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	 Eyelid movement patterns are a key factor in the detection of fatigue, and in this study, 
electroencephalography (EEG) was used to record the brainwave patterns associated with eyelid 
movement in subjects during various stages of fatigue.  The three movements involved were no 
eyelid movement, closing the eye, and opening the eye.  The collected signals were processed 
using the wavelet transform (WT) to break down the EEG signal and obtain the main features.  
The support vector machine (SVM) and back propagation neural network (BPNN) were used to 
determine eyelid movement conditions.

1.	 Introduction

	 Fatigue is a normal physiological reaction that usually follows a strenuous exercise, intense 
mental exertion, or anxiety.  Fatigue is temporary and subsides with rest, even after a very 
intense activity or a panic attack.  Fatigue can be exacerbated by insufficient sleep, a heavy 
workload, or undue mental stress.  Driving a vehicle, when suffering from fatigue can be very 
dangerous and can cause traffic accidents that result in serious injury or death.  
	 The harm that can result from driving when fatigued can be very serious.  The state and  
degree of fatigue are closely related to eyelid movement, and in this study, physiological signals 
were collected to explore eyelid movement patterns.  Caton(1) detected potential differences in 
the cerebral cortex of animals using a galvanometer in 1875, and Berger(2) recorded the first 
electroencephalography (EEG) in 1931.  EEG equipment has now become very sophisticated, 
and emotional reactions(3) and concentration(4) in humans can be studied in some considerable 
detail,(5) and can even be used with game programs.(6)  Ramachandran and Sazali(7) induced 
emotions by vision and hearing, and analyzed them with much channel electro-encephalogram 
signals.  Chu et al.(8) collected EEG signals from schizophrenic patients, induced emotions 
by vision, and correlated the EEG signals with the level of illness.  Studies of concentration 
or attention using EEG signals are an important recent focus.  Morris et al.(9) investigated 
the salience of speech contrasts in noise, in relation to how listening attention affected scalp-
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recorded cortical responses.  Kim et al.(10) studied the EEG signals generated before an 
exercise in an attempt to classify the subjects’ intentions.  They discovered that the EEG signal 
generated during preparation for an exercise could control brain–machine interfaces (BMIs).  
Sestito et al.(11) used EEG signals to explore visual perception in pilots.  Abiri et al.(12) explored 
various EEGs and brain–computer interface (BCI) systems, and presented the advantages and 
disadvantages of various examples.  Chiang et al.(13) explored a detection model that enhances 
the attention of learning with EEGs; their results indicated that having a nap in the afternoon 
will enhance attention in a follow-up learning process.  Das et al.(14) used EEG signals to 
detect the cognitive ability of concentrated and focused attention and working memory.  When 
classified, the levels of attention were found to be 84 and 81%, respectively.  Chen et al.(15) 
decomposed an EEG into multiple bands using the wavelet packet transform (WPT) and used a 
combination of the likelihood of synchronization (SL) and the minimum spanning tree (MST) 
to evaluate the degree of drowsiness in vehicle drivers.  The results enhanced the k-nearest 
neighbors algorithm (KNN) classifier to 98.6%.  Khalaf et al.(16) used EEGs to explore different 
degrees of attention through auditory stimulation at 40 Hz.
	 Recent studies related to concentration or attention have used many different methods; 
one of the most frequently used methods has been the wavelet transform (WT).  Stankovic 
and Falkowski(17) proposed the WT analysis method, their main objective being to show 
results unavailable through the conventional Fourier transform (FT).  Mallat(18) introduced 
multiresolution analysis to wavelet analysis and constructed a wavelet function that could 
decompose and reconstruct a signal.  Daubechies(19) developed a hierarchically compact 
orthogonal wavelet, now known as the Daubechies wavelet, which is primarily applied in 
the discrete wavelet transform (DWT) and widely used for digital signal analysis, signal 
compression, and noise filtering.  Courmontagne et al.(20) used wavelet signals to solve the 
problem of noise in underwater acoustic signals.  Chen et al.(21) used EEG signals to explore 
the attention level and used DWT to decompose the signal and obtain information from each 
frequency band.  Belle et al.(22) used electrocardiogram (ECG) and EEG signals to analyze brain 
stimulation in the studies of attention, and also used DWT in processing the EEG signals.  Chen 
et al.(23) used the WPT to decompose an EEG signal into multiple frequency bands to evaluae 
the degree of drowsiness in vehicle drivers, and then used the phase lag index (PLI) to evaluate 
the information from each frequency band.  Hazarika et al.(24) also used DWT to decompose 
an EEG signal to each frequency band when investigating how long-term action video gaming 
modulates the neural processes of the inhibitory control mechanism.  Wang et al.(25) converted 
EEG signals to individual frequency bands using the WPT in a driver drowsiness investigation.  
Artificial neural networks (ANNs) are frequently used in machine learning and cognitive 
science; such mathematical models imitate the structure and function of biological neural 
networks.  At present, ANN technology is widely used in pattern recognition and classification, 
because it is robust and has good learning capability.
	 The ANN learning model and the study of EEG signals often include a back propagation 
neural network (BPNN),(26,27) a probabilistic neural network (PNN),(28) or a general regression 
neural network (GRNN).(29)  Such studies collect brain wave signals, select sample features, and 
then use a classifier to recognize eyelid motion.
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2.	 Methods

