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 The indoor–outdoor (IO) status of mobile devices is fundamental information for various 
smart city applications.  In this paper, we present NeuralIO, a neural-network-based method 
for dealing with the IO detection problem for smartphones.  Multimodal data from various 
sensors on a smartphone are fused through neural network models to determine the IO status.  
A data set containing more than one million labeled samples is then constructed.  We test the 
performance of an early fusion scheme in various settings.  NeuralIO achieves an accuracy 
above 98% in 10-fold cross-validation and an accuracy above 90% in a real-world test.  

1. Introduction

 The past decade has witnessed the flourishing of the Internet of Things (IoT) and its 
applications in urban spaces.  The widespread deployment of IoT devices and the rise of smart 
cities are giving birth to an increasing number of smart applications.(1–4)  Context status is 
critical and fundamental information for ubiquitous computing systems and context-aware 
IoT applications.(5,6)  “Context” consists of a wide range of aspects such as location, time, 
surrounding environment, and so on.  The rapid growth of smartphones is driving the increasing 
interest in context-aware applications.(7–9)

 One of the most fundamental items of contextual information is whether the device is in an 
indoor or outdoor environment, because it makes a significant difference if the user is standing 
in front of a shopping mall or inside a shopping mall.  Furthermore, the availability and 
capabilities of different technologies vary considerably between these two environments.  The 
knowledge about the indoor–outdoor (IO) status enables the use of appropriate technologies, 
which leads to a better user experience.  For instance, a device can trigger a reminder, change 
the working mode, and switch between GPS-based navigation and indoor navigation schemes 
when the user enters or leaves an indoor environment.  Furthermore, the device can save energy 
by turning off the GPS module in indoor environments such as a metro station.  Existing 
IO detection approaches commonly use a GPS signal,(10–13) a wireless signal(16,23,26,28) and 
other sensor data(15,17,20,21,27) to determine the IO status.  Owing to the rich characteristics 
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of natural phenomena, it is rare that a single modality provides comprehensive knowledge of 
the phenomenon of interest.(18)  The increasing availability of multiple sensing modalities on 
smartphones offers us more freedom to recognize the context.  The capability of neural network 
models has been proven superior in solving increasingly complex machine learning problems 
that often involve multiple data modalities.(22)

 In this paper, we propose NeuralIO to detect the IO status of smartphones through 
multimodal sensor data fusion using neural network models.  We create a data set containing 
more than one million labeled samples involving nine users.  Nine different sensing modalities, 
which are acceleration, GPS, light, magnetic field, proximity, cellular signal strength, sound 
level, temperature, and WiFi, are covered in the data set.  We test the performance of an early 
fusion scheme in various settings.
 To summarize, the contributions of this study are as follows.
1. We apply neural network models to the IO detection problem and perform a comprehensive 
analysis.
2. We implement an Android app for data collection and conduct experiments to collect data 
samples in various real daily scenarios.  A data set containing more than one million labeled 
data samples is constructed.
3. We evaluate the performance of an early fusion scheme based on the data set through cross-
validation and a real-world test.  An accuracy above 98% is achieved in across validation and an 
accuracy above 90% is achieved in the real-world test.
 The rest of the paper is organized as follows.  Section 2 presents related works.  Different 
fusion schemes are introduced in Sect. 3.  The experiment and data collection are described in 
Sect. 4 and evaluation results are presented in Sect. 5.  We conclude our work in Sect. 6.

2. Related Works

2.1 GPS

 GPS signals are highly dependent on the line-of-sight (LOS) paths between the device 
and GPS satellites.  It is well known that GPS signals are poor in indoor environments as the 
LOS paths of GPS signals are blocked.  On the other hand, the LOS paths are not blocked in 
most outdoor scenarios.  On the basis of these facts, the localization accuracy of GPS or the 
availability of GPS signals has been exploited to determine whether a device is in an indoor or 
outdoor environment.(10–13)

 Despite the intuitive nature and easy implementation of GPS-based methods, they suffer 
from several disadvantages.  Radu et al. identified the GPS chipset as the sensor with the 
highest power consumption among the evaluated sensors.(21)  The battery capacity is still limited 
in state-of-the-art mobile phones and most users dislike applications that drain the battery.  
Secondly, the intuition behind these methods is not always reliable.  For instance, GPS signals 
are reasonably strong if a device is in an indoor environment with large windows.  In contrast, 
GPS signals can be blocked by surrounding mountains if a device is in a valley.  Under these 
circumstances, GPS-based methods may give misleading results.  A third disadvantage is that  
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it normally takes around one minute to launch the GPS module, making GPS-based methods 
unsuitable for real-time applications.

