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Image dehazing is a crucial technique in the study of computer vision. The most widely
used image dehazing approach is the dark channel prior (DCP) method proposed by He et al.
[IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 2341]. Because a DCP-based method
generates halo artifacts under certain conditions, this study aims to solve this problem and
propose a DCP-based method that uses a mask with an adaptive size. The proposed method
is based on the inverse ratio of the gradient of a hazy image and calculates the corresponding
mask size. A small mask size is used for regions with a large gradient to solve the halo problem
and a large mask size is used for regions with a small gradient to achieve the dehazing effect.
Subsequently, the gradient was smoothened and the y function was corrected using a Gaussian
filter to obtain a more favorable nonlinear relationship. Finally, the ant colony optimization
(ACO) algorithm was employed to determine the optimal parameters for the Gaussian filter and
y function. A new dehazing performance index (DPI) was also proposed in this study as the
cost function for the ACO algorithm. The experimental results of this study verified that the
proposed method can effectively minimize the effect of halo artifacts without compromising the
dehazing performance and color distortion.

1. Introduction

Smog is a natural phenomenon commonly found in everyday life. A smog-affected
environment is characterized by reduced visibility because the fog, haze, water vapor, and
suspended particles in the air cause the scattering of light. A hazy image not only affects
visibility but also reduces the effectiveness of image processing, making image dehazing a
crucial technique in the study of computer vision. Analyzing the composition of hazy images
is the primary task of image dehazing. The earliest image degradation model was proposed
by McCartney in 1977, who described the criteria constituting a hazy image and the image
degradation process.” This model has been extensively applied in computer vision and
image processing. Image degradation is caused by direct and indirect attenuations.”” Direct

attenuation refers to the process in which light reflected on the surface of an object decays in an
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atmospheric medium. Indirect attenuation refers to the degradation phenomenon caused by the
scattering of atmospheric light through an atmospheric medium. Thus, the haze image model
consisting of direct and indirect attenuations is defined as

I(xa )/) = J(xa )/) t(xa )’) +A[1 - [(X, y)]’ (1)

where /(x, y) represents a haze image; the product of haze-free image J(x, y) multiplied by
transmission #(x, y) represents direct attenuation; the product of global atmospheric light
intensity A multiplied by the complement of transmission 1 — #(x, y) represents indirect
attenuation; and (x, y) represents any arbitrary position in an image. To dehaze an image, Eq. (1)
can be rewritten as

Ty =t@en =4 @)
1(x,y)

According to Eq. (2), the success of image dehazing lies in the estimation of transmission #(x, y)
and atmospheric light A. Because estimating the transmission rate is difficult, image dehazing
methods mostly rely on certain prior knowledge to form a hypothesis about haze or multiple
images to estimate the mapping relationships between haze and haze-free images. The present
study focused on the method of using prior knowledge to form a hypothesis regarding haze
images.

Numerous priori-based methods have been proposed. Tan developed a method of dehazing
single images using the Markov Random Field (MRF).(Z) This method involves estimating
the atmospheric light and light chromaticity of an input image and computing the data cost
from the contrast of a small patch cropped from an image as well as the smoothness cost to
construct a complete MRF, which is then used to estimate the direct attenuation of the image.
Subsequently, the image contrast and scene visibility are enhanced, thereby dehazing the image.
Shiau et al. proposed a weighted haze removal method with halo prevention.(3) In this method,
Shiau et al. developed a novel different prior that can mitigate the halo artifact problem around
sharp edges during scene transmission estimation. This method can automatically detect
halo artifacts in images of different haze scenes and adopts a weighted technique to mitigate
the effect of halo artifacts induced by haze removal. Zhu et al. developed a color attenuation
prior for haze removal from a single hazy image.¥ This prior knowledge can facilitate the
establishment of scene depth and a linear model for hazy images. With a supervised learning
method, the parameters of the linear model can effectively establish the relationship between
hazy images and a corresponding depth map. Berman et al. proposed a nonlocal image
dehazing method and found that hazy images contain a line in RGB space, which was called
a haze line.)) Per-pixel transmission can be estimated by modeling pixels of similar colors
along a haze line located over different image planes and a combination of radiance and airlight
colors. Cai et al. proposed DehazeNet, an end-to-end single image haze removal method based
on convolutional neural networks (CNNs).®) DehazeNet adopts CNN-based deep architecture
with layers specifically designed to embody the prior assumptions of other image dehazing
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methods. It directly learns the mapping relationships between hazy images, and parameters of
all its layers in the network can be automatically learned from training hazy images. DehazeNet
takes a hazy image as input and outputs its medium transmission to recover a haze-free image.
He et al. proposed the use of dark channel prior (DCP) to remove haze from a single image.m
This prior knowledge is based on the observation that nonsky or nonwhite regions of an object
contain an extremely low intensity in the RGB components of an image patch. Hence, the
assumption of the method is based on this observation to estimate the transmission of hazy
images. He ef al. further used a guided image filter to refine transmission maps and improve
the original method on the basis of soft matting time consumption problems, and obtained more
favorable results.®)

