relationship between the image and world 
coordinates.  •	 Concerning the image calibration, the conversion process from the 
WCS to the ICS, as well as the reverse process, of five calibration points (from points 1 to 5) 
was successful.  The error was small and within a suitable accuracy range for the proposed 
system.

•	 Algorithms that could ascertain the orientations of different geometries were developed, 
allowing the robotic arm to position the triangles into their respective holes accordingly.

•	 By using the RGB color model and choosing suitable thresholds for various colors, including 
red, blue, green, and yellow, the robotic arm and machine vision system were capable of 
recognizing and successfully matching each of the parts to its associated hole in the assembly 
module.  The program presented the ID, name, and center lines of the objects and holes 
accurately.
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