2.1	 Materials and experimental setup

	 In this study, a NeuroSky Mindwave headset, which uses a dry electrode, was used to collect 
EEG signals (Fig. 1).  The use of a dry electrode, as opposed to adhesive conductive electrodes, 
is less limited by the environment.  The sampling rate of this device is 512.  The measurement 
position is the left frontal lobe (Fp1) and the earlobe (A1) is used as the reference point (Fig. 2).
	 The learning procedure used was as follows: the subjects stood in front of the computer 
camera and opened and closed their eyes once per second, fifteen times.  The number of times 
of each opening and closing of the eyes was determined from the captured images and could 
be correlated with the brainwaves collected (for 128 data points) simultaneously.  The features 
for each frame were determined and classified.  Nine subjects took part in the experiments 
and the data from five, chosen at random, were used as training samples.  The features from 
the experiments with the remaining four subjects were used as test samples for the support 
vector machine (SVM) and BPNN, and their recognition rate was calculated separately.  The 
flow chart of collecting signals to recognition classification is shown in Fig. 3.  The hardware 
equipment and software configuration of the computer of this study are shown in Table 1.

2.2	 Signal analysis and feature calculation

	 The original signal collected by the EEG headset and PC program is in the time domain.  
This signal includes several different types of noise, increasing the difficulty in distinguishing 
the eyelid movement status.  Therefore, processing and analysis must be carried out to 
separate the feature from the original noisy signal.  The most common conversion method 
used FT, which focuses on filtering, or compressing the periodic signals, but for these noisy 
signals, it is not very effective.  However, WT, which primarily uses the mother wavelet, gives 

Fig. 1.	 (Color online) NeuroSky Mindwave headset. Fig. 2.	 (Color online) Location of electrode and 
reference point.
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rapid attenuation features of limited length to analyze the oscillating waveform signal.  The 
adjustment of the coefficient allows stretching and horizontal movement, and this makes up for 
the deficiency of FT.  WT can analyze both time domain and frequency domain signals.  The 
basic WT formula is 

	 ( ),
1 , 0a

tt a
aaτ

τψ ψ − =  > 
 

,	 (1)

where ψ(t) is the mother wavelet, 1
a

 is the normalization factor that maintains the wavelet 

orthogonal base, τ is the translation parameter, and 
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aa
τψ − 

 
 

 is the dilation of the mother 

wavelet.  Although a horizontal movement is achieved through (t − τ), different a and τ values 
will have different effects on the mother wavelet, as shown in Fig. 4.
	 DWT is the simplified form of the continuous wavelet transform (CWT).  Since CWT 
calculates the inner product at different times and scales of the mother wavelet, that will 

Fig. 3.	 (Color online) Flowchart: collection of signals, recognition, and classification.

Table 1
Computer hardware and software.
CPU Intel® Core™ i5-3210M
Memory DDR3 1600 16 GB
VGA NVIDIA GeForce GT 555M DDR3 3G
OS Windows 7 64-bit
Analysis software Matlab 2010a
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increase during calculation.  DWT sends the original signal through both high-pass and low-
pass filters in the wavelet and scaling functions, respectively.  The brainwave signal will be 
divided into an approximated signal and a detailed signal after passing the high-pass and low-
pass filters; the related equations are 

	 2
, ,[ ] 2 [2 ]

j
j

j k j kkt d t kϕ ϕ= −∑ ,	 (2)