2.2 Wireless signals

 Shtar et al.(23) presented a method of continuous IO environment detection on mobile devices 
based solely on WiFi fingerprints assumed no prior knowledge of the environment.  The 
model trained with the data collected for only a few hours on a single device was applicable to 
unknown locations and new devices.  WifiBoost(16) used a machine learning meta-algorithm 
that combined an adequate ensemble of simple classifiers (so-called weak learners) to improve 
the overall performance.  An average error rate of around 2.5% was achieved in the evaluation.  
However, a classifier should be created for each building and the surrounding area through 
measurements and labeling of each measurement point, especially in those cases where there 
was no previous fingerprinting database.  Building such a database is not a trivial task.
 Wang et al.(26) applied a machine learning algorithm to classify the signal strengths of 
neighboring cellular base stations in different environments and identified the current context 
by signal pattern recognition.  An accuracy of 100% was reported for the identification of open 
outdoors, semi-outdoors, light indoors, and deep indoors.
 In Ref. 28, low-power iBeacon technology was leveraged to develop an accurate, fast- 
response and energy-efficient scheme for IO detection.  The transitions between outdoors and 
indoors were detected by comparing the received signal strengths of two predeployed Bluetooth 
beacons on two sides of each entrance.

2.3 Multiple sensors

 Since a single sensor might not be able to tackle all application scenarios, data from 
multiple sensors such as accelerometers, proximity and light sensors, wireless receivers, and 
magnetometers were exploited for IO detection.(15,17,20,21,27)  IODetector(27) combined data from 
three lightweight sensors (light, cell tower signal strength, and magnetic sensors) to develop an 
extensible IO detection framework that did not require a training phase.  Although acceptable 
error rates were achieved, Radu et al.(21) criticized IODetector for its hard-coded thresholds 
that might not work with new devices and environments.  As an alternative, they proposed a 
semi-supervised training method to improve IO detection accuracy across different devices and 
environments.

2.4 Other methods

 In Ref. 19, the embedded digital camera on a mobile phone was utilized for IO detection.  
The developed gentle boosting classifier achieved error rates of 1.7% for indoor scenes and 
10.8% for outdoor scenes.  In addition, a feed forward neural network was trained with the 
gist feature of images to address the IO detection problem.(25)  These methods help to generate 
semantic IO labels for images but do not work for tracking and in other real-time application 
cases.
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 Sung et al.(24) developed a sound-based IO detection method using a chirp signal.  A simple 
classifier was developed with a static threshold.  However, this work was rather simple and 
straightforward, and no comprehensive analysis was performed.  Wang et al. conducted a 
comprehensive study on an audio-based IO detection method.  The method was evaluated in 
various scenarios with different probing signals (MLS and chirp), noise levels, and device types.

3. Fusion Scheme

 Neural networks offer the flexibility of implementing multimodal sensor fusion either as 
early, late or intermediate fusion.(22)

 As shown in Fig. 1(a), the early fusion scheme data from multiple sources are integrated into 
a single feature vector to serve as the input of one machine learning model.  In contrast, the late 
fusion scheme aggregates decisions from multiple models that are trained separately on their 
own modality as shown in Fig. 1(b).  This fusion architecture is often favored because errors 
from multiple classifiers tend to be uncorrelated and the method is feature-independent.(22)  For 
traditional machine learning methods, it is typically necessary to manually extract features 
from each modality, which is not only time-consuming but also challenging.  Neural networks 
are known for being able to learn features automatically.  In this paper, we use the feedforward 
neural network (FNN) model to conduct early fusion for the IO detection problem.

