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	 In sensor networks, sensor localization is one of the mandatory functions for physical 
sensing.  In this paper, we propose a sensor localization system that utilizes wireless local area 
network (WLAN) access points (APs) as anchor nodes.  WLAN is widely available nowadays, 
and WLAN APs are used in many environments.  Therefore, for our localization system, we 
utilize the WLAN APs already installed in the environment, thereby eliminating the installation 
of new anchors.  We present an AP received signal strength (RSS) measurement method, which 
is the key technology of our sensor localization system.  Notably, sensor nodes equipped with 
an IEEE 802.15.4 (ZigBee) module cannot detect WLAN AP signals.  We therefore developed 
an AP signal detection method with AP identification by employing a cross-technology signal 
detection technique.  Experimental evaluations demonstrate that our AP signal detection 
method successfully identified sender APs with a false positive (FP) detection rate less than 
20%.  The experiments also validated that the measured AP-RSS followed the same distribution 
as the RSS measured using a WLAN device.

1.	 Introduction

	 The sensor network, which is used in not only outdoor but also indoor environments, is 
one of the fundamental components in many Internet of Things (IoT) systems.  In many IoT 
systems, sensor localization is a mandatory function because a sensor network is used for 
physical sensing.
	 The location of sensor nodes is either generally estimated using the global positioning system 
(GPS) or manually measured.  Therefore, while building a large-scale indoor sensor network 
in which the GPS is unavailable, we need to measure the location of a large number of sensors.  
Human activity monitoring, home energy management, and building energy management 
systems are typical examples of large-scale indoor sensor networks.
	 To address the sensor localization problem, indoor localization systems have been studied.(3–5)  
These studies mainly focused on deployment cost reduction(6–15) or accuracy improvement(16–21) 
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related to localization systems.  The methods presented in these studies have successfully 
reduced the deployment cost or improved accuracy with the help of either users or manually 
measured anchor nodes.
	 The aim of the present study is to develop an indoor sensor localization system that enables 
us to eliminate the deployment of new anchors.  To this end, we propose a sensor localization 
system that uses wireless local area network (WLAN) access points (APs) as anchor nodes.  
WLAN is now prevalent, and WLAN APs are already used in many indoor environments.  We 
measure the received signal strength (RSS) of multiple WLAN APs by using a sensor node and 
estimate the sensor’s location using the RSS.
	 The sensor nodes, however, are equipped with an IEEE 802.15.4 (ZigBee; although ZigBee 
and IEEE 802.15.4 are different wireless technologies, we use the word ZigBee instead of IEEE 
802.15.4 in this paper for readability) module that cannot detect WLAN AP signals.  Therefore, 
to realize the proposed sensor localization system, detecting the WLAN AP signal and 
measuring its RSS by using a sensor node is the key technology.
	 We therefore present a method of measuring the RSS of WLAN AP signals by using a sensor 
node.  To overcome differences in wireless technologies, we employ a simple folding signal 
processing technique presented in ZiFi(22) and extract AP beacon signals.  An AP identification 
method is also developed because sensor localization requires both the sender AP information 
and the RSS.  We conducted the experiments in an office environment and observed that our 
WLAN AP-RSS measurement method successfully measured the RSS of multiple WLAN AP 
signals while identifying the sender APs as well.
	 The contributions of this paper are as follows.
•	 We propose an indoor sensor localization system that eliminates additional anchor deployment 

by using WLAN APs, which are already widely available in indoor environments.
•	 We develop a WLAN AP-RSS measurement method using a sensor node equipped with a 

ZigBee radio module, which is the key technology to realize our sensor localization system.
•	 We propose an AP signal detection method based on the concept of the beacon interval.  We 

show both theoretically and experimentally that the AP signal detection method accurately 
identifies the sender APs.

•	 We experimentally demonstrate that the AP-RSS measurement method successfully measured 
the AP-RSS to confirm the feasibility of the proposed sensor localization system.

	 The remainder of this paper is organized as follows.  Section 2 gives an overview of the 
new sensor localization system and its design challenges.  Section 3 presents the details of the 
AP-RSS measurement method, followed by the theoretical analysis of the AP signal detection 
method in Sect. 4.  In Sect. 5, we report experimental evaluations.  Section 6 presents related 
work and Sect. 7 concludes this paper.

