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	 Energy saving has been explored over the past decades.  Since most of the energy 
consumption in a building is from the air condition system, the air conditioners in a building are 
often controlled through a heating, ventilation, and air conditioning (HVAC) system.  To control 
each HVAC unit individually, the locations of HVAC units are essential information.  However, 
manual location identification requires significant labor for a large number of Internet of Things 
(IoT) devices deployed in a building.  In this paper, we propose a Bluetooth low energy (BLE)-based 
HVAC unit localization method.  We assume that a BLE module is attached to each HVAC 
unit, and then the locations of HVAC units can be estimated using the signal strength of the 
BLE module, which is observed by site survey of a worker.  Our method requires a floor plan 
containing the physical locations of HVAC units and matches BLEs to the locations on the floor 
plan by estimation.  The site survey can be carried out without visiting the entire site.  Instead, 
the worker is required to follow several walking paths, which reduces the labor cost and time.  
We evaluated our method in a real office building with 26 BLEs on two floors.  The results 
show that 70% of the BLEs were matched to their correct physical locations.  

1.	 Introduction

	 Since smart building technologies are becoming more innovative, they are expected 
to provide energy efficiency and resident comfort simultaneously using information and 
communication technologies.  Such buildings commonly have a heating, ventilation, and air 
conditioning (HVAC) system, which can be used to provide services such as HVAC control 
based on the presence of residents.  To realize these services, HVAC units and sensors should 
connect to the network for more efficient management and control.  However, it is necessary 
to map their network addresses (IDs) with the physical locations to control the HVAC system.  
Currently, the mapping procedure is carried out manually.  For instance, workers turn on 
HVAC units one by one, and the physical address of each HVAC unit that is turned on is shown 
on the controller screen.  Then, the workers can map the physical address onto the layout 
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map.  However, there may be tens of thousands of HVAC units in a large building.  Thus, this 
procedure is unrealistic as it is very time consuming, and it incurs a high labor cost for both the 
configuration and the validation.  Let us assume a hotel or an office building that contains a 
large number of small rooms with one or more HVAC units inside.  Unfortunately, some rooms 
may not be allowed to access owing to privacy and administrative reasons, and workers may 
only be allowed to use public hallways.  Consequently, they cannot enter these restricted areas 
to identify the locations of HVAC units.  
	 In this paper, we propose a semiautomatic position estimation method that links network IDs 
and their physical positions, which will contribute significantly to reduce the management cost.  
We attach Bluetooth low energy (BLE) modules used in the location estimation technology 
based on radio field intensity to HVAC units to identify their locations.  We assume that we 
can obtain a floor plan of the building with the locations of HVAC units from the owner or 
construction manager.  Then, we send one tester carrying a smartphone to collect received 
signal strength indicators (RSSIs) of the BLEs.  The tester walks along given routes that are 
calculated from the floor plan information.  Our method focuses on the RSSI peak of each BLE 
ID while walking in two directions to estimate the potential list of HVAC locations that contain 
a set of BLE IDs that are possible to be located for each HVAC location.  
	 We evaluated our method in a real office building with 26 BLEs on two floors.  The results 
show that 70% of the BLEs were matched to their correct physical location.  

2.	 Related Work 

2.1	 RSSI-based localization

	 RSSIs are one of the observable characteristics of wireless technologies as they broadcast 
radio signals to communicate with each other through air.  As RSSIs can reflect the distance 
between the radio transmitter and the radio receiver, they have been utilized for device 
localization for many years.(1–4)  There are two general categories in the location estimation 
technique.  The first method is a multilateration mathematical method that relies on a signal 
propagation model(1) to estimate the distance between the Wi-Fi device and at least three 
surrounding reference access points (APs).  The second method estimates the location by 
matching the observed RSSIs with an RSSI fingerprint database that is prepared offline.  
Place Lab,(5) Horus,(6) DeepFi,(7) and WiDeep(8) are in this category.  However, fingerprinting 
requires a large amount of human effort to collect RSSI fingerprints in many positions.  Jun et 
al.(9) and Liu et al.(10) reduced the number of collection locations by dividing a floor plan into 
regions, each of which had its own AP sequence ranked by RSSIs.  Although the size of the 
region affects the number of RSSI collecting locations and the distance error, the AP sequence 
method itself is robust to environmental noise.(9)  There are some studies on how to reduce 
the human effort required for radio map construction, taking advantage of AP locations.  For 
example, Jingxue et al.(11) and He et al.(12) proposed practical methods of reducing the number 
of collection locations required to construct a radio map.  Specifically, they collected RSSIs 
at some locations to build the radio map and applied a path loss model(1) to estimate RSSIs at 
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other locations using the AP locations.  Amano et al.(13) applied a crowdsourcing technique to 
estimate the virtual locations of APs and a simulation technique to generate a 3D radio map.  
However, the virtual AP locations are on the wall of the building because they emphasize the 
radio map outside the building.  In summary, these methods cannot directly be applied to our 
case.  However, the knowledge and experiences of RSSIs are helpful in designing our algorithm.  

