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	 In this research project, we aim to build a long-range (LoRa)-based Internet of Things 
(IoT) secure localization system and application based on multisensor fusion calculation.  The 
LoRa technology is used to design a network security system and immediately address the 
computing system, where the purpose is to develop a network server host that collects and 
processes position signals from the multisensing signal collection and analysis processing 
module, and instantly detects location by network nodes through the sensors cloud, the Arduino 
UNO high-level development platform, and the multisensor fusion computing workstations, 
which send the results to the central monitoring system through the wireless devices of the 
LoRa network.  The secure localization computing chip outcome, as developed in this project, 
can be used in the domains of energy management, environmental management, information 
management, factory monitoring, and renewable energy management.  The system of this 
project comprises LoRa hosts, which receive signals from various nodes and are connected to a 
multisensor fusion arithmetic system through a wireless network.  To sum up, in this study, we 
emphasize using multisensor fusion computing technology to implement a secure localization 
system of a wireless sensor network (WSN), and we consider using the embedded system and 
LoRa technology to develop a monitoring system for factory fire control, anti-theft, energy, 
information, and security based on secure localization.  In this study, we cross domains and 
integrate related engineering automation, network security technology, multisensor fusion 
calculation design, and the LoRa localization technique, and the research findings are expected 
to contribute to the network security of the defense industry and research on the LoRa IoT 
localization system.  

1.	 Introduction

	 The Internet of Things (IoT) is a new domain of information technology development, 
which is characterized by rapid deployment, cooperative perception, and high fault tolerance.  
Thus, it has extensive application prospects in the domains of military affairs, environmental 
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surveillance, forecasting, and city management.  In most IoTs, the location information of 
nodes has a key effect on application effectiveness.  As the IoT is tightly coupled with the 
real physical world, the IoT must create the spatial relations of the network depending on the 
location information of nodes, which report events and track external objects accordingly.(1–3)  
In addition, the location information of nodes is an important basis of network functions, such 
as providing network topology self-configuration, instantly calculating the quality of network 
coverage and assisting routes, and is one of the bottommost functions and services of self-
localization in the IoT.  In the IoT, determining the location of a node or event is very important 
for monitoring activities, as the accurate location of a node not only provides the precondition 
of monitoring an event and target location information, it also provides network topology self-
configuration, increases routing efficiency, reports the network coverage quality to the deployer, 
and provides the basis of network functions, such as the namespace for a network.(4,5)

	 This project is based on long-range (LoRa) wireless transmission technology, which is a 
low-power wide-area network (LPWAN), and this technology represents the new trend of 
the continuous evolution of wireless communication technology.(6–9)  While the traditional 
broadband communication has a higher transmission rate, the LPWAN dismisses the high 
transmission rate and pays more attention to energy efficiency, scalability, and coverage.(10,11)  
A lot of sensor terminal nodes can coexist in the LPWAN architecture, as the information 
of each sensor node can be sent to multiple gateways, and the data are transmitted through 
these gateways to the internet server side with strong arithmetic capability, as well as to the 
application server side after the filtration of the redundant information of the entire network 
and the validation of security, where the user can evaluate and control various classes of data, 
as shown in Fig. 1(a).  How to provide a secure node location system for IoT applications with 
the possibility of hostile attack is a key problem that must be solved.  In this study, we aim 
to analyze and compare the attack types when using LoRa technology to develop different 
location techniques, and probe into the implementation principles, characteristics, limitations, 
and relations of the proposed security measures, in order to advance the research directions of 
related domains.  

2.	 LoRa IoT Localization System Security Analysis 

2.1	 LoRa IoT node location system 

	 The location refers to how one node obtains its geographic location information.  As they 
are limited by the price, volume, power consumption, and scalability factors, most sensor 
network node location systems use a beacon-node-assisted node location plan, that is, the 
network contains a few beacon nodes, which obtain their location information by carrying 
the GPS location element, and send a beacon message containing the location reference 
information in order to build the coordinate system.  In the unknown node location process, 
the position relations (distance, angle, or region inclusion relation) of the unknown node to 
multiple adjacent beacon nodes are measured or estimated, and then the coordinates of the 
unknown node are calculated by using these position relations and specific algorithms, where 
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the calculation-performing subject can be the unknown node, beacon node, or some authority 
node, and the common algorithms include trilateration, triangulation, and multilateration.  The 
localization systems include range-based localization and range-free localization.  Range-based 
localization measures the point-to-point distance or angle information between nodes, where 
the common measuring techniques include time of arrival (TOA), time difference of arrival 
(TDOA), angle of arrival (AOA), and received signal strength indicator (RSSI).  Range-free 
localization uses network connectivity to estimate the position relation between nodes, where 
the common algorithms include the centroid algorithm, approximate point-in-triangulation test 
(APIT) algorithm, distance vector (DV)-Hop algorithm, convex programming algorithm, and 
amorphous algorithm.(12–14)

Fig. 1.	 (Color online) (a) LoRa network architecture. (b) LoRa class comparison. 