2.	 Sensor Localization System Utilizing WLAN APs as Anchors

	 Figure 1 depicts the overview of the sensor localization system that utilizes WLAN APs.  
The localization system utilizes the WLAN APs already installed in the environment as anchor 
nodes.  The sensor nodes measure the RSS of the AP signals and send their RSS information 
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to a localization server, which then estimates the location of the APs by using an existing 
localization algorithm such as trilateration.  For AP localization, the required AP information 
such as the location of APs is collected on the localization server prior to using the sensor 
localization system.
	 To realize the sensor localization system, we face the following two major challenges:
(1)	AP-RSS measurement on sensor node:
	 Sensor nodes are equipped with a ZigBee module that cannot detect WLAN signals.  

Moreover, there are many WLAN devices in indoor environments nowadays.  In addition 
to WLAN devices, the unlicensed 2.4 GHz Industry, Scientific, and Medical (ISM) band is 
used for implementing many other wireless technologies such as Bluetooth.  Therefore, we 
also need to filter out wireless signals other than WLAN AP signals by using the ZigBee 
module on a sensor node.

(2)	Sender AP identification:
	 To estimate sensor location, we need AP-RSS information together with the sender AP’s 

information such as location or unique ID.  Although we do not limit the localization method 
used in our localization system, range-based localization requires AP location information.  
The fingerprinting range-free localization method also needs to identify the sender APs.

	 In the following section, we present a WLAN AP-RSS measurement method that overcomes 
the above two challenges.

3.	 WLAN AP-RSS Measurement Using Sensor Nodes

	 The WLAN AP-RSS measurement method consists of three steps, namely, AP signal 
detection, AP identification, and AP-RSS extraction.  A sensor node periodically samples the 
RSS of any wireless signal on a specific channel, which is then processed using a simple signal 
processing technique named folding, which was presented in ZiFi.(22)  The folding technique 
relies on the periodicity of beacon signals sent from WLAN APs.  All the APs are configured to 
send beacon signals at different intervals to perform AP identification.  The sensor node finally 
calculates the average of the RSS samples corresponding to the detected AP signals to derive 
the AP-RSS.  In the following subsections, we present the design details of each step.

Fig. 1.	 (Color online) Sensor localization system utilizing WLAN APs as anchors.
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3.1	 AP signal detection

	 Figure 2 depicts the AP signal detection process.  To detect WLAN AP signals, a sensor 
node periodically measures the RSS of any wireless signal on a specific ZigBee channel.  The 
IEEE 802.15.4 standard defines an energy detection function, which enables us to measure 
the RSS of any wireless signal on a specific ZigBee channel.  Although WLAN and ZigBee 
modules use different wireless technologies, they share the same 2.4 GHz band.  A ZigBee 
module therefore detects the WLAN signal energy as well.
	 Figure 3 depicts a typical example of WLAN signals captured on a ZigBee-compatible 
MICAz sensor node.  Furthermore, ZigBee’s energy detection function provides the RSS of the 
WLAN AP signals averaged over 128 µs.  We therefore sample the RSS every 128 µs to avoid 
missing WLAN AP signals while also minimizing the sampling rate to reduce memory usage.
	 Subsequently, the sensor node determines whether the channel is busy, i.e., occupied, and 
describes the channel-usage status by 0 (clear) or 1 (busy).  We name these 1/0 samples as 
channel-usage samples.  The channel is considered busy when the RSS is greater than or equal 
to −77 dBm, which is the default threshold of clear channel assessment of a CC2420 IEEE 
802.15.4 module.(23)

Fig. 2.	 AP signal detection using folding.