2.2	 AP localization

	 AP localization is beneficial for finding the locations of rogue APs.(14)  Hence, there have 
been studies on the AP localization.  For example, Satoh et al. used a directional antenna and 
the relative distance calculated from RSSIs to estimate AP locations.(15)  Han et al. proposed 
a method of observing the trend of RSSIs collected from neighboring points to calculate the 
direction of APs.(16)  They calculated the direction for each AP to locate it from an outdoor 
environment.  Therefore, their technique does not have limitations such as a lack of location 
service, multipath, fading, and shadowing.  
	 Shen et al. proposed AP localization by applying the Rayleigh lognormal model,(18) which 
is a signal propagation model emphasizing the fading and multipath in signal propagation.(17)  
Even though the Rayleigh lognormal model has good results for an indoor environment, the 
model does not consider obstacles such as walls and ceilings, which have an impact on the 
signal strength.  In our case, BLE-attached HVAC units are installed above the ceiling, and we 
collect the RSSIs outside some rooms if the tester has no access permission.  As a result, we 
cannot apply the Rayleigh lognormal model to estimate the relative location because there are 
several obstacles in our case.  
	 These device localization methods cannot directly be applied to our case as we need to 
identify the locations of stationary BLE devices installed in HVAC units, without anchor point, 
or fingerprint information.  From this viewpoint, this work is more related to AP localization, 
where devices are used to localize Wi-Fi access points or BLE beacons in the environment.  
For example, Wi-Fi AP localization methods, assuming that RSSIs are collected at many 
locations by a crowdsourcing technique, were proposed in Refs. 19 and 20.  Specifically, 
Chintalapudi et al. proposed that the RSSIs of APs were estimated by collecting RSSIs from 
each AP to Wi-Fi devices at many locations.(19)  The GPS-fixed locations obtained when a tester 
walks close to windows during the calibration phase were also leveraged.  
	 Our goal is to determine the correspondence between the known locations of HVAC units 
on a floor plan and their BLE IDs.  Since the methods in Refs. 19 and 20 rely on crowdsourcing 
approaches, where the RSSIs near the APs are eventually obtained, some devices need to be 
close to APs.  However, in our case, it may be impossible for a tester to enter some rooms.  

2.3	 Pedestrian dead reckoning (PDR) 

	 PDR is a popular technique for indoor device localization.  It estimates the trajectory 
of a human by analyzing the number of steps and the head direction of a human holding a 
smartphone from its embedded sensors.(21,22)  Although it is beneficial for smartphones being 



62	 Sensors and Materials, Vol. 32, No. 1 (2020)

a self-contained system, its demerit is that the location error due to noise from the sensors 
is accumulated.(21,22)  To cope with this demerit, a technique of resetting location errors by 
identifying a landmark in the building was proposed in Ref. 21.
	 In our proposed method, instead of using PDR, we estimate the tester location by providing 
a set of walking paths for the tester and counting the number of steps.  The location error can 
be reset every time the tester starts walking on a new path.  Moreover, our approach does not 
require the fine-grained location of the human on each path.  Hence, we will calculate only the 
number of steps, which is sufficient to roughly estimate the location of the tester on the given 
path.  

3.	 Methodology 

3.1	 Background

	 In a building, HVAC units have been used to manage indoor temperature and indoor air 
quality to improve living quality.  Most techniques require the location of the HVAC units as 
primary information to enable the HVAC management system.  Currently, HVAC units are 
equipped with an Ethernet module for connecting to the central network.  The general location 
identification method requires a worker to go to the location of the HVAC unit and then turn 
it on.  After that, the HVAC unit will connect to the central server, and the worker can see the 
latest network ID connected to the central server.  Consequently, the worker can match the 
HVAC unit to the location.  This operation is repeated until every HVAC unit is identified.  
	 This manual approach is ineffective when a large number of HVAC units are deployed in a 
large building owing to time-consuming, heavy workload.  Thus, we leverage the advantage of 
a radio signal to perform the localization of HVAC units automatically.  We attach a wireless 
module such as a BLE module to each HVAC device.  Hence, we can estimate the locations of 
HVAC units by analyzing the wireless information from the BLE module.  

3.2	 Problem definition

	 In this paper, we assume that there are multiple HVAC units, each of which is equipped 
with a BLE module.  The set of BLE module IDs is denoted as B.  We also assume that a 2D 
floor plan   is given where the walkable areas, walls, furniture, doors, and prohibited areas, 
which are necessary to determine walkable paths Pwalk, have already been identified when the 
localization was performed.  Each HVAC location is also given as a point on the floorplan, 
and we let H denote the set of points corresponding to HVAC locations.  Obviously, |B| = |H| 
holds.  Finally, we assume that a tester   walks along the paths in Pwalk with a BLE-enabled 
smartphone to collect RSSIs from the BLE modules in B.  
	 The localization problem is to find the correct one-to-one matching function :m B H→  and 
a corresponding set Pwalk of paths to obtain the matching m, where all the paths are contained 
in the walkable area of   and consistent with the walls of   (no path is blocked by the walls/
furniture/doors).  
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3.3	 Algorithm design