(a)

(b)
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2.2	 Analysis of attacks on the node localization system 

	 Attacks on a node localization system mainly occur in the position relation measuring 
and estimation stages.  The attack target is usually the beacon node or the wireless link for 
transmitting beacon messages.  As different localization systems are based on different physical 
attributes and localization processes, the means of an attack are closely related to the location 
technique used by the system, which is analyzed, as follows. 

2.2.1	 Attack on range-based localization 

	 Range-based localization is especially exposed to ranging interference or spoofing attacks 
in the physical layer or link layer; thus, the deviation of the ranging result from the actual 
result exceeds the normal range.  An attacker can move and isolate the beacon node to reduce 
localization accuracy, as well as initiate a radio interference attack; for example, an obstacle is 
placed between the sender and the receiver, meaning that the beacon message is transmitted on 
multiple paths, the signal transmission time is prolonged, and the AOA or strength of the signal 
is changed.  The TOA/TDOA(11) location technique measures the round-trip time of a call-
reply message to calculate the distance between nodes, and the response message is sent earlier 
or later to spuriously reduce or increase the nodal distance.  The AOA algorithm(5) measures 
the relative orientation or angle between the receiving node and the transmitting node, and a 
reflector is located to change the AOA of the signal.  The RSSI ranging technology(6) uses a 
theoretical or empirical model to convert the transmission loss into distance, where an obstacle 
with the absorption function is located between the beacon node and the unknown node, or 
ambient channel noise is partially increased to attenuate the signal, which renders the measured 
distance of the unknown node longer than the actual distance.  Moreover, the attacker can 
use different transmission media or transmission powers to create illusions, leading to false 
measurement results.(15,16) 

2.2.2	 Attack on range-free localization 

	 Similarly, range-free localization is exposed to attacks with the purpose of interference or 
cheating in the position relation estimation stage.  However, in addition to the aforesaid attacks 
on nodes, the physical layer, or the link layer of a wireless channel, there are attacks on the 
network layer, such as replaying, forging, tampering, dropping beacon messages, wormhole 
attacks, and Sybil attacks.  A Sybil attack on a localization system means that one malicious 
node fabricates many different identities; thus, multiple nonexistent nodes occur in the network, 
which disturb the normal operations of the localization protocol.  To be more specific, in the 
centroid algorithm,(7) the location of the unknown node is determined as the polygonal centroid 
formed of k adjacent beacon nodes: 
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where (Xi, Yi), 1 ≤ i ≤ k, are the beacon node coordinates.  Clearly, a small number or a 
nonuniform distribution of adjacent beacon nodes can directly affect the accuracy of unknown 
node location estimation.  At this point, the attacker can isolate a part of the neighboring nodes (e.g., 
arranging an obstacle with strong signal-absorbing capacity near the node) to reduce judgment 
accuracy.  The perfect point-in-triangulation test (PIT) theory assumes that all neighbor nodes of 
node M are simultaneously not far from or close to three beacon nodes (A, B, and C) in relation 
to node M, where M is in ⊿ABC; otherwise, M is out of ⊿ABC.  In the APIT algorithm,(8) 
which is based on the PIT theory, the attacker can initiate a wormhole attack, as shown in Fig. 2.  
If there is a wormhole link between node S and node 5, and node 5 is simultaneously far from 
the three beacon nodes, according to the PIT principle, S is misidentified as being out of the 
triangle.  
	 In the range-free localization based on the distance vector,(9,10) the attacker can directly 
remove the node to induce the calculation error of each skip distance, and use jamming or 
a wormhole attack to induce the unknown node to obtain a false minimum hop count value 
from the beacon node, and the beacon node works out the false average hop distance.  Figure 3 
shows network-layer attacks on the localization algorithm that are based on the distance vector.  
Figure 3(a) shows the normal condition.  Figure 3(b) corresponds to a wormhole attack with 
the purpose of reducing the hop count.  Figure 3(c) corresponds to a jamming attack with the 
purpose of increasing the hop count.  
	 However, the security problem is less considered in the initial design of the LoRa IoT node 
localization system.  For a period of time, domain research has concentrated on how to enhance 

Fig. 2.	 Wormhole attack towards APIT algorithm.