	 2
, ,[ ] 2 [2 ]

j
j

j k j kkt c t kψ ψ= −∑ .	 (3)

	 Here, φ(t) is the wavelet function, ψ(t) is the scaling function, and dj and cj are the wavelet 
and scaling coefficients of the j layer, respectively.  In this study, the Daubechies(19) wavelet 
function is used for signal decomposition.  In Matlab, the Daubechies wavelet function is 
expressed in the form of dbA.  A is the vanishing moment of the Daubechies wavelet.  The 
db4 of the Daubechies wavelet family is used in this study.  Wave diagrams of the wavelet and 
scaling function waveforms are shown in Fig. 5.  The horizontal axis shows the time and the 
vertical axis shows the amplitude.  The Daubechies wavelet is mainly used for discrete wavelet 
conversion and frequently used in digital signal analysis
	 After the db4 WT, the corresponding frequency band of the original brainwave can be 
calculated as  

	 2 j s

p

Ff
N

 
=   

 
,	 (4)

where f is the upper limit of the frequency at level j, Fs is the sampling frequency, and Np is the 
number of input data points.  Assuming that the brainwave signal being read is XN(n), N is the 
Nth A5 frequency band data.  After capturing each frequency band via WT, the following can 
be derived: maximum, minimum, summation, range, standard deviation, and median absolute 
deviation.

Fig. 4.	 (Color online) Effect of different parameters on the mother wavelet. (a) Ψ(t), (b) Ψ(t/a), (c) Ψ(t − τ), and (d) 
Ψ((t −τ)/a).

(a) (b) (c) (d)
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2.3	 SVM

	 SVM is a method proposed by Vapnik(30) in 1999.  It solves many problems of classification 
and is very popular for machine learning.  SVM is a type of supervised learning network that 
can establish input and output planes (a hyperplane) in the training data and predict output 
results of the corresponding input data via the hyperplane.  SVM can be linear or nonlinear.  
Linear SVM finds a separating hyperplane from the input training data to maximize the margin 
of the two types of data.  The hyperplane can be distinguished by definition as :f x w b⋅ + .  If 
f is greater than 0, that piece of data is +1; if it is less than 0, it is classified as −1.  However, 
according to this type of classification, w and b will have infinite combinations.  The main 

(a) (b)

Fig. 5.	 (Color online) db4 wavelet function. (a) Diagram of wavelet function. (b) Diagram of scaling function.
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objective is to distinguish the hyperplane from the largest area to maximize the separation of 
data and use this method to reduce test errors effectively.  The conditions must satisfy

	 1 for 1i ix w b y⋅ + ≥ = + ,	 (11)

	 1 for 1i ix w b y⋅ + ≤ = − .	 (12)

	 Equations (11) and (12) can be combined into an inequality equation such as

	 ( ) 1 0i iy x w b⋅ + − ≥ .	 (13)

	 The distance 0x w b⋅ + =  can be calculated from Eqs. (11) and (12), where the distance 
is 1 w  and the boundary is 2 w .  To find the maximum boundary of the hyperplane, it is 
necessary to find the minimum w2 under the condition of Eq. (13).  Any xi that validates the 
equal sign is a support vector.  Lagrange optimization can be used to find the minimum 2w .  
The Lagrange function is expressed as 

	 ( ) ( )2
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	 In Eq. (14), αi is the Lagrange coefficient, and αi > 0.  The partial differentiation of w and b 
in Eq. (14) making it equal to 0 allows the identities of Eqs. (15) and (16) to be obtained.
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	 Substituting Eq. (15) into Eq. (14) can yield the dual form and transforms the problem from 
minimization to maximization as shown in Eq. (17).
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	 Then, by  the substitution of the optimal solution (w* ∙ b*) based on Karush–Kuhn–Tucker 
(KTT) conditions, Eq. (18) is obtained.  ai* must be greater than or equal to zero, and the result 
yi(wi* ∙ xi + b) − 1 must be equal to zero, as shown in Eq. (18).
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	 Equation (18) can be satisfied if xi exists.  xi is the vector that is closest to the optimization 
differentiation hyperplane, that is, if there is one xi’s ai* ≥ 0, it can be regarded as a support 
vector.  Finding a support vector is the same as finding the maximum boundary.  Finally, a 
function that classifies the problem can be generalized as
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	 When f(x) > 0, the classification of that piece of data is the same as the classification and 
label of the  data; if it is different, then it is in another category.  Another important point of 
SVM is the kernel function.  SVM can map the input dataset into the feature space using the 
kernel function.  Different kernel functions give different classifications.  The common kernel 
functions include linear, polynomial, radial basis function (RBF), and sigmoid.  In this study, 
the polynomial kernel function [Eq. (20)] was used for classification.