	 Basically, we try to obtain a matching function m by detecting the location with the strongest 
RSSI for each BLE on the walking paths.  Following Ref. 23, we match the BLE module 
IDs to the HVAC locations by RSSI peak measurement.  When tester   passes three BLEs 
B = {1-1, 1-2, 1-3} at HVAC locations H = {L1, L2, L3}, the application in the smartphone will 
perceive RSSIs as shown in Fig. 1(b).  We can assign BLE IDs “1-1” to location L1, “1-2” to 
location L2, and “1-3” to location L3.  
	 However, as shown in Fig. 2(b), it may be challenging to generate a suitable walking path to 
cover all HVAC locations because the walkable paths in a real environment are limited owing to 
the floor layout and even furniture.  For example, in this figure, locations “2-9” and “2-13” are 
separated by a locker, and no straight walking path can be designed.  Therefore, we will discuss 
how we can design a walking path to collect RSSIs to see the peak order of BLEs in general 
buildings clearly.  
	 Before designing an algorithm, we have to investigate more precisely the characteristics 
of RSSIs when we observe them on a walking path.  Therefore, we temporarily placed 
smartphones at eight locations (A to H) as in Fig. 2(c) and collected the RSSIs from BLEs for 
30 s.  We found that the RSSI of each BLE is not stable and that it cannot represent the distance 
between the transmitter and the receiver.  Specifically, the RSSI of BLE ID “1-2” seems to be 
similar to that of BLE ID “1-4” when the smartphone is placed under BLE ID “1-2” (location 
G) as shown in Fig. 3(a).  Consequently, the techniques leveraging the measured RSSI directly 
to estimate the distance between a transmitter and a receiver cannot be applied.  Additionally, 
when we calculated the average RSSI at the eight locations, we found that the average RSSIs 
of BLEs located in the same perpendicular alignment to the collection direction have similar 
trends as shown in Fig. 3(b).  In particular, BLE IDs “1-2”, “1-4”, “1-6”, and “1-8” have the 
same perpendicular alignment, and BLE IDs “1-3”, “1-5”, “1-7”, and “1-9” have the same 
perpendicular alignment.  Hence, the RSSIs from BLE IDs “1-2”, “1-4”, “1-6”, and “1-8” have 
similar trends, and those from BLE IDs “1-3”, “1-5”, and “1-7” have also similar trends.  We 
consider that the different trend of the RSSI from BLE ID “1-9” is because it is far from the 
observation point, and its signal is attenuated by two walls.  

(a) (b)

Fig. 1.	 (Color online) Subsequence of event sequences.  (a) Tester’s walk passes three BLEs and (b) RSSIs of 
three BLEs.
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(a) (b)

(c)

Fig. 2.	 (Color online) Locations of BLE modules deployed in this project.  (a) Locations of BLEs on first floor, 
(b) locations of BLEs on second floor, and (c) preliminary experiment: smartphones are placed at eight locations to 
compare the RSSIs at different locations.

(a) (b)

Fig. 3	 (Color online) (a) RSSIs of 26 BLEs at location G in Fig. 2(c) and (b) average RSSI at eight locations in 
Fig. 2(c).
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	 Since most buildings are rectangular and hallways are usually in both vertical and horizontal 
directions, we suppose that, when we walk on one side of the building, the peak of the RSSI 
from a BLE represents the orthogonal projection of the BLE location onto the walking path 
on that side of the building.  Accordingly, if we consider the peak location on both sides of the 
building, as in Fig. 4, we can estimate the locations of HVAC units (BLE modules) in the 2D 
region (i.e., floor plan).  We will discuss this topic in Sect. 3.5.  
	 To acquire RSSIs, our method requires the tester carrying a smartphone with our application 
to survey the RSSI of each BLE in the building.  Our application collects the RSSIs in the 
format <li, rssi1,i, rssi2,i, ..., rssin,i>, where li is the location of the collection of data using a 
simple step counter, assuming that the tester follows the designated walking path, and rssin,i 
is the RSSI from BLE ID idn at location li.  To estimate the location where the RSSI data are 
collected, we apply the roughly controlled PDR proposed in Ref. 23.  In particular, we give the 
walking path including the start and stop positions to the tester, and then estimate the step size 
(meters per step) and the location of the tester for each step.  
	 Nevertheless, we found that the sample size was insufficient when we walked continuously 
on the walking path.  Specifically, we deployed 26 BLEs in the first and second floors of an 
office building whose size is 18 × 18 m2 and set the BLEs to broadcast the advertising beacon 
every 1 s.  Our application cannot receive the beacon every second probably because of signal 
attenuation and collision.  Moreover, the RSSI at one location will not be reliable, owing to 
fluctuation, as seen in Fig. 3(a), where the RSSI changes with a specific range (±10 dB in the 
worst case).  Therefore, we ask the tester to stop at designated locations and collect RSSIs.  We 
will describe this in detail in the next subsection.  