Fig. 3.	 (Color online) Network-layer attacks towards DV-based localization algorithms.

(a) (b) (c)
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localization accuracy and energy efficiency, while, in fact, the lack of an effective security 
mechanism has become the principal restriction on using LoRa IoT.  As the node localization 
system is the key service of LoRa IoT, an attacker may damage the effectiveness of the LoRa 
IoT application with attack position information.  Thus, this security problem has gradually 
attracted attention.  To date, many security solutions for localization systems that can solve 
different security threats and support different applications have been proposed, which have 
different localization principles, network facilities, security techniques, attack resistances, and 
space-time complexities.  A wireless message with localization reference information is called a 
beacon, a node with a known location that provides the beacon is called an anchor node, and the 
LoRa IoT node to be localized is called an unknown node.(17,18) 

3.	 Sensor Localization Techniques and Analysis 

	 In the study of wireless sensor networks (WSNs), the node localization problem is a 
popular research area, as the accurate localization of a node is the fundamental condition of 
the WSN application; for example, the location information of sensor nodes must be known 
in battle zone reconnaissance, ecological environment monitoring, and earthquake, flood, 
and fire site monitoring in order to obtain the accurate location of an information source.  In 
addition, the location information of nodes can be used to increase routing efficiency, report 
network coverage quality to the deployer, and implement the network load balancing and self-
configuration of the network topology.(19–24)  As sensor nodes are limited by cost, energy, and 
volume, the localization ability of WSNs encounters a new challenge.  While GPS is a method 
to obtain location information, it requires numerous sensor nodes; thus, the cost of the GPS 
scheme is very high.  Furthermore, as sensor nodes are powered by a battery, the electric energy 
is very limited and cannot be supplemented, meaning that it is not feasible to provide each node 
with high-energy-consuming GPS equipment.  In addition, the electric energy consumed by 
the wireless communication between nodes is much higher than the electric energy consumed 
by other parts.  Thus, the wireless communication between nodes should be reduced as much 
as possible, and a low-energy-consuming node localization algorithm should be designed to 
prolong the lifetime of the sensor network as much as possible.  
	 Since AT&T Laboratories Cambridge developed the localization system Active Badge in 
1992,(25–27) researchers have been developing self-localization systems and algorithms.  During 
these years, while many of the developed techniques can solve the self-localization problem 
of wireless sensors, many types of systems and algorithms have been used to solve different 
problems or to support different applications.  There are different physical phenomena for 
localization, the composition of LoRa IoT equipment, energy demands, infrastructure, and 
space-time complexity, and most have high communication energy consumption and require 
additional hardware.  
	 In a WSN, the location information is very important for the monitoring activity of the sensor 
network, and the location of an event or the acquired node location is important information 
contained in the sensor node monitoring information.  The localization of a sensor node is the 
process of determining the node location from a few nodes with known locations and some 
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localization mechanisms.  Only when the sensor node is localized can the specific location of an 
event monitored by a sensor node be determined.  Therefore, in the sensor network, the correct 
localization of a sensor node is a precondition of many practical applications.  Many researchers 
are currently working on this issue, and they have proposed many solutions regarding 
localization problems.(1)  Table 1 compares the existing typical localization algorithms.  
	 Their characteristics and analysis of the various positioning algorithms are as follows:

(1)	The unknown node must be directly adjacent to the anchor node, and the density of the 
anchor node is too high, such as in the centroid algorithm, DV-Hop.  The anchor must 
have a device that receives GPS data, so the cost of the sensor will increase.

(2)	Positioning accuracy depends on network deployment conditions.  For example, DV-
Hop is only suitable for densely deployed isotropic networks.  The convex programming 
algorithm requires anchor nodes to be deployed at the edge of the network.  Limiting the 
sensor’s deployment conditions will increase the cost of the sensor.

(3)	There is no measure for suppressing the distance/angle measurement error, resulting 
in error propagation and error accumulation.  The positioning accuracy depends on 
the accuracy of the distance/angle measurement, for example, DV-distance.  Error 
propagation and error accumulation increase the amount of data transmitted by the 
sensor, which obviously consumes the power of the sensor.