4. Experiment and Data Collection

4.1 App design and implementation

 We have developed an Android app for data collection.  The Android app is implemented 
with Android Studio.  The target version of the application is 27 with a minimum version of 19.  
This covers the Android smartphones of all participants in this study.  The app needs to access 
multiple sensors on the smartphone and save the sensor readings to a database.  The collected 
data comprise the battery temperature, luminance, magnetic flux density, proximity, cellular 
signal strength, and cellular network bit error rate, an abstract level for the overall signal 
strength ranging from one to four, the number of WiFi networks around the user, the highest 
signal strength of the WiFi networks around the user, the number of GPS satellites, the GPS 

Fig. 1. Schema of early fusion and late fusion schemes based on neural networks.  (a) Early and (b) late fusion.

(a) (b)
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accuracy in meters, the GPS signal-to-noise ratio, and the ambient noise level.  Additionally, 
some anonymous information about the device is also recorded to distinguish different data 
traces.
 It is crucial for the user interface of the smartphone application to ensure that the user can 
modify data labels or remove the collected data since they may make mistakes when they log 
data.  Also, the process of starting and stopping the data collection should be fast and simple for 
the user.  
 Figure 2 shows a screenshot of the developed app.  The user specifies whether he/she is 
indoor or outdoor and inputs the current weather condition.  Then, he/she has the option to 
provide notes on the location and his/her name.  The user starts the logging period for either 
10 min, 30 min, or an unlimited amount of time.  If, for example, the user walks indoors while 
logging data labeled outdoors, he/she has the option to invalidate the last 5, 15, or 30 min of  the 
collected data.  The user can stop the logging process at any time.  The application collects the 
specified information every 200 ms as one JavaScript Object Notation (JSON) object.  The data 
is then sent to an instance of the Firebase Realtime Database (DB).(14)  This ensures that every 
user directly writes to the same database and no data is saved locally on user’s device.  From 
there, the data can be downloaded for further processing.  This process is displayed in Fig. 3.

4.2 Data collection

 The smartphone application was handed out to multiple participants for data collection.  The 
users were instructed about the application and how to use it.  The data collection ran for four 
weeks and users were free to choose the time and environment for data logging.  Nine users 

Fig. 2. (Color online) Screenshot of the developed 
Android app.

Fig. 3. (Color online) Data flow diagram.
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participated in the data collection campaign and various models of smartphones were used for 
data collection.  The users collected the data in their daily life in both urban and rural areas.  
This ensures the diversity of the data set.  Figure 4 shows typical data logging scenarios.  
 The resulting data set contain 1038678 samples, which correspond to 58 hours of data.  
99.49% of the data are collected by four users.  The remaining 0.51% of the data are collected 
by five other users.  Overall, the distribution of indoor to outdoor samples ranges from 57.61 to 
42.39%.  Table 1 shows an example of collected data instance.

Fig. 4. (Color online) Data logging process. The picture on the left shows a user configuring the data logging 
session and the picture on the right depicts data logging inside a pocket.

Table 1
Example of collected data instance.
" sensor_data ": 
  " accelerometer_x ": -3.39139986038208,
  " accelerometer_y ": 0.39469999074935913,
 " accelerometer_z ": 1.4085999727249146,
 " gps_accuracy ": 8,
 " gps_lat ": 49.00587403419052,
 " gps_long ": 8.418945486346862,
 " gps_satellites ": 17,
 " gps_snr_list ": {"0": 22,   "1": 41,  "2": 18,  "3": 34, "4": "23",  ...},
 " is_indoor ": false ,
 " light ": 1295,
 " magnetic_x ": 8.9375,
 " magnetic_y ": -10,
 " magnetic_z ": -43.4375,
 " proximity ": 5,
 " signal_bit_error_rate ": -2145384446,
 " signal_level ": 4,
 " signal_strength ": -113,
 " sound_level ": 0,
 " temperature ": 26,
 " time ": " Mon Oct 29 08:16:21 GMT +01:00 2018",
 " wifi_list ": {"0": -78,   "1": -81,   "2": -71,  "3": -73,  "4": "-75",  … }
" user_data ": 
 " delete_last_minutes ": 0,
 " location_notes ": " Home to university ",
 " phone_model ": " HUAWEI HUAWEI GRA -L09",
 " username ": " **** ",
 " weather ": " Cloudy "

(a) (b)
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4.3 Overview of data set

 The distribution before cleaning for different smartphones is illustrated in Fig. 5.  Different 
smartphones also represent different users.  
 By removing the samples invalidated by the users themselves, 1019091 samples are left; this 
number of samples is equivalent to about 56.5 h of data.  However, not every collected sample 
is completed for various reasons.  Figure 6 illustrates how many samples are missing for each 
sensing modality.  After removing the incomplete samples, the resulting data set includes 
623320 samples, which correspond to around 34.5 h of data.  The balance between indoor and 
outdoor samples is now 43.98 to 56.02%.  Figures 7–9 show the data distribution regarding 

Fig. 5. (Color online) Distribution before cleaning. Fig. 6. Number of samples with missing values.