3.4		  Stand and walk scheme

	 Even though we would like to ask the tester to collect RSSIs by walking continuously, the 
beacons received by such walking may be inadequate.  One reason is that the number of beacon 

Fig. 4.	 (Color online) Concept of 2D peak order for BLE localization.
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collisions will increase when we densely deploy BLEs in a building.  Therefore, we take the 
average RSSI at each location to obtain more stable and reliable measurements.  Hence, the 
tester needs to stop at designated locations for some time to collect more beacons and calculate 
the average RSSI before resuming walking again.  It is almost impossible for the tester to 
stand at the correct locations when numerous locations are given to measure RSSIs on a map 
owing to inaccurate indoor localization deployment.  For instance, we need to collect the RSSI 
at an interval of 1 m to observe the change in RSSI clearly when adjacent HVAC units are 
close to each other (about 2–3 m).  The application gives a walking path on the map.  It also 
shows the current location of the tester on the map.  Then, the tester has to go to the starting 
point of the given walking path from the current location.  Considering the case that the tester 
misunderstands the collection location li, we apply the roughly controlled PDR(23) during the 
data collection to address this problem.  
	 To apply the roughly controlled PDR to the data collection, we give walking path pj to a 
tester with the start point pj,start and end point pj,step on a smartphone application, as illustrated 
in Fig. 5.  The tester goes to the start point and pushes the start button, and our application starts 
increasing the step count pj,count.  After the tester walks pstep steps and stops walking for pstand s 
to collect the RSSIs, the tester repeats this “stand and walk scheme” until he/she reaches the end 
point.  When the tester reaches the end point, he/she presses the stop button to finish recording 
the RSSIs on walking path pj.  After that, the application estimates the step size wstepsize = 
pj.length/pj,totalcount, where pj.length and pj,totalcount are the total distance of walking path pj and 
the number of total steps, respectively.  To record the location where the tester stands to collect 
the RSSIs, we define the location  li = (pj, lr,i) as a pair comprising walking path pj and the 
relative distance from the start point, lr,i = pj,court × wstepsize.  
	 In reality, the time that the tester spends on our survey method depends on how often he/she 
needs to stand to collect data and how long he/she collects the RSSIs at each point.  Specifically, 
the tester may spend more time if she/he stands for a long time to collect the RSSIs at every 
step.  However, the RSSI data will be insufficient if they are collected only for a short time.  
Moreover, the trend of the RSSIs will not be seen if the number of steps pstep is increased 
because the tester may skip the RSSI peak from some BLE modules.  Hence, the number of 
steps pstep before collecting the RSSIs and then the time pstand spent collecting the RSSIs should 
be configured according to the site, and we will show their effect in Sect. 4.  

Fig. 5.	 (Color online) Smartphone application for tester showing screen design.
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3.5	 2D localization

	 In this work, we observe the locations of RSSI peaks of each BLE from two sides of a 
building.  For easy explanation, we define the longer side of the building as the “horizontal side” 
and the shorter side as the “vertical side”.  As mentioned earlier, we assume that the floor plan 
and the HVAC locations on the floor plan have already been identified.  We believe that every 
large building has a floor plan.  Another fundamental piece of information is the walkable paths, 
and we also assume that the floor plan also provides this information.  If the floor plan does 
not provide the walkable paths, they can be generated by some indoor floor plan construction 
methods(24,25) or can be analyzed manually.  Then, we can select the possible walking paths 
pi ∈ Pwalk with attribute pi.direction ∈ {“horizontal”, “vertical”} from the walkable paths.  
	 For a large building, the tester may not complete a survey within a limited time if the stand 
and walk scheme is performed on every walking path.  Therefore, we calculate and rank the 
capability of each walking path to estimate the BLE localization.  After that, we give the best 
set of walking paths to the tester, which cover all the HVAC locations from both sides of the 
building (vertical and horizontal).  To reduce the number of walking paths that our method 
gives to the tester, we calculate the peak location of each BLE and verify which BLE ID is most 
reliable after the tester stops at the end point of every given path.  Our method gives the walking 
path until the peak locations of all BLE IDs are reliable.  The path selection method is given in 
Algorithm 1.  

Algorithm 1 PathSelection(Pwalk)

Require: The possible walking paths Pwalk.
1: for ∀pi ∈ Pwalk do
2: for ∀L ∈ H do
3: if Fappro(H, pi) then
4: pi.listH < −pi.listH ∪ L
5: end if
6: end for
7: end for
8: sort Pwalk by |pi.listH | from highest to lowest
9: discoveryhorizon ← ∅

10: discoveryvertical ← ∅
11: for ∀pi ∈ Pwalk do
12: if |discoveryhorizon| < |H| then
13: if pi.direction = ’horizontal’ then
14: discoveryhorizon ← discoveryhorizon ∪ pi.listH
15: give pi to tester
16: end if
17: end if
18: end for
19: for ∀pi ∈ Pwalk do
20: if |discoveryvertical| < |H| then
21: if pi.direction = ’vertical’ then
22: discoveryvertical ← discoveryvertical ∪ pi.listH
23: give pi to tester
24: end if
25: end if
26: end for



68	 Sensors and Materials, Vol. 32, No. 1 (2020)

Table 1
Conditions for determining whether RSSIs from BLE at HVAC location L collected on walking path pi are reliable.

Fdist (L, pi) Fobst (L, pi) Fappro(L, pi)
≤βa 0 True
≤βb 1 True

Fig. 6.	 (Color online) Dotted lines from BLE locations (dark blue circles) to walking path (red line) are 
perpendicular distances.