(4)	Relying on the loop refinement process to suppress the ranging error and improve 
positioning accuracy.  Although the loop refinement process can significantly reduce 
the impact of the ranging error, it not only requires a large amount of communication 
and computational energy but also increases the uncertainty of the algorithm because it 
cannot predict the number of loops, for example, a convex programming algorithm.  A 
large amount of communication and computational energy is also a cost burden since it 
increases the power and space of the sensor.

(5)	Existing algorithms do not consider indoor environments, such as environmental noise, 
penetration effects, multipath effects, and nonline of sight (NLOS) caused by complex 
indoor environments.

	 Therefore, the paper proposes the architecture of a WSN of LoRa to solve the problem 
of power consumption and reduce the cost of using the sensor.  Although the LoRa WSN 
architecture cannot completely solve the problems of various positioning algorithms described 
above, the LoRa WSN has the characteristics of low cost, low power consumption, and long-
distance transmission of data.  Therefore, our proposed LoRa WSN uses RSSI technology to 
calculate the positioning points.  The features of the proposed method include:

Table 1
Comparison of typical sensor network localization algorithms.

Algorithm name Distributed/centralized Ranging required Distance estimation 
method Localization method 

RADAR Centralized No None Match
Centroid localization Distributed No Communication range Centroid
Convex programming Centralized No Communication range Optimization
DV-hop Distributed No One-hop distance Triangulation 
DV-distance Distributed Yes Signal strength Triangulation
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a.	 The hardware consumes low energy: the sensor node does not require additional 
positioning hardware devices that consume power, volume, and weight, such as GPS 
sensing devices.

b.	 The computational and communication energy consumption is low: this can extend the 
life cycle of the sensor network and reduce the power consumption of the system.

c.	 Easy to implement: it can be easily ported on existing sensor network systems.
d.	 Positioning self-organization: does not depend on other fixed equipment and fixed 

structures, as well as external positioning systems.
e.	 Accurate results: the location information provided can meet the application needs.

	 However, the security problem was less considered in the initial design of the IoT node 
localization system.  For a period of time, research on this domain has been concentrated 
on how to enhance localization accuracy and energy efficiency, while in fact, the lack of an 
effective security mechanism has become the principal restriction for IoT applications.  As the 
node localization system is the key service of IoT, an attacker may damage the effectiveness of 
the LoRa IoT application using the attack position information; thus, the security problem has 
gradually attracted attention.  To date, many security solutions for the localization system have 
been proposed, and these solutions can solve different security threats and support different 
applications, as they differ in localization principles, network facilities, security techniques, 
attack resistance, and space-time complexity.  

4.	 Research Method and Problem Analysis 

	 In this study, we use LoRa wireless transmission to solve various problems, such as short 
transmission distance.  LoRa is one of the LPWAN wireless transmission technologies, and 
its main advantages include low power consumption and LoRa, meaning one battery can 
sometimes supply power for a long time.  It is most suitable for the farming culture, which 
requires extensive monitoring.  As this test simulates a fish pond culture system, and the 
ordinary ZigBee is mainly for short-range wireless transmission, simple distance testing is 
performed on LoRa to determine its advantages in terms of transmission distance.  In this 
study, we use a remote mobile phone connection to operate a laboratory computer, where the 
signals are sent to the designed LoRa mobile transceiver for testing, as shown in Fig. 4(a).  
When the LoRa mobile transceiver receives data, the data displayed on the liquid crystal display 
(LCD) are immediately updated, and then the received confirmation message is fed back to 
the laboratory computer in order to ensure that the data are received and correctly fed back, 
and the LoRa transmission is carried out after the site of the received data is confirmed by the 
phone GPS positioning, as shown in Fig. 4(b).  Figure 4(c) uses the periphery map of the Chin-
Yi campus, as drawn by Google, where the yellow star indicates the E315 laboratory computer 
on the 3rd floor of the Chin-Yi Engineering Hall, i.e., the location of the LoRa receiving-
transmitting site.  The blue part is the area where the signals are easily received, which covers 
the entire Chin-Yi campus; the signals are good in this range, the sent data are correctly 
received, and the characters are fed back by both sides each time.  The yellow part is the area 
where the data are likely to be lost during testing, meaning that the mobile transceiver terminal 
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has received data, but the data cannot be correctly fed back to the laboratory computer terminal, 
or the data are received after a long time.  The red area is where none of the data has been 
received.  
 	 Figure 5 shows a map of a fish pond cultivation farm in Changhua County.  The blue block 
areas are the fish ponds, and the entire cultivation farm is about 450 m long and 400 m wide.  In 
this study, we assume that the cultivation farm is clear and obstacle-free, and the frameworks 
of ZigBee and LoRa networks are arranged while disregarding the sensing terminals, as shown 
in Figs. 6(a) and 6(b), where the red point is the coordinator, the green points are routers, and 
the dotted circles represent the signal coverage areas.  As the universal ZigBee transmission 
distance is about 100 m, the radius of the ZigBee transmission coverage is set as 100 m, and 
the entire cultivation farm can be covered provided that the radius of the LoRa transmission 
coverage area is larger than 222 m.  According to the aforesaid distance test, the LoRa 
transmission distance exceeded 222 m; thus, the cultivation farm can be covered, and even 