	 T( , ) ( 1)d
i j i jk x x x x= + 	 (20)

2.4	 BPNN

	 An ANN is a biomimetic neural network, which is connected by many artificial neurons 
to process calculation, and uses the transform function of the weighted input value product to 
represent the identity of the input and output values.  An artificial neuron model is shown in Fig. 6.
	 As shown in Fig. 6, the output value of the j unit in the nth layer is the nonlinear function of 
the output value of the n − 1 layer unit shown as

Fig. 6.	 Artificial neuron model.



Sensors and Materials, Vol. 32, No. 1 (2020)	 299

	 1

1
( )

n
n n n n
j j ij i j j

i
Y f net w Y f netθ−

=

 
= − =  

 
∑ .	 (21)

	 In the above formula, n
jnet  is the integrated function, while f is the transform function.

	 BPNN is the most common application and the current neural network leaning model.  
The model inputs features from the input layer, transmits the data to the hidden layer with 
an initial set weight, and transforms the input sum to the variables of the hidden layer via the 
transfer function.  During the process, the transform function is responsible for the summation 
and transformation of the input signals, and transmits the signals to the next layer.  The 
most commonly used transform function is the S-type, which has both forward and negative 
convergences.  The S-type transform function that was selected for use in this study is the 
hyperbolic tangent function shown as

	 ( )
j j

j j

net net

j net net
e ef net
e e

−

−
−

=
+

.	 (22)

	 The hidden layer can increase the complexity of the neural network by the simulation of 
many complex nonlinear relationships.  However, if there are too many hidden layers, the 
memorization of the data structure of the training group and the generation of the over fitting 
status are not a trivial matter for the neural network.  There will be further weight calculation 
and summation, from the hidden layer to the output layer, to enable hidden layer information to 
be transformed to output data.  After this, the error function is used to calculate the difference 
between the ideal output value and the output value calculated by the neural network.  The error 
function used in this study is the mean squared error (MSE) and is shown as

	 ( )2

1

1
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n

k k
k

E T Y
=

= −∑ ,	 (23)

where Tk is the target value of the output layer and Yk is the inference value of the output layer 
calculated by the neural network.  After the completion of the forward pass, backward pass 
is entered, pushes back from the output layer, and updates the weights to minimize the error 
function.  The learning process of the entire BPNN facilitates the minimization of the error 
function.  This usually employs the gradient steepest descent method to minimize the error 
function.  When a training sample is input, the weight in the network will be adjusted slightly.  
The sensitivity of the error function to the weighted value is proportional to the level of 
adjustment.  The equation of the weight is shown as

	 ij
ij

EW
w

η ∂
∆ = −

∂ .	 (24)

	 In Eq. (24), Wij is the weight between the ith processing unit of the n − 1 layer and the jth 
processing unit of the n layer.  η is the learning rate that controls the step size of the error 
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function and is minimized each time by using the steepest descent method.  After using the 
chain rate to expand ijE w∂ ∂ , Eq. (25) is obtained:

	
n n n
j j j

n n n
ij ij ijj j j

net A netE E E
w W Wnet A net
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	 Substituting the integrated function into Eq. (25) gives 
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	 Substituting Eq. (21) into Eq. (25) gives 
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	 If the nth layer is the final layer, then the substitution of Eq. (23) gives 
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	 If the nth layer is not the final layer, but one of the hidden layers of the network, then Eq. (29) 
can be derived as
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n
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A
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	 Finally, ijE w∂ ∂  can be written as the general equation 
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j i
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w

δ −∂
= − ⋅

∂
.	 (30)

	 In the above equation, 1n
iA −  is the output value of the lower layer of the processing unit 

connected by Wij.  n
jδ  is the difference volume of the processing unit at the upper layer 

connected by Wij.  If the processing unit at the upper layer connected by Wij is the output layer, 
then ( ) ( )n n

j j j jT Y f netδ ′= − ⋅ .  Substituting Eq. (30) into Eq. (24) gives

	 1n n
ij j iW Aη δ −∆ = ⋅ ⋅ .	 (31)
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	 The nonlinear transform function used in this study was a hyperbolic tangent function.  If 
we follow Eq. (27) to differentiate n

jnet  in Eq. (22), Eq. (32) can be derived as

	 ( ) 1 ( ) 1 ( )j j jf net f net f net   ′ = + ⋅ −    .	 (32)