	 The algorithm starts by calculating pi.listH, a list of BLEs whose RSSIs can be detected 
along walking path pi.  We can perceive reliable RSSIs from these BLEs if we collect RSSIs 
along every path.  Specifically, we consider that the RSSI of a BLE is reliable if two conditions 
given in Table 1 are satisfied.  Concretely, to assess whether walking path pi is appropriate for 
observing the correct peak location of the RSSI from the BLE attached to each HVAC L ∈ H, 
we use the perpendicular distance Fdist (L, pi) between HVAC location L and walking path pi, 
which can be calculated from the floor plan.  There may be some HVAC locations from which 
perpendicular lines cannot be drawn, as shown in Fig. 6.  We can also obtain the number of 
obstacles Fobst (L, pi) such as walls and doors between physical location L and walking path pi.
	 In Table 1, there are three conditions for determining which RSSIs from the BLEs can be 
collected reliably.  The first condition is that the perpendicular distance Fdist (L, pi) from HVAC 
location L to walking path pi should be less than βa (βa = 12 m in this paper).  The second 
condition is that the perpendicular distance Fdist (L, pi) from HVAC location L to walking path pi 
should be less than βb (βb = 6 m in this paper) and the number Fobst (L, pi) of obstacles between 
HVAC location L and walking path pi should be less than two.  Otherwise, the RSSI of the BLE 
location is regarded as unreliable.
	 When the capability list for each walking path is estimated, the walking path with the most 
significant number of HVAC locations in its capability list is given to the tester.  Once the tester 
finishes walking on the path, the next path is given to the tester.  This is repeated until the 
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reliable RSSI data for all the physical locations in H are obtained.  Figures 7(a) and 7(b) show 
the walking paths along which we request the tester to collect the RSSI data.  Specifically, the 
blue circles are actual locations of BLE modules that are deployed in this paper, and the red 
arrows are walking paths.  Note that extracting the locations of the HVAC units in the floor plan 
is beyond the scope of this study.
	 Hence, the locations of the BLEs are given as inputs.  However, the receiver can receive the 
beacon from surrounding BLE transmitters over a wide area.  Specifically, we will observe the 
peak locations of BLEs S2, S3, S4, and S5 at the beginning of walking path P2 in Fig. 7(b) when 
the tester walks on the walking path.  As a result, some invalid RSSI peak locations will be 
introduced into the calculation process.  To tackle this problem, we use the capability list pi.listH 
in our location estimation method.  In particular, we will be able to observe the RSSI peak 
locations of BLEs at HVAC locations S2, S3, S4, and S5 if the tester walks on path P3 in Fig. 
7(a) and path P1 in Fig. 7(b) Therefore, we use the RSSI data of these paths to identify BLE IDs 
located at HVAC locations S2, S3, S4, and S5.  
	 Accordingly, we select HVAC location L if L is in the capability list of horizontal walking 
path pi and vertical walking path pj (L ∈ pi.listH and L ∈ pj.listH).  We analyze the RSSI 
data from each BLE ID idk ∈ B received when the tester walks along horizontal walking 
path pi and vertical walking path pj to find its RSSI peak.  We define the 2D peak location  

, , , ,{ , }
k i j k i k jid p p id p id pl x y=  of BLE ID idk in the horizontal direction ,k iid px  when walking along 

horizontal walking path pi and in the vertical direction ,k jid py  when walking along vertical 
walking path pj.  We ignore the RSSIs from some BLE IDs when the average RSSIs from these 
BLE IDs are weaker than a threshold δ1 (δ1 = −85 dB in this paper).  Then, we calculate the 
distance error , , ,k i jid p p Ld  between 2D peak location , ,k i jid p pl  and HVAC location L, and we apply 
threshold δ2 to generate the potential candidate list of BLE IDs in PoL for HVAC location L.  
Specifically, the 2D peak location , ,k i jid p pl  of BLE ID idk, whose distance error to BLE location 

, , ,k i jid p p Ld  is less than δ2, can be located at HVAC location L.  

(a) (b)

Fig. 7.	 (Color online) Walking paths after applying path selection algorithm.  (a) Four paths to cover all BLEs in 
horizontal direction and (b) two paths to cover all BLEs in vertical direction.
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3.6	 Device–location matching

	 After generating candidate BLEs for each physical HVAC location, we start matching 
the BLE IDs to the physical locations.  Again, this approach generates a matching function 

:M B H→ , where IDble = {id1, id2, ..., idn} is a set of n BLE IDs and H = {L1, L2, ...,  Ln} is a set 
of n HVAC locations.  To solve this by linear programming, we introduce a matrix A (aij) ∈ {0,1}, 
where aij is set to 1 if BLE ID idi is in the potential candidate list 

jLPo  of location Lj, and 0 
otherwise.  Then, we define a set of matching functions  = {M1, M2, M3, ...}.  This set  
contains valid matching functions [each is denoted as M (mij) ∈ {0,1}], where mij is set to be 1 if 
BLE ID idi is mapped to location Lj, and the following two constraints are satisfied:
(1)	One BLE ID is matched to one HVAC location.

	
1

1
n

ij
j

i m
=

∀ =∑ 	 (1)

(2)	Each BLE ID matched to a location is in the potential candidate list.