Fig. 3.	 Example of WLAN signals on ZigBee channel 19 captured using MICAz sensor node.
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	 We then fold the channel-usage samples at the WLAN AP beacon interval, thereby deriving 
a channel-usage matrix.  The folding period B is calculated from the WLAN AP beacon interval 
t as

	 B = t / (128 × 10−6),	 (1)

because every channel-usage sample corresponds to 128 µs.  Finally, the sum of each column of 
the channel-usage matrix is calculated.  The sum is called the channel-usage sum.
	 WLAN AP beacon signals are detected by finding the columns whose channel-usage sum 
is greater than the threshold.  Periodic WLAN AP beacon signals appear in a column when 
the beacon interval and folding period are identical.  A large channel-usage sum indicates the 
presence of WLAN AP beacon signals whose interval is identical to the folding period.
	 For beacon signal detection, we use the overlapping rate instead of the original channel-
usage sum, which depends on the number of stacks, NF, in the channel-usage matrix.  The 
overlapping rate is defined as the ratio of the channel-usage sum to NF.  When the maximum 
overlapping rate for a channel-usage matrix is greater than the threshold, beacon signals are 
detected.  The threshold of the overlapping rate is determined by theoretical analysis in Sect. 4.

3.2	 AP identification

	 Using the folding technique presented in Sect. 3.1, a sensor node can detect WLAN 
AP signals.  However, to identify the sender AP on a sensor node, we utilize the beacon 
multiplexing technique presented in FreeBee.(24,25)  WLAN APs are configured using coprime 
beacon intervals to separately detect WLAN AP beacons that have coprime intervals.  AP 
identification is based on the following theorem.

Theorem 1.  Let tA and tB be coprime numbers.  Upon designing a channel-usage matrix having 
folding period tA, the beacon signals corresponding to folding period tB appear in the same 
column every tB rows in the channel-usage matrix.
Proof: In a channel-usage matrix with folding period tA, the beacon signals corresponding to 
folding period tB appear in the same column every lcm(tA, tB) samples, where lcm(tA, tB) is the 
least common multiple of tA and tB.  However, when tA and tB are coprime, lcm(tA, tB) = tAtB.  
Since the channel-usage matrix has tA columns, the beacon signals corresponding to folding 
period tB appear in the same column every lcm(tA, tB) / tA = tB rows.
	 Because tB ≥ 2, the beacon signals corresponding to folding period tB appear in the same 
column no more than every two rows in a channel-usage matrix that has folding period tA.  
Theoretically, tB beacon signals are easily filtered out using an overlapping rate greater than 0.5.
	 Furthermore, we need to identify multiple WLAN APs for localization.  Therefore, WLAN 
APs are configured using beacon intervals such that any pair of intervals are coprime.  The 
multiples and divisors of 100 time units (TUs, 1 TU = 1024 µs), which are the default beacon 
intervals in many WLAN APs available on the market, should also be avoided.  For multiple 
APs, the easiest way to select the beacon intervals is to use prime numbers.
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	 In a practical environment, however, this simple identification technique suffers from false 
positive (FP) detection because of the asynchronous operations of WLAN APs and sensor 
nodes.  Moreover, a beacon signal larger in time length than one RSS sample might also 
increase the rate of FP detection because the beacon signals appear in multiple columns in a 
channel-usage matrix.
	 To reduce the rate of FP detection in a practical environment, we apply the beacon interval 
selection algorithm presented in Algorithm 1.  The function Pfp(A, B) in Algorithm 1 denotes the 
probability of the beacon signals having interval A being mistakenly detected as beacon signals 
having interval B.  The theoretical derivation of the function Pfp(A, B) is difficult because of the 
existence of beacon frames having different lengths and the asynchronous operations of WLAN 
APs and sensor nodes.  However, we experimentally derive Pfp(A, B) in Sect. 5.2.

3.3	 AP-RSS extraction

	 The AP-RSS extraction block calculates the RSS of the detected AP beacon signals.  The 
detected AP beacon signals correspond to the channel-usage samples in a channel-usage matrix.  
Intuitively, the AP-RSS is derived by calculating the average of the RSS samples corresponding 
to the channel-usage samples; however, the calculation is highly erroneous because of a partial 
averaging problem.
	 The partial averaging problem is caused by the definition of ZigBee’s energy detection 
function, i.e., RSS measurement function.  The ZigBee modules provide the RSS over an 
averaging window of 128 µs.  However, the transmission of a WLAN AP beacon signal might 
start and end in the middle of the averaging windows, as depicted in Fig. 4, as we already know 
that WLAN APs and sensor nodes are not synchronized.  The RSS derived within an averaging 
window including the start and end of beacon signals might suffer from a large error.