	 The difference volume δ of the output layer can be derived by the steepest descent method as 

	 ( ) ( ) ( ) (1 ) (1 )j j j j j j j jT Y f net T Y Y Yδ ′= − ⋅ = − ⋅ + ⋅ − .	 (33)

	 Similarly, the equation for the change in the volume of the threshold θ is as shown as

	 n
jθ η δ∆ = − ⋅ .	 (34)

	 From the above derivations, it can be seen that every time there is a backward processing 
pass, the difference between the weight and the threshold can be obtained.  By gradually 
updating the weight and threshold, the error function can be converged.

3.	 Results and Discussion

	 The brainwave sampling rate used was 512 Hz, but the time taken by the action of opening 
and closing the eyes was found to be about 0.25.  To obtain the waveforms associated with the 
actual opening and closing eyelid movements, and avoid excessive signals from eyes that were 
not opening or closing, the number of inputs points was reduced to 128, as shown in Fig. 7.  The 
overlap was set to 78% (1−28/128 = 0.78), and only 28 pieces of brainwave data were updated at 
a time.  This prevented the horizontal distance between frames that captured a brainwave from 
becoming too large, which would cause recording failure.  The brainwave obtains the bandwidth 

(128)

(a) (b)
(128)

Fig. 7.	 (Color online) Brainwave signal waveforms: (a) Eyes closing. (b) Eyes opening.
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corresponding to the wavelet of each order and the brainwave frequency band corresponding to 
the frequency bandwidth via Eq. (4), as shown in Table 2.
	 The transformation of the original brainwave using a five-hierarchy WT allows various 
types of brainwave to be obtained and, in this study, the original brainwaves were decomposed 
to allow a search for a waveform that could be used as a basis for classification.  The results are 
shown in Fig. 8.
	 As can be seen in Fig. 8, the opening and closing of the eyes can be clearly distinguished in 
the A5 wavelet-transformed frequency band, which was chosen for classification in this study.

3.1	 Classification results of various feature combinations

	 The classification correction rate equations used in this study to analyze the above-captured 
frequency bands and select the features that could be used as the basis for major classification 
are shown below:

	 ( ) ( )     %    %
    

correct classificationCorrect rate of classification
Total number of classification data

= ,	 (35)

	 ( ) ( )       %    %
    
correct classificationAverage correct rate of classification

Frequncy of experment implementation
= .	 (36)

Table 2
db4 corresponding brainwave types after WT. 

Resolution (wavelet level) Frequency bandwidth (Hz) Associated brainwave
0 (A5) 0–4 Delta
1 (D5) 4–8 Theta
2 (D4) 8–16 Alpha
3 (D3) 16–32 Beta
4 (D2) 32–64 Gamma
5 (D1) 64–128 Noise

(a) (b)

Fig. 8.	 (Color online) Hierarchic WTs: (a) Eyes closing. (b) Eyes opening.
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	 Since the SVM and BPNN classifiers were used in this study, the experiments were 
performed separately in the feature selection section, and the features that offered good rates 
were used for subsequent experiments.  
	 Three different modes were used in the following correct classification rate tests. Test A, all 
the data were used for training and testing; Test B, half the data were used for training and all 
the data were used for testing; and Test C, half the data were used for training and the other half 
for testing.  The results of the three tests were then compared.
	 The signals of the A5 frequency band were used to calculate six features, namely, maximum, 
minimum, summation, range, standard deviation, and median absolute deviation.  All the 
features were input into SVM and BPNN, and the classification results are shown in Table 3.
	 The experimental results in Table 3 show that SVM and BPNN were stable to a certain 
extent and had good classification accuracy.  Both are suitable for the classification of brain 
waveforms.  The selection of features is detailed in the next section and more meaningful 
features were selected to improve recognition.

3.2	 Classification of features correction rate

	 In this part of the study, six features were classified as groups to compare the classification 
correction rate.  Each group had two features and the test method chosen was Test C.  Figure 9 
shows the separation hyperplane diagram drawn from SVM classification data using maximum 
and minimum values.  Table 4 shows the classification results obtained using SVM and BPNN 
in three groups covering the maximum and minimum, the summation and range, and the 

Fig. 9.	 (Color online) Separation hyperplane for two-feature input.