(a) (b)

(c)

Fig. 4.	 (Color online) (a) LoRa mobile transceiver. (b) LoRa mobile transceiver program flow. (c) Illustration of 
LoRa transmission.
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exceeded, by placing one coordinator.  The two maps show that the number of network nodes 
of ZigBee is much larger than that of LoRa; thus, the cost can be reduced by using a LoRa 
network.  

5.	 System Encryption and Decryption Process

	 Asymmetric encryption requires higher computational cost than symmetric encryption, 
while the sensor computing power and storage space are small, and it is not suitable for 
performing the asymmetric computation of many computations, such as the Rivest–Shamir–
Adleman (RSA) algorithm.(28)  This paper uses the Rabin asymmetric key encryption algorithm.(29)   
This algorithm is more in line with the low power consumption of the LoRa wireless sensing 
network.

Fig. 6.	 (Color online) (a) ZigBee network plan. (b) LoRa network plan.

Fig. 5.	 (Color online) Map of cultivation farm.

(a) (b)
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	 This article takes the application of the RoLa sensing network architecture as an example 
and applies the Rabin asymmetric key encryption algorithm to the node sensor to achieve the 
purpose of lightweight encryption.  After the sensor adds the plaintext to the confirmation data, 
the ciphertext is obtained by using the Rabin encryption, and then the ciphertext is divided into 
two packets and sent out, and decrypted on the server side.
	 When using the Rabin asymmetric key encryption algorithm, the longer the plaintext data is, 
the longer it will take to encrypt.  The encryption method is based on the formula

	 2 modC M N= .	 (2)

Here, C is the ciphertext, M is the plaintext, N is the public key, and N = P × Q.  P and Q 
are private keys, which are composed of prime numbers, and P mod 4 = 3, Q mod 4 = 3.  
The squared value of the plain text is divided by the value of the public key, and finally, the 
remainder is obtained.  This remainder is the ciphertext generated after encryption.  This 
study selected a private key of approximately 512 bits in size, resulting in a public key of 
approximately 1024 bits.  This setting is more suitable for information encryption of the sensor.
	 After the server receives the complete ciphertext C transmitted by the sensor, the four sets of 
plaintexts M1–M4 can be calculated by using the two private keys P and Q and the public key N.  
The decryption formula is as follows:

(i)

	 ( )1 /4
1 modPW C P+= 	 (3)

	 ( )1 /4
2 modPW P C P+= − 	 (4)

	 ( )1 /4
3 modQW C Q+= 	 (5)

	 ( )1 /4
4 modQW Q C Q+= − 	 (6)

(ii)

	 ( )1 moda Q Q P−= × 	 (7)

	 ( )1 modb P P Q−= × 	 (8)

(iii)

	 ( )1 1 3 mod M a W b W N= × + × 	 (9)
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	 ( )2 1 4 mod M a W b W N= × + × 	 (10)

	 ( )3 2 3 mod M a W b W N= × + × 	 (11)

	 ( )4 2 4 mod M a W b W N= × + × .	 (12)

Among {M1, M2, M3, M4}, only one solution is equal to the original M.
	 Due to the Rabin asymmetric key encryption algorithm, a ciphertext will be solved by 
four sets of plaintexts.  Therefore, when the correct plaintext is found, the original text can be 
added to the original text.  The method used in this article is to take a letter from the original 
plaintext as the comparison data and attach it to the original plaintext to form a new plaintext 
for encryption, as shown in Fig. 7.
	 In the same way, when the ciphertext is reduced to plaintext, the correct plaintext can 
be verified by comparing the data, as shown in Fig. 8.  If there are M letters in the original 
plaintext and N letters are selected for comparison, the probability of correcting the result of 
one or more plaintext verifications by this method is 10(M−N)/10M.  Therefore, the more data are 
selected, the lower the probability that the same clear text verification result will be the same.