Algorithm 1.  Removal of beacon intervals that tend to be detected incorrectly.
Requirement: set of non-multiple beacon intervals, L, and threshold for false detection rate, 
thresh
Ensure: L L ⇐ a set of coprime beacon intervals that tend to be correctly detected
1: while |L| > 1 do
2: 	 all inseparable[] = 0
3: 	 for b_int in L do
4: 		  for fold_bint in L\{b_int} do
5: 			   if Ppf (b_int, fold_bint) ≥ thresh or Pfp ( fold_bint, b_in) ≥ thresh then
6: 				    inseparable[b_int]++
7: 			   end if
8: 		  end for
9: 	 end for
10: 	 if all inseparable[] == 0 then
11: 		  return L
12: 	 end if
13: 	 unused_bint ⇐ argmax (inseparable[bint])
14: 	 L ⇐ L\{unused_bint}
15: end while
16: return L
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	 To reduce the effect of the partial averaging problem, we apply a simple filter before 
averaging the RSS samples.  We ignore the channel-usage samples including the start and end 
of the WLAN AP beacon signals.  Figure 5 illustrates the columns in a channel-usage matrix 
in which a beacon signal is detected.  In each row, the successive “1”s indicate a beacon signal.  
For AP-RSS calculation, in the channel-usage matrix, we ignore the first and last “1”s, i.e., the 
gray cells in Fig. 5, because they are likely to be affected by the partial averaging problem.  The 
AP-RSS is therefore calculated by calculating the average of the RSS samples corresponding to 
the black channel-usage samples in Fig. 5.
	 To apply this simple filtering technique, the time length of a beacon signal must be longer 
than that of three RSS samples, i.e., more than 128 × 3 = 384 µs.  Figure 6 depicts the format of 
an IEEE 802.11 beacon frame, i.e., beacon signal.  A beacon frame is one of the IEEE 802.11 
management frames, consisting of a physical (PHY) header and a medium access control (MAC) 
frame.
	 The PHY header comprises a physical layer convergence procedure (PLCP) preamble and a 
PCLP header.  In the 2.4 GHz ISM band, the time length of the PHY header is 192 µs.
	 The MAC frame comprises a 24-octet header, a frame body, and a 4-octet frame check 
sequence.  The length of the frame body depends on the contents of the beacon signal.  Table 1 
presents the mandatory fields in the frame body along with their length.(26)  On the basis of Table 1, 
the minimum length of the frame body is 23 octets.  The MAC frame is therefore no smaller 
than 51 octets.
	 In the 2.4 GHz ISM band, many WLAN APs operate in an IEEE 802.11b-compatible mode.  
The beacon frames are sent at a rate of 1 or 2 Mbps.  The time length of the beacon frames is 
therefore larger than 396 µs (= 192 µs + 51 octets × 8 bits/2 Mbps), which is greater than 384 µs.
	 Figure 7 depicts the empirical cumulative probability of the time length of the beacon frames 
collected while walking in Kyushu University buildings.  We collected the beacon frames from 
207 APs.  Note that the X-axis in Fig. 7 is inverted.  The blue and red dashed lines represent the 
cumulative probability of 0.95 and the beacon-frame time length of 384 µs, respectively.  Figure 
7 indicates that 95% of the APs sent beacon frames having time lengths greater than 384 µs.  
Moreover, 10 APs sent beacon frames having time lengths less than 396 µs.  Notably, these APs 
were operating in an IEEE 802.11g mode.  However, our AP-RSS measurement method only 
supports the APs operating in an IEEE 802.11b-compatible mode, which is a limitation of our 
method.

Fig. 5.	 Example of f ilter ing of channel-usage 
samples.