Fig. 7. Rural/urban environment. Fig. 8. Weather conditions.

Fig. 9. Time distribution.
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rural/urban environments, weather conditions, and time, respectively.  We can see that the data 
set contains various data samples with a balanced distribution.

5. Evaluation

5.1 Cross-validation

 We used 10-fold cross-validation to evaluate the performance of the constructed model 
with various numbers of hidden units and layers.  Finally, we obtained good balance between 
performance and model complexity by using the architecture in Fig. 10.  The input layer with 24 
input nodes is omitted owing to the limited space.  There are four hidden layers with 10, 5, 4, 3 
hidden units with the Relu function as the activation function.  The output unit uses the sigmoid 
function as the activation function.  As shown in Table 2, the results of 10-fold cross-validation 
demonstrate that the model performs very well in nine out of 10 folds; in the fifth fold, the 
model only achieves an accuracy of 0.73.  This is probably due to the loss function becoming 
trapped at a local minimum.

Table 2
Results of 10-fold cross-validation.  Precision and recall are for the outdoor label.

 1 2  3 4 5 6 7 8 9 10
Accuracy  0.98  0.99  0.99  0.99  0.73  0.98  0.99  0.99  0.99  0.98
Precision  0.98  0.99  0.99  0.99  0.73  0.99  0.99  0.99  0.99  0.99
Recall  1  0.99  0.99  0.99  1  0.99  0.99  0.99  0.99  0.98

Fig 10. Feedforward neural network (FNN) model architecture with four hidden layers and one output layer.  Note 
that the input layer (with 24 input nodes) is not displayed owing to the limited space.  The activation function of all 
hidden units is the Relu function.  The activation function for the output node is the sigmoid function.
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5.2 Real-world test

 To verify the performance of the model in the real world, we tested the trained FNN model 
on the real-world data set recorded around two months later than the training data set.  During 
the collection of the data set, the user walked through the city as depicted in Fig. 11.  The 
trace covers indoor environments, such as campus buildings and shopping malls, and outdoor 
environments, such as streets.
 The confusion matrix is shown in Fig. 12.  Generally, the model performed well in the 
real-world test with an overall accuracy of 91%.  Specifically, the model can recognize indoor 
cases with a precision of 96% with 4% falsely classified as outdoors.  The model achieves a 
precision of 88% in outdoor cases with 12% of all outdoor cases falsely classified as indoors.  
The model shows good generalizability on the new data set.  To investigate the cause of the 
misclassification of the model, we plot the labels of all data entries against the index in Fig. 
13.  As shown in Fig. 13, there are some isolated misclassifications in both indoor and outdoor 
cases.  Making the common-sense assumption that it is very rare for people to switch between 
indoor and outdoor states in a short time period (for instance, 2 s), we can use a majority 
voting strategy with a sliding window to filter out the isolated misclassification cases.  The 
basic idea is that the IO state is not only determined by the input data, but also depends on the 
previous predicted labels in the sliding window.  As shown in Fig. 14, there are fewer isolated 
misclassification cases after applying the majority voting strategy with a sliding window of 10.  
The confusion matrix in Fig. 14 also shows an increase in precision in both indoor and outdoor 
cases.

Fig. 11. (Color online) Real-world test path.
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6. Conclusions

 We developed NeuralIO, a neural-network-based multimodal fusion method for the IO 
detection problem on smartphones.  A data set containing more than 1 million data samples was 
constructed.  Nine different sensing modalities were covered in the data set.  We built a feed 
forward neural network model for the early fusion of all available raw data.  Cross-validation 
and a real-world test have shown the feasibility of our developed method for indoor-outdoor 
detection and generalizability on a new data set.  
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