6.	 System Architecture 

	 The positioning used in this project is based on the dynamic adjustment method.  We 
call this system the intelligent optimization positioning system.  RSSI is the foundation of 
our proposed method.  We will determine the basis of the deployment through the signal 

Fig. 7.	 (Color online) Adding confirmation data.

Fig. 8.	 (Color online) Verification of confirmation data.
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receiving strength and the packet reliability, so we will summarize and create new algorithms.  
The algorithm used is called Secure Information Based Multi-Sensors Fusion Computing 
Localization (SIBMSFCL).(30,31)  On this basis, using the predicted residual root mean square 
difference based on the minimum-security reference set, the remaining reference points 
are diagnosed one by one, which improves the ability of the positioning system to tolerate 
attacks.  When the packet of the sensing signal is transmitted by the network protocol, the 
positioning result is affected by the packet delay.  The algorithm diagnoses an abnormal point 
and calculates the number of tolerant attacks, and a positioning multisensing fusion computing 
service is present.  In the network protocol, as the packet delay affects the localization result, 
LoRa is selected for its lower delay probability than the traditional ZigBee packet transmission 
(10.5% < 34.6%) on the basis of the analysis of the LoRa IoT platform localization technique, 
network security, multisensor fusion computing, and low power consumption.  Thus, a low-
cost LoRa IoT secure localization multisensor fusion computing experiment platform with 
independent intellectual properties is designed, where the SaaS and PaaS application security 
is developed as the main multisensor fusion service for specific applications in order to design 
a new low-power-consumption and easily implemented secure sensor network localization 
algorithm, which is an important research subject of sensor networks at the present stage.  This 
secure localization system is substantially a cooperative mechanism for determining the spatial 
relationship of nodes according to the physical phenomenon of wireless communication, and 
its security implementation is confronted with huge challenges.  The security of a localization 
system depends to a great extent on the security service ability of the entire network system.  
Owing to the inherent weak points of LoRa IoT, including its open deployment and node 
resource constraints, the network cannot be completely trusted.  Regarding the broadcasting 
characteristics of radio, as the physical phenomena that localization depends on are likely 
to be tampered with, it is difficult for this traditional technology to withstand such external 
threats.  As localization information is naturally asymmetric, it is difficult to check whether the 
unknown node received the correct beacon.  Thus, the localization attack or anchor node trust 
is judged by itself.  Therefore, the localization system has been one of the outstanding security 
weaknesses of LoRa IoT.  
	 The overall system is divided into three parts according to the operational flow: a sensor 
terminal (wireless humidity, temperature, and infrared sensor terminal), the Raspberry Pi high-
level development platform (chip programming) function of MQTT, which is a multisensor 
fusion computing platform for secure localization calculation, and a network server host of 
the central monitoring system.  Figure 9 presents the system architecture.  Figure 10 shows 
the system circuit diagram.  Figure 11 presents the LoRa network and security mechanism 
calculation design and multisensor fusion computing platform construction.
 
7.	 Experimental Results and Analysis

7.1	 LoRa network topology and actual execution of localization

(a) Indoor localization experiment: The high based enhancements (HBE) values within 1 to 4 
m are measured by using the method proposed in Ref. 13, where each meter is measured 20 
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Fig. 9.	 (Color online) System architecture. 

Fig. 10.	 (Color online) System circuit diagram. 

Fig. 11.	 (Color online) LoRa network and security mechanism calculation design and multisensor fusion computing 
platform construction.
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times, the average is taken, and the line chart is made, as shown in Fig. 12.  The linear equation 
of HBE is calculated according to the figure, as expressed by Eq. (13), the measured RSSI is 
calculated using Eq. (14) to obtain the distance d1 affected by HBE, d1 is substituted in Eq. (13) 
to obtain HBE, and the distance d2 not affected by HBE is calculated using Eq. (15).  