	
1 1

n n

ij ij
i j

m a n
= =

=∑∑ 	 (2)

	 After calculating set  of all possible matching functions, we calculate the matching score 
for each matching function M ∈  by using Eq. (3), where the distance between the estimated 
location of idi and HVAC location Lj is the cost metric.  

	
1 1

,( )
i j

n n

ij id
i j

LM m dω
= =

=∑∑ 	 (3)

	 We select k matching functions with the lowest scores as acceptable combinations.  Then, 
we calculate the frequency matrix Mfreq = (mfreq,ij) from the acceptable combinations, which 
represents how many times the BLE IDs “idi” are matched to the physical location “L = j”.  For 
example, BLE Id “id1” is matched to location “L1” eight times out of 10 acceptable combinations.  
After the frequency matrix for selecting matching results is computed, we normalize the 
frequency to be in the range of 0 to 1.  We apply the threshold to select the perfect matching θm = 3.6.  
Then, the BLE ID idi is mapped to location L = j when mfreq,ij is greater than 0.6.
 
4.	 Experiment

	 An experiment was conducted in two office buildings with sizes of 18 × 18 m2 and 
26 × 24 m2.  We deployed 13 BLEs on the upper side of the ceiling on the first floor and another 
13 BLEs on the upper side of the ceiling on the second floor (26 BLEs in total) of the first 
building, and deployed 20 BLEs on the upper side of the ceiling on the third floor of the second 
building.  These BLEs were placed in plastic boxes individually.  Therefore, we provided 46 
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plastic boxes and deployed them close to HVAC units, as in Figs. 2(a), 2(b), and 8(c).  In each 
plastic box, we provided a power supply for the BLE module.  
	 To perform an experiment based on the stand and walk scheme, we developed an android 
application to collect the RSSIs of the BLEs.  During the collection of the RSSIs, we requested 
the tester to carry the NEXUS6P and walk on the assigned walking path.  Note that the 
experiment was conducted in an uncontrolled environment, i.e., other people carried out their 
normal activities during collection.  

(a) (b)

(c)

Fig. 8.	 (Color online) Experimental setup.  (a) Plastic box in which a BLE module is deployed, (b) BLE module 
inside plastic box, and (c) locations of BLEs in second building.
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4.1	 Evaluation

	 In this experiment, we measured the performance of our algorithm in terms of precision and 
recall.  Specifically, after we created the candidate list, which was a set of BLE IDs for each 
BLE location, we calculated the true positive TP, which was 1 if there was a correct answer in 
the candidate list and 0 otherwise.  We also calculated the false positive FP and false negative 
FN.  Finally, we calculated the precision and recall as

	 ( )/Precision TP TP FP= + ,	 (4)

	 ( )/Recall TP TP FN= + .	 (5)

4.2	 Walking path selection

	 In this section, we discuss the effect of path selection.  First, we assumed that the walking 
paths had been identified from the floor plan.  There are 20 walking paths on the first floor and 
15 walking paths on the second floor.  After that, we applied our path selection method.  We 
were able to reduce the number of walking paths that need to be given to the tester, as shown in 
Table 2.  

4.3	 Performance of candidate estimation using 2D peak localization

	 In this section, we discuss the performance of our 2D localization.  We gave the selected 
walking paths to the tester through our smartphone application.  The tester performs the stand 
and walk scheme following the instructions on the smartphone application.  In this experiment, 
the tester stopped for 20, 15, and 10 s to collect RSSIs after walking one step, and we measured 
precision and recall, the results of which are given in Table 3.  

Table 2
Walking distances required to collect RSSIs before and after applying path selection.

Dataset Floor Without path selection With path selection
#paths Distance (m) #paths Distance (m)

1 1 20 157.5 6 64.5
1 2 15 137.5 5 48.5
2 3 23 202.3 10 97.1

Table 3
Performance of our algorithm for generating candidate list with different times to collect RSSIs.
Parameter δ2 
(m)

pstand = 10 pstand = 15 pstand = 20
Precision Recall Precision Recall Precision Recall

1 0.5 0.19 0.5 0.19 0.75 0.23
2 0.41 0.42 0.38 0.54 0.45 0.54
3 0.39 0.81 0.37 0.88 0.38 0.88
4 0.31 0.88 0.32 1.0 0.33 1.0
5 0.29 1.0 0.29 1.0 0.29 1.0
6 0.25 1.0 0.26 1.0 0.26 1.0
7 0.23 1.0 0.23 1.0 0.22 1.0
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	 We found that the results for the data collected with the pstand of 10, 15 and 20 s were similar.  
Although the average value is sensitive to noise, the results obtained from other methods such as 
the median and mode were the same.  The reason is that the RSSIs of each BLE were unstable, 
and the tester carried one device and stood for pstand s to collect the RSSIs.  When we use the 
median and mode to remove outliers, we need to collect sufficient data at the same time.  For 
example, it is necessary to carry many phones to collect the data, and this method will create a 
burden on the tester.  
	 In our algorithm, there is another parameter, the distance between collection locations, 
which is necessary to adjust.  To measure the effectiveness of the distance between collection 
locations, we set the standing time to collect the RSSIs to 10 s.  Then, we investigated three 
scenarios in which the tester walks one, two, and three steps before stopping to collect the 
RSSIs, and we measure precision and recall, the results of which are given in Table 4.  
	 In this experiment, the tester spent 20, 10, and 7 min for collecting the RSSIs on the first 
floor and spent 16, 8, and 5 min for collecting the RSSIs on the second floor when the tester 
stopped 10 s after walking one, two and three steps, respectively.  We can see that the recall 
values in Table 4 decrease when we increase the gap between collection locations by increasing 
the walking step pstep.  The reason is that when the tester increases the walking step pstep, he/she 
will not collect the RSSIs at the peak location.  This increases the error of the estimated peak 
location compared with that when pstep = 1.  As a result, the peak locations of many BLE IDs 
will be projected to the same location.
	 On the basis of the above results, we applied the parameters pstep = 1 and pstand = 10 to the 
data collection from the second building.  We found that the recall cannot be 1.0 when we apply 
the parameter δ2 = 5, as in the first building, to the second building’s dataset.  As a result, we 
set δ2 to 7 (δ2 = 0.27 × width of the building) so that there are many candidates for each location, 
as shown in Table 5.  