Fig. 4.	 Partial averaging problem.
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4.	 Theoretical Analysis

4.1	 Maximum overlapping rate with many APs

	 When there are many APs near a sensor node, the number of FP detections increases even 
upon using coprime beacon intervals.  Consider the case in which we try to detect beacon 
signals whose interval is 2 TU.  For multiple APs, we can easily use prime numbers as beacon 
intervals, as described in Sect. 3.2.  In this case, the beacon intervals of the non-target APs are 
prime numbers greater than 2.  When there are two APs having beacon intervals of 3 and 5 TU, 
the beacon signals appear in the same column every 3 and 5 columns in a channel-usage matrix 
according to Theorem 1.  Moreover, note that the beacon signals from both APs overlap in the 
channel-usage matrix every 15 (= 3 × 5) rows.  The maximum overlapping rate s2 caused by the 
two APs is calculated as

	 2
1 1 1 7
3 5 15 15

s = + − = .	 (2)

Similarly, the maximum overlapping rate sn for n APs can be calculated as

Fig. 7.	 (Color on l ine) Empi r ical cumulat ive 
probability of beacon-frame time length. Blue and red 
dashed lines represent the probability of 0.95 and the 
beacon-frame time length of 384 µs, respectively.

Table 1
Mandatory fields in frame body of beacon frames.(26)

Item Length (octets)
Timestamp 8
Beacon Interval 2
Capability 2
Service Set Identifier (SSID) 2–34
Supported Rates 3–10
Traffic Indication Map (TIM) 6–256

Fig. 6.	 IEEE 802.11 beacon frame format.
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where p1, ..., pn+1 denote the beacon intervals of the non-target APs among the n APs.
	 Figure 8 depicts the maximum overlapping rate caused by the non-target APs upon using 
prime numbers as beacon intervals.  It depicts two cases, one using the smallest beacon intervals 
and one using beacon intervals greater than 50 TU.  As the number of non-target APs increases, 
the maximum overlapping rate also increases.  Upon using the smallest beacon intervals, i.e., 2, 3, 
5, 7, ..., the maximum overlapping rate becomes 82.3% when there are 100 non-target APs.
	 To reduce the maximum overlapping rate caused by the non-target APs, we use longer 
beacon intervals.  Upon using beacon intervals greater than 50 TU, the maximum overlapping 
rate becomes 37.6% when there are 100 non-target APs.  An overlapping-rate threshold greater 
than 0.5 easily reduces the number of FP detections in this case.

4.2	 FP detections due to data communication

	 In addition to the beacon signals from non-target APs, the AP signal detection on a sensor 
node also suffers from WLAN data communication.  Assume that data communication 
randomly occurs.  Let NF denote the number of rows in a channel-usage matrix.  We can 
calculate the probability that the channel-usage sum of a specific column in a channel-usage 
matrix becomes i as

	 ( )1 FN iF iN
U U

i
− 

− 
 

,	 (4)

Fig. 8	 Maximum overlapping rate as a function of the number of APs.
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where 
a
b
 
 
 

 represents a binomial coefficient and U the rate of channel utilization, i.e., channel 

occupancy rate, for the WLAN data communication.
	 Let X be a random variable representing the maximum overlapping rate in a channel-usage 
matrix and Vth the overlapping-rate threshold.  The probability that all the columns in a channel-
usage matrix have overlapping rates less than the overlapping-rate threshold is calculated using 
Eq. (4) as

	 [ ] ( )1
0 1F th F

B
N V N iF i

th i
N

P X V U U
i

− −
=

   < = −  
   
∑ ,	 (5)

where B denotes the number of columns in the channel-usage matrix.  The probability of FP 
detection caused by data communication is therefore calculated as

	 [ ] ( )1
01 [ ] 1 1F th F

B
N V N iF i

th th i
N

P X V P X V U U
i

− −
=

   ≥ = − < = − −  
   
∑ .	 (6)

	 Figure 9 depicts the rate of FP detection caused by the WLAN data communication as a 
function of the overlapping rate.  In the figure, the rate is calculated using Eq. (6) and NF = 30.  
According to Eq. (6), increasing the folding period B increases the number of FP detections.  
Therefore, B = 500 TU is used in Fig. 9, which is the maximum beacon interval in a practical 
range.  Moreover, the rate of channel utilization is changed from 0.1 to 0.3 because it is less than 
0.3 in practical environments.(22)  From Fig. 9, it can be observed that using the overlapping-
rate threshold of 80% reduces the rate of FP detection to less than 0.01%.  Therefore, we use the 
overlapping-rate threshold of 80% in our evaluation.