	 1.166 1 2.334HBE d= − − 	 (13)

	 30 10 3.3219 log ( 1)RSSI d= − − × × 	 (14)

	 30 10 3.3219 log( 2)RSSI HBE d− = − − × × 	 (15)

	 The reference points are in the space for this experiment, as shown in Fig. 13.  The range of 
the experiment is 2 to 4 m, and the subjects compared are the first RSSI primal algorithm and 
the RSSI weighting method with the corrected propagation coefficient n under the HBE effect, 
as proposed by scholars in 2012.  The comparison results are shown in Table 2.  This experiment 
proves that the accuracy of the localization distance error correction algorithm is higher than 
that of the RSSI primal algorithm by 50%, and higher than that of the RSSI weighting method 
with the propagation coefficient n by about 8%.  
(b) Outdoor localization experiment: the HBE values from 10 to 50 m are measured using the 
method proposed in Ref. 13, where every 10 m is measured 30 times, the average is taken, 
the line chart is made, and the linear equation of HBE is calculated according to the chart, as 

Fig. 13.	 (Color online) Actual layout of reference 
points in laboratory class.

Fig. 12.	 (Color online) Relationship between HBE 
and distance within 1 to 4 m.

Table 2
Comparison between indoor localization distance error correction algorithm and other algorithms.

Actual distance
 (m)

RSSI primal algorithm 
(m)

RSSI weighting method with 
propagation coefficient (m)

Localization distance error
correction algorithm (m)

2 0.71 1.71 1.78
2.5 1.22 2.16 2.23
3 1.53 2.51 2.71
3.5 1.71 2.72 3.15
4 2.03 3.45 3.77
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expressed by Eq. (13).  The measured RSSI is calculated using Eq. (13) to obtain the distance d1 
affected by HBE, d1 is substituted in Eq. (13) to obtain HBE, and the distance d2 not influenced 
by HBE is calculated using Eq. (15).  Figure 14 shows the actual layout of the outdoor reference 
points.  Table 3 shows the comparison between outdoor localization distance error correction 
algorithm and other algorithms.

7.2	 LoRa network and security mechanism calculation design and multisensor fusion 
computing platform construction

	 The recovery time for correcting the error localization information is determined according 
to the number of reference points; the larger the number of reference points, the larger the 
number of counts.  However, the accuracy is better, as described in Table 4.  

Fig. 14.	 (Color online) Actual layout of outdoor reference points. 

Table 3
Comparison between outdoor localization distance error correction algorithm and other algorithms. 

Actual distance 
(m)

RSSI primal algorithm
 (m)

RSSI weighting method with 
propagation coefficient (m)

Localization distance error 
correction algorithm (m)

10 3.68 5.32 2.36
20 4.85 7.62 2.54
30 5.12 7.78 2.48
40 5.58 8.03 2.38
50 6.31 8.62 3.10

Table 4
Recovery time experiment.*

Number of reference points
3 4 5 6

Item
Number of error localizations 1 1 1–2 1–3
Accuracy (%) 88.3 91.1 95.8 96.1
Recovery time (s) 0.23 0.78 1.52 1.87

*The environmental conditions of all experiments are identical, but the number of reference localization points is varied.
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7.3	 LoRa IoT localization calculation using the design of Arduino UNO 

	 This project uses the SIBMSFCL algorithm to validate the effect of this localization 
algorithm, and the organization state of the nodes is dynamically and adaptively adjusted.  The 
comparison between the localization result of this algorithm and the GPS positioning result 
shows that the error is less than 5%.  In this project, we perform abnormality diagnosis on 
the basis of the predicted residual root-mean-square deviation of the security reference set in 
order to avoid (a) the covering phenomenon, i.e., failing to identify abnormal points, and (b) the 
flooding phenomenon, i.e., misidentifying normal points as abnormal points.  

7.4	 Jamming test for LoRa and other wireless communication frequency bands 

	 The interference source and experimental equipment of this project are tested using the same 
and multiple frequency bands.  When there is too much interference in the localization system 
operating frequency band, it is necessary to skip to another clean frequency band.  According 
to the experimental analysis of this project, when the RFID UHF starts working, the signal 
strength of the LoRa network is affected, meaning that it is slightly weakened, and the RSSI of 
the server side and client side changes and recovers its stability.  Thus, there is no packet loss, 
which is a characteristic of LoRa.  If the communication frequency bands are different, the other 
different wireless frequency band communications will not affect the signal intensity or packet 
transmission of LoRa communication.  Thus, the LoRa network is tested in a heterogeneous 
network environment and the LoRa-influencing network bandwidth is 915 MHz, which is an 
ultrahigh frequency; therefore, in an environment with other networks, e.g., a Zigbee network, 
the transmission efficiency is not affected, and there is no packet loss or packet collision.  LoRa 
wireless communication technology can use a multihop network to expand its monitoring range 
and reduce the arrangement costs.  If there is packet loss, the retransmission mechanism can be 
used to enhance the integrity of data, and the nonperiodic packet is sent for real-time reporting 
when an exception or a critical event is detected, meaning that the gateway can respond to the 
situation to completely analyze data.  
	 A new algorithm, called SIBMSFCL, is concluded and created, where the residual reference 
points are diagnosed one by one according to the predicted residual root-mean-square deviation 
of the minimum security reference set, in order to enhance the attack tolerance of a localization 
system.  The parameters of the SIBMSFCL equation can be estimated according to the known 
sample data.  Regarding the signal source of unknown coordinates, the unknown object location 
is calculated.  The steps are described below.  