Table 4
Performance of our algorithm for generating candidate list with different numbers of steps before standing to collect RSSIs.
Parameter δ2 
(m)

pstep = 1 pstep = 2 pstep = 3
Precision Recall Precision Recall Precision Recall

1 	 0.5 	 0.19 	 0.36 	 0.35 	 0.29 	 0.42
2 	 0.41 	 0.42 	 0.31 	 0.73 	 0.22 	 0.73
3 	 0.39 	 0.81 	 0.23 	 0.92 	 0.18 	 0.96
4 	 0.31 	 0.88 	 0.2 	 1.0 	 0.16 	 1.0
5 	 0.29 	 1.0 	 0.17 	 1.0 	 0.15 	 1.0
6 	 0.25 	 1.0 	 0.15 	 1.0 	 0.13 	 1.0
7 	 0.23 	 1.0 	 0.14 	 1.0 	 0.12 	 1.0

Table 5
Performance of 2D localization for both buildings.
Parameter δ2 
(m)

Building 1 Building 2
Precision Recall Precision Recall

1 	 0.5 	 0.19 	 0.38 	 0.15
2 	 0.41 	 0.42 	 0.33 	 0.35
3 	 0.39 	 0.81 	 0.26 	 0.55
4 	 0.31 	 0.88 	 0.25 	 0.8
5 	 0.29 	 1.0 	 0.23 	 0.9
6 	 0.25 	 1.0 	 0.17 	 0.9
7 	 0.23 	 1.0 	 0.16 	 1.0
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4.4	 Matching performance

	 We start this section by generating all possible matching combinations from the candidate 
lists from the previous section.  We also calculate the score for each combination using Eq. (3).  
After that, we select the matching functions with the k lowest scores and compute the frequency 
matrix to select the matching result.  Note that we set k to 10 in this experiment.  After the 
frequency matrix is computed, we normalize the frequency to range from 0 to 1.  We apply 
the threshold to select the perfect matchings θm = 0.6, and the perfect matching can be seen in 
Tables 6(a)–6(c).  
	 In these tables, we mark with green the cases that the BLE ID is matched to the correct 
location, with red the cases that the BLE ID is matched to the incorrect location, and with gray 
the case for which we are uncertain whether to match a BLE ID to that location.  The results for 
the first building are shown in Tables 6(a) and 6(b).  We cannot match three BLE IDs and two 
BLE IDs to their correct locations, respectively.  
	 In Table 6(c), there are two locations (“3_03” and “3_04”) and two BLE IDs (“302” and “304”) 
that have not yet been matched.  For the location “3_04”, we can see that the BLE ID “304” is 
more frequently matched to location “3_04” than the BLE ID “303”.  Therefore, we match the 
BLE ID “304” to location “3_04”.  As a result, there are six incorrect matching pairs.  

5.	 Discussion

	 In this paper, we have proposed semiautomatic localization for BLE-attached HVAC units, 
which requires one worker to hold a smartphone to collect the RSSIs around a building.  From 
the principle of location identification, our approach may also be used to localize any (general) 
objects that emit a radio signal, such as BLE-equipped Internet of Things (IoT) devices in 
offices and houses.  However, there are issues to be considered.  Firstly, a floorplan with object 
locations may not be available for such general IoT devices.  The IoT devices are often moved 
and used at different locations.  Secondly, signal propagation may be affected more by furniture 
if these devices are located closer to the floor.  The assessment of the applicability of the 
proposed approach to general devices is part of our future work.  

5.1	 Effect of BLE receivers from different manufacturers on our approach

	 In reality, radio receivers from different manufacturers have different characteristics, such 
as signal-to-noise ratio and antenna gain.  In Ref. 8, the researchers use various devices in 
state-of-the-art approaches that do not support heterogeneous devices and show the decrease 
in the accuracy of those approaches.  According to Refs. 18 and 19, the distance between a 
radio transmitter and a receiver is a significant factor of signal strength, and the effect of 
heterogenous devices can be considered as noise.(8)  Therefore, our technique, which examines 
the trend of RSSIs instead of actual values, is not affected largely by device heterogeneity.
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Table 6 (Color online) 
Results of matching.
(a) Perfect matching for first floor in first building.