Fig. 9.	 Rate of FP detection caused by data communication as a function of overlapping-rate threshold (number of 
foldings, NF = 30, rate of channel utilization U = 0. –0.3, and beacon interval = 500 TU).
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5.	 Evaluation

	 We used an actual sensor node and WLAN APs to evaluate the basic performance of the 
AP-RSS measurement method in an office environment.  Figure 10 depicts a prototype of our 
AP-RSS measurement system.  The prototype consists of a Crossbow MICAz sensor node 
and a Panasonic CF-Y8 data-processing laptop.  The MICAz sensor node is equipped with a 
Texas Instruments CC2420 ZigBee module.  For WLAN APs, we prepared three Raspberry 
Pi devices equipped with a Buffalo WLI-UC-G301N WLAN module running on the OpenWrt 
operating system.  We also prepared eight Netgear WNDR4300 WLAN APs also running on 
the OpenWrt operating system.  To make the measurement easier, we implemented all the AP-
RSS measurement processes presented in Sect. 3 on the data-processing laptop, not on the 
sensor node, except for RSS sampling.

5.1	 Preliminary experiment

	 To determine the number of foldings in a channel-usage matrix, NF, we conducted a 
preliminary experiment.  We installed a sensor node and a WLAN AP separated by 2.5 m in an 
office environment, and collected the RSS samples on the sensor node every 128 µs for 1 min.  
The WLAN AP’s beacon interval was set to 109 TU.  We folded the channel-usage samples 
calculated from the RSS samples at the beacon interval.  We then extracted the rows of the 
channel-usage matrix by using a sliding window and evaluated the maximum overlapping rate 
for each windowed channel-usage matrix.  We changed the window size, which corresponds to 
the number of foldings, NF, from 5 to 100.
	 Figure 11 depicts the distribution of the overlapping rates for NF ranging from 5 to 100.  
The box for each NF represents the quartiles of the overlapping rates of all the trials, and the 
whiskers represent the rest of the distribution of the overlapping rates except for the outliers 
represented by data points.  A notch on a box represents the median of the overlapping rates.  
Although NF should be minimized to reduce detection latency, a small NF results in outliers 
including large errors.  We therefore determined the most suitable NF to be 30, which, although, 
resulted in small variances of the overlapping rate, maintained the highest median overlapping 
rate.

Fig. 10.	 (Color online) Prototype of AP-RSS measurement system.
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5.2	 Creation of beacon interval set

	 Prior to performance evaluation, we created a set of beacon intervals by using the algorithm 
described in Sect. 3.2.  The beacon intervals ranged between 50 and 500 TU, which is a 
practical range used in many WLAN APs available on the market.  Furthermore, to create an 
initial set of beacon intervals, coprime numbers within this range were chosen.  We collected 
RSS samples by using a sensor node and two APs separated by approximately 5 m in an office 
environment.  We measured the FP detection rate Pfp(A, B) while changing the combinations of 
beacon intervals of the APs.  Finally, we created a set of 72 beacon intervals on the basis of the 
measured Pfp(A, B).
	 Note that 30 beacon intervals are sufficient for practical deployment.  We can create a set 
of 29 beacon intervals within the range of 50–200 TU.  Moreover, we can use the same beacon 
interval on non-overlapping WLAN channels.  By setting a sufficient distance between two 
WLAN APs to prevent the mixing of their signals, we can also reuse the same beacon interval 
in the same channel.