 1.	A random coordinate point s is selected as the starting point as well as a fixed range ε.  
 2.	For six points along x, y, and z axes, and at a distance of ε units from s, the signal strength 

of various readers is estimated.  
3.	 The signal strength of each point, as well as the RMSE of the actual signal strength, is 

calculated.  
4.	 The point p with the minimum error is selected, and s is replaced by p.  
5.	 When s no longer changes, it is taken as the estimated location, and searching is stopped.  
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	 Experimental results: according to the RSSI data of the test sample, the location of the test 
sample is estimated by using the SIBMSFCL algorithm, the distance error to the actual location 
is calculated, and the error accumulation probability is shown in Fig. 15.  The localization 
accuracy of SIBMSFCL within 21 m is 99–100%, whereas the localization accuracy within 
32 m is about 85%.  In addition, as the interval between sampling points increases, the error 
increases slightly; thus, it is obvious that the effect of the sampling interval is slight, and there is 
no large difference within at least 50 m.  
	 Regarding reliability, as proposed by Kelly and coworkers,(32,33) the reliability of the LoRa 
system in this project is obtained by calculating the correct information content received by 
sensors, the number of lost packets, and the total number of packets from the terminal node 
to the coordinator.  In this study, according to the distance between the target and the system, 
under the condition of signal transmission reliability are 10, 30, and 50 m on a sunny day, 
50 m on a cloudy day, and 50 m on a rainy day, where the data are sent once per second, and 
reliability is rounded to two decimal places.  The experimental results of one day are shown 
in Table 5; the longer the transmission distance, the lower the packet reliability.  However, the 
reliability is relatively high within 30 m.  Equation 16 shows the formula used to obtain the 
percentage reliability.  

	 ( ) Received packet numberReliability % 100% 
Total number of packets

= × 	 (16)

Fig. 15.	 (Color online) Error accumulation probability of the SIBMSFCL algorithm. The environmental conditions 
of all experiments are identical, but the localization point distance is varied.

Table 5
Distance-based received packet reliability.*

Transmission distance (m)
Sunny 10 Sunny 30 Sunny 50 Cloudy day 50 Rainy day 50

Item

Total number of 
packets (pcs) 	 86394 	 84760 	 81843 	 66.672 	 43.210

Number of packets 
received (pcs) 	 84422 	 82466 	 77807 	 59.231 	 38.956

Number of packets 
lost (pcs) 	 1972 	 2294 	 4036 	 5823 	 7538

Reliability (%) 	 97.72 	 97.29 	 95.07 	 84.05 	 73.68
*The number of reference localization points is fixed for all experiments, but the environmental conditions are varied. 
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8.	 Conclusion and Future Work

	 In recent years, with the rapid development of network security, multisensor fusion 
computing, and LoRa technology, the localization system of a national security monitoring 
system has become a very important part of technology enhancement, and the various 
techniques applied to the LoRa wireless sensor security localization design are gradually 
attracting attention as their high potential for development is revealed.  Therefore, in recent 
years, many universities have studied automation engineering and communication technology 
domains in succession.  In terms of the development of traditional wireless sensor design 
systems, many experts and scholars have studied relevant localization calculations and obtained 
good outcomes.  However, in comparison with the development using network security, 
multisensor fusion computing, and LoRa technology to integrate traditional national security 
monitoring systems, there has been less effort devoted to input research, and this secure 
localization computing technology has an absolutely profound effect on the development 
of national security monitoring systems.  Therefore, the construction of a national security 
monitoring system using network security, multisensor fusion computing, and LoRa technology, 
as developed in this study, will have specific and substantive contributions.  In this project, 
we calculated packets and compared other improvement methods with ZigBee, and the results 
showed that reliability can be increased by about 30%, thus meeting the required unit system 
specifications.  The findings of this study will be adapted to a national security monitoring 
system platform with practical popularization values, and related results will be published in 
international journals.  
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