Table 3
Classification correction rate.

Test A Test B Test C
Training and testing
 number of data

Training sample 180 90 90
Test sample 180 180 90

SVM 97.22% 88.89% 82.22%
BPNN 93.33% 91.67% 88.89%
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standard deviation and median absolute deviation.  The results show that the classification 
correction rate is highest when maximum and minimum rates are used.  This is because the 
largest difference between the maximum and the minimum is observed for the closing and 
opening of eyes.
	 In this experiment, two features were classified as one group and SVM and BPNN 
classifications were used to correct the rate experiments.  When the number of input features 
was changed to three, the SVM separation hyperplane of SVM was also transformed into three-
dimensional (3D) space.  In Fig. 10, the x-axis is maximum, the y-axis is minimum, and the 
z-axis is summation.  The comparative experiments of the three features are organized and 
shown in Table 5.  The results show that the classification correction rates of maximum and 
minimum features are closely related and also related to the summation and range.  On the 
other hand, the results also show that the standard deviation and median absolute deviation will 
reduce the classification correction rate; hence, the classification of four features in the next 
group will focus on the maximum and minimum features, and group with other features to find 
the four features that provide the highest classification correction rate.
	 The classification correction rate results of the SVM and BPNN classifications that adopted 
four features are shown in Table 6.
	 The experimental data in this section show that when the maximum, minimum, summation, 
and range are defined as input features, although the classification correction rate of SVM 
remains at around 95.00% and does not increase, the classification correction rate of BPNN can 
go up to 98.33%, which is very close to the expected correction rate for the offline classification 
of this study.  Therefore, the follow-up online classification experiments used the maximum, 
minimum, summation, and range to go with BPNN to carry out the online classification 
correction rate experiment.

3.3	 Online real-time detection recognition results

	 The features finally used in this study were the maximum, minimum, summation, and 
range.  However, online real-time detection and recognition are not possible to confirm the 
data collection status and implement cutting by replaying the video clips.  Therefore, this 
experiment used 128 original data as signal cuts and captured 28 data each time for data update; 
this resulted in an overlap of 78%.  Each subject closed and opened their eyes 20 times, and the 
results of online classification are shown in Table 7.  We determined from the results that online 
real-time recognition had an average recognition rate of 85%.

Table 4
Classification correction of two features.
Feature Classifier Classification correction rate (%)

Maximum and minimum SVM 95.83
BPNN 95.00

Summation and range SVM 78.33
BPNN 83.33

Standard deviation and 
 median absolute deviation

SVM 53.33
BPNN 50.00
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Fig. 10.	 (Color online) Separation hyperplane for three-feature inputs.

Table 5
Three-feature input. 
Feature Classifier Classification correction rate (%)

Maximum, minimum, and summation SVM 95.83
BPNN 96.67

Minimum, summation, and range SVM 96.67
BPNN 96.67

Summation, standard deviation, and
 median absolute deviation

SVM 78.33
BPNN 82.5

Table 6
Four-feature correction rates.
Feature Classifier Classification correction rate (%)
Maximum, minimum, summation, and
 range

SVM 95.83
BPNN 98.33

Maximum, summation, range, and
 standard deviation

SVM 95.00
BPNN 95.00

Maximum, minimum, standard deviation,
 and median absolute deviation

SVM 93.33
BPNN 97.5

Table 7 
Statistical results of online real-time detection recognition.

Total data Number of correct classifications Classification correction rate (%)
Subject 1 40 37 92.5
Subject 2 40 36 90
Subject 3 40 30 75
Subject 4 40 34 85
Subject 5 40 33 82.5

Average recognition rate 85

4.	 Conclusions

	 In this study, we used single-point EEGs and focused on the closing and opening of the eyes 
of the subjects to analyze the level of fatigue.  The signal analysis methods used the signals in 
the A5 frequency band after WT.  After the capture of six features from the signals, SVM and 
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BPNN were used for training and analysis, and to determine the correlation between eye closing 
and opening.  Experimental results showed that the calculation method using four features 
(maximum, minimum, summation, and range) was suitable for recognizing eye closing and 
opening movements, and that the maximum and minimum features were the most relevant in 
this respect.  In the offline case, the recognition rate was up to 98.33%, and the average online 
recognition rate reached 85%.  It is expected that these results will contribute to studies related 
to driving safety in the future.
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