5.3	 Detection performance

	 To demonstrate both AP detection and AP identification performance characteristics, we 
calculated true positive (TP) and FP detection rates.  Let I denote the created set of beacon 
intervals and S(t) the beacon signals whose interval is t I∈ .  The TP belongs to the case in 
which S(t) is detected as S(t).  The FP belongs to the case in which S(u), for any { | }u I u t∈ ≠ , is 
detected as S(t).
	 We installed a MICAz sensor node and eight WNDR4300 APs separated by approximately 
5 m in an office environment.  In each trial, eight different beacon intervals were randomly 
selected from the beacon interval set I and were set to the APs.  To calculate TP and FP 

Fig. 11.	 (Color online) Distribution of overlapping rates for each number of foldings, NF, in channel-usage 
matrix.  Boxes and their notches represent quartiles and medians, respectively.  Whiskers represent the rest of the 
distributions.  Data points are outliers.



Sensors and Materials, Vol. 32, No. 1 (2020)	 109

detection rates, we collected the RSS samples by using the sensor node for 1 min and performed 
AP signal detection using the process in Sect. 3 for the eight beacon intervals.  We repeated the 
trial 100 times and calculated the average of the TP and FP detection rates.  Note that there were 
approximately 20 WLAN APs used for data communication in our experimental environment.
	 Figure 12 depicts the average TP and FP detection rates as a function of the beacon interval 
of the detection target AP.  Figure 12 shows the following results:
(1)	For all the target beacon intervals, the average TP detection rate was greater than 85%.  

The minimum TP detection rate was 86.4% for the beacon interval of 449 TU.  This result 
indicates that we can detect WLAN APs on sensor nodes more than 85% of the time.

(2)	For all the target beacon intervals, the average FP detection rate was less than 20%.  The 
maximum FP detection rate was 19.8% for the beacon interval of 59 TU.  The FP detection 
rate was worse than expected in Sect. 4.  From Fig. 8, it can be seen that the maximum 
overlapping rate is approximately 10% when there are eight APs having beacon intervals 
greater than 50 TU.  It can be observed from Fig. 9 that the overlapping rate threshold of 
80% almost eliminates FP detection because of the WLAN data communication.  Moreover, 
a large beacon time length might have increased the FP detection rate.  We used beacon 
frames with a time length of 1472 µs, which is greater than 1 TU (= 1024 µs).  The long 
beacon frames (in terms of their time length) appear in the same column in a channel-usage 
matrix more frequently than expected in the analysis, thereby increasing the FP detection 
rate.

(3)	Target beacon intervals having a small time length tended to suffer from a high FP detection 
rate.  The number of columns in a channel-usage matrix corresponds to the beacon interval 
of the detection target AP.  When the number of columns in a channel-usage matrix is small, 
the number of columns occupied by a long beacon frame is significant, thereby resulting in 
the high FP detection rate.

	 The above-mentioned three results demonstrated that our AP-RSS measurement method 
successfully detected and identified sender APs with an FP detection rate less than 20%.  From 
the results of the analysis of the maximum overlapping rate caused by non-target APs in Sect. 4.1, 
we believe that we can derive similar results with up to 100 APs.

Fig. 12.	 Average TP and FP detection rates as a function of beacon interval of detection target AP.
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5.4	 RSS distribution

	 To evaluate the AP-RSS error, we need to compare the AP-RSS with the true RSS, which 
is the RSS measured using a WLAN device installed immediately beside a sensor node.  The 
RSS is unstable and changes frequently.  The RSS measurement must be synchronized precisely 
within a few tens of microseconds for RSS comparison.
	 The experimental equipment we used, however, does not support precise synchronization.  
We therefore compared the RSS distributions in this paper.  The two types of RSS must follow 
the same distribution but with different means and variances caused by the different wireless 
technologies used.
	 We installed a sensor node connected to the data-processing laptop equipped with a WLAN 
module and an AP separated by approximately 12 m in an office environment.  The AP’s 
beacon interval was 93 TU.  In each trial, we sampled the AP-RSS for 4 s and calculated the 
average of the AP-RSS.  The data-processing laptop also measured the RSS of the AP by using 
the pcap library (https://www.tcpdump.org) at the same time and calculated the average of the 
RSS.  Note that the sampling timing was manually synchronized because of the limitation of 
the experimental equipment.  We repeated the trial 1000 times and compared the distributions 
of the AP-RSS and true RSS.
	 Figure 13 depicts the distributions of both the AP-RSS and the true RSS.  The blue dashed 
lines represent the medians.  Figure 13 indicates the following:
(1)	Both the AP-RSS and the true RSS seem to follow the Gaussian distribution except 

for outliers.  The radio propagation environment changed frequently, resulting in the 
fluctuations of the RSS.  The standard deviations of the AP-RSS and true RSS were 1.36 and 
0.98 dB, respectively.  The ZigBee sensor uses a 2 MHz band, while the WLAN sensor uses 
a 22 MHz band.  The AP-RSS derived using the narrow-band ZigBee sensor node was more 
affected by the environmental changes than the RSS derived using the WLAN sensor.