101 102 103 104 105 106 107 108 109 110 111 112 113
1_01 1 0 0 0 0 0 0 0 0 0 0 0 0
1_02 0 1 0 0 0 0 0 0 0 0 0 0 0
1_03 0 0 0.4 0 0.2 0 0.2 0 0.2 0 0 0 0
1_04 0 0 0 1 0 0 0 0 0 0 0 0 0
1_05 0 0 0.6 0 0.2 0 0.2 0 0 0 0 0 0
1_06 0 0 0 0 0 1 0 0 0 0 0 0 0
1_07 0 0 0 0 0.6 0 0.4 0 0 0 0 0 0
1_08 0 0 0 0 0 0 0 1 0 0 0 0 0
1_09 0 0 0 0 0 0 0.2 0 0.8 0 0 0 0
1_10 0 0 0 0 0 0 0 0 0 1 0 0 0
1_11 0 0 0 0 0 0 0 0 0 0 1 0 0
1_12 0 0 0 0 0 0 0 0 0 0 0 1 0
1_13 0 0 0 0 0 0 0 0 0 0 0 0 1
(b) Perfect matching for second floor in first building.

201 202 203 204 205 206 207 208 209 210 211 212 213
2_01 1 0 0 0 0 0 0 0 0 0 0 0 0
2_02 0 0.6 0 0.4 0 0 0 0 0 0 0 0 0
2_03 0 0 1 0 0 0 0 0 0 0 0 0 0
2_04 0 0.4 0 0.6 0 0 0 0 0 0 0 0 0
2_05 0 0 0 0 0.6 0 0.4 0 0 0 0 0 0
2_06 0 0 0 0 0 1 0 0 0 0 0 0 0
2_07 0 0 0 0 0.4 0 0.6 0 0 0 0 0 0
2_08 0 0 0 0 0 0 0 0.2 0 0 0 0.8 0
2_09 0 0 0 0 0 0 0 0 1 0 0 0 0
2_10 0 0 0 0 0 0 0 0 0 1 0 0 0
2_11 0 0 0 0 0 0 0 0 0 0 1 0 0
2_12 0 0 0 0 0 0 0 0.8 0 0 0 0.2 0
2_13 0 0 0 0 0 0 0 0 0 0 0 0 1
(c) Perfect matching for second building.
 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
3_01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3_02 0 0.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3_03 0 0.3 0.4 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3_04 0 0.1 0 0.4 0.2 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0
3_05 0 0.2 0 0 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3_06 0 0 0 0 0 0.4 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0
3_07 0 0 0 0 0 0.6 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0
3_08 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3_09 0 0 0 0.3 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0
3_10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
3_11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3_12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
3_13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
3_14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
3_15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
3_16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3_17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3_18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3_19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3_20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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5.2	 Limitation of survey method

	 In this study, we provide some guidelines to reduce the walking distance for collecting data.  
However, it is necessary to stop walking to record the RSSIs to ensure the stability of the RSSI 
data.  This is the reason why the time spent by the worker on collecting RSSIs is increased.  
For example, 1 h was required to obtain the RSSIs on the first floor in the first building in our 
experiment.  
	 In the experiment, the parameters of all BLE modules are set with default values, and BLE 
broadcasts a beacon every second.  However, the smartphone may not perceive the RSSIs from 
each BLE every second.  This is because there is always an instability issue of indoor wireless 
propagation due to fading and shadowing.(18,26,27)  Therefore, a higher speed sampling rate does 
not resolve this problem, and the shorter interval of beacon advertising may increase the risk of 
data collision.
	 In a practical situation, we need a method that allows continuous walking to collect RSSIs.  
There has been some research on leveraging multiple antennas to solve the stability issue of 
RSSIs.(26,27)  We suppose that we can reduce the surveying time by applying these techniques to 
our approach allowing the worker to walk continuously while collecting the data.  Nevertheless, 
smartphones currently on the market have one antenna.  Therefore, we may need to develop 
multiple BLE modules to record RSSIs and send the data to a smartphone.

5.3	 Verification in matching

	 We consider that if an incorrect matching position is within about 3 m from the correct 
position, such an erroneous matching is acceptable.  This is because both the correct and 
incorrect locations can be regarded as being deployed in the same spot such as a room.  In Sect. 
4.4, our approach can map at least 70% of BLE IDs to the exact locations, and the incorrect 
matching results assign the BLE IDs to the wrong positions, which are, however, close to their 
original positions (within the 2–3 m range).  Consequently, the results of our approach are 
considered acceptable in terms of position matching.  However, if there is a case that 100% 
matching is required, we may rely on the administrators and/or residents of the region to report 
the problem when they found an abnormal situation.

6.	 Conclusions

	 In this paper, we have presented a method of semiautomatic BLE localization.  Our 
algorithm can reduce the walking area and estimate the location of every BLE without entering 
every location in the building.  It was found that our algorithm can match 70% of BLEs to their 
correct physical locations.  We evaluated our algorithm by deploying BLE modules on the office 
building.  In the future, we will apply a multiantenna technique to reduce the operation time 
and develop an optimization technique to reduce the complexity of the one-to-one matching 
algorithm.  
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