(2)	The medians of the AP-RSS and true RSS were −48.0 and −44.9 dBm, respectively.  By 
comparing the medians, an offset can be confirmed between the RSS measurements 

(a) (b)

Fig. 13	 (Color online) Distributions of both AP-RSS and true RSS. The blue dashed lines represent the medians. 



Sensors and Materials, Vol. 32, No. 1 (2020)	 111

obtained using the ZigBee and WLAN sensors.  The offset was mainly caused by the 
differences in bandwidth and antenna gain between the sensors.

As described above, the AP-RSS and true RSS had different medians and standard deviations 
caused by the different wireless technologies used.  We normalized the RSS distributions 
before comparing them: each RSS set was transformed into a new set with a median of 0 and a 
standard deviation of 1.
	 We performed the Kolmogorov–Smirnov test on the normalized RSS sets.  The p-value 
was calculated to be 0.33.  We cannot confirm that the distributions of the AP-RSS and true 
RSS were different at a significance level of p < 0.05 upon ignoring the offset and difference in 
variation.

6.	 Related Work

	 Studies on indoor localization have mainly investigated deployment-cost reduction and 
accuracy improvement.  Although a WLAN system was targeted in most of the studies, the 
methods presented therein supported ZigBee sensors.
	 Iterative multilateration(6) is one of the popular localization technologies that reduce the 
number of initial anchor nodes.  In iterative multilateration, nodes whose location is estimated 
are used as new anchors.  The number of initial anchor nodes can also be reduced by anchor 
location optimization.(7)  However, to reduce the localization errors in a large localization target 
area, we still need to deploy many initial anchor nodes.
	 Fingerprinting localization with a crowdsourced site survey,(8–15) which collects the RSS 
everywhere in a localization target area for fingerprinting, eliminates the need for anchor 
installation.  For sensor localization, there are a few cooperators that always carry a sensor 
node.
	 For accuracy improvement, many methods(16–21) such as multilateration by employing 
geometrical features(16) and fingerprinting by employing physical layer information(20) have 
been reported.  These methods are useful for improving the accuracy of our sensor localization 
system.
	 ZiFind(27) is a fingerprinting localization method that uses WLAN APs for ZigBee 
sensor localization.  ZiFind utilizes beacon transmission timing information as a feature in 
fingerprinting localization.  Although ZiFind requires no anchor ZigBee sensor node, special 
WLAN devices, called ZiFind mappers, need to be installed at known locations.  Moreover, 
ZIL(28) is another fingerprinting localization method that uses the RSS and transmission timing 
of WLAN beacon signals.  In the ZIL method, site survey, i.e., data collection using a sensor 
node, is mandatory, which has a large cost in large-scale sensor networks.

7.	 Conclusion

	 In this paper, we presented a sensor localization system that eliminates the deployment of 
new anchors.  The key idea is to utilize the WLAN APs already installed in the environment 
as anchors.  However, the sensor nodes in the system are equipped with a ZigBee module, 
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which cannot detect WLAN signals.  We therefore developed a cross-technology signal 
detection method and designed an AP-RSS measurement method, both of which will be the 
key technology in our sensor localization system.  We also presented a simple AP identification 
method based on AP beacon intervals to identify the sender APs.  The experimental evaluations 
revealed that the AP-RSS measurement method identified the sender APs with an FP detection 
rate less than 20%.  Moreover, the measured AP-RSS followed the same distribution as the RSS 
measured using a WLAN device with an offset and a different standard deviation.  As future 
work, we need to confirm that we can perform sensor localization using the measured AP-RSS.
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