The DCP image haze removal method proposed by He et al."®
discussed and widely used for comparison with the aforementioned prior knowledge methods.
Although the dehazing effect of the DCP method has attracted considerable attention, it still
has flaws in various aspects. A number of improvements have been proposed to overcome the

is more extensively
9-15)

deficiencies of the DCP-based image haze removal method. Yang et al. proposed a DCP-based
low-complexity underwater image enhancement method, which employs a color correction
method to enhance the color contrast of an object, thereby improving the visual quality.”)
Li et al. developed a content-adaptive and post-enhancement image dehazing method, which
considers dark areas to overcome overly saturated results and employs dark channel confidence
to avoid artificial defects.!” This enhancement method enhances the restored image and
simultaneously retains the contrast ratio. Hsieh e al. used minimum filter to estimate dark
channels and employed an adaptive scaling factor to compensate for dark channels.'V Provided
that soft matting is not used, the proposed method reduces the calculation cost and yields more
favorable results in terms of color saturation than the DCP-based method. Shi ef al. considered
changes in attenuation coefficients, proposing a DCP-based inhomogeneous atmosphere optimal
model for the adjustment of scene transmission.'? This method can effectively overcome
the color distortion in sky regions. Bi et al. proposed a method for the accurate estimation of
transmission in the atmospheric scattering model based on outdoor haze-free and haze images.m)
The proposed method can obtain high-quality haze-free images with abundant distinguished
details. Chen et al. established an image dehazing method that maintains color fidelity.(14) The
Sobel operator is used to detect edges and improve transmission, and the piecewise function
is adopted to eliminate color distortion in bright regions. Their experimental results revealed
that the proposed method effectively enhances the image quality. Ma et al. proposed a fast
video dehazing method that combines DCP and atmospheric scattering model.'> The method
can obtain favorable results in terms of processing efficiency and visual quality. Yu ef al.
proposed a block-to-pixel interpolation method for fine dark channel computation.(l6) In this
method, block-level dark channels are first calculated and then transmission maps are generated
by obtaining a fine pixel-level dark channel through the weighted voting of a block-level dark
channel. Their experiments showed that the proposed method can increase the efficiency
of haze removal and improves the quality of recovered images. Chengtao et al. developed
a DCP dehazing approach using an adaptive factor.!” In this approach, hazy images are
segmented into sky and nonsky regions, and the intensity of light and transmission can be
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obtained by considering different factors. Compared with the conventional DCP technique, the
proposed method generates dehazed images with fewer color distortions. Li ef al. proposed a
sky segmentation prior and adaptive channel balancing method, which analyzes the physical
meaning of atmospheric light and estimates appropriate atmospheric light values.!"Y  The
proposed method can overcome the problem that images cannot be adopted dynamically.
Li et al’s results show that their method is more accurate than the previously proposed methods.

In the aforementioned methods, several authors used color correction to enhance image
contrast, while other authors employed minimum filter to prevent halo artifact formation. A
few authors adjusted transmission by using models to prevent image distortion. All the DCP-
based methods facilitate in enhancing the image quality and improving the dehazing quality
of DCPs under certain conditions. While summarizing the problems associated with the
aforementioned DCP-based techniques, this study identified two deficiencies that easily occur
in DCP-based methods: First, in a DCP-based calculation process, transmission is overestimated
in regions with scene depth discontinuity, causing the generation of halo artifacts on dehazed
images. Second, in the process of haze removal, overexposure easily occurs in sky or white
regions of the image. Hence, this study was focused on identifying a solution to mitigate the
halo artifact problem.

When implementing a DCP-based dehazing method, this study found strengths and
weaknesses in using large (e.g., 15 x 15 pixel)” and small (e.g., 1 x 1 pixel) mask sizes to
estimate dark channels. Figure 1 illustrates an example. Figure 1(a) shows the original image
and Figs. 1(b) and 1(c) present the dehazed images using 15 x 15 and 1 x 1 DCPs, respectively.

(b)

(© (d)

Fig. 1. (Color online) Dehazed images with different DCP mask sizes: (a) original image, (b) dehazed image using
15 x 15 DCP, (c) dehazed image using 1 x 1 DCP, and (d) gradient image of the original image.
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Figure 1(b) shows an overall favorable dehazing performance; however, dark channels with
scene depth discontinuity are underestimated [as shown by the square block in Fig. 1(b)], which
causes the generation of halo artifacts on the dehazed image. By contrast, the underestimation
of dark channels with scene depth discontinuity is resolved in Fig. 1(c); however, the dehazed
image lost its natural color and color contrast [as shown by the square block in Fig. 1(c)]. In
conclusion, although favorable dehazing performance is achieved from using a large mask size,
the underestimation of dark channels intensifies the halo effect. As the mask size is diminished,
the halo artifact problem is mitigated, but the dehazing performance drops, resulting in marked
color differences. Because using different mask sizes has its strengths and weaknesses, this
study attempted to combine the strengths of different mask sizes.

To do this, dehazed images were examined. According to Fig. 1(b), halo artifacts were found
on tree branches and leaves in the dehazed image. This is because the scene depth of the tree
leaves differed significantly from the background, causing the underestimation of dark channels
in this region. This study also showed that patches of the image with scene depth discontinuity
generally have a larger image gradient [as shown in Fig. 1(d)]; therefore, the inverse ratio of
image gradient was used as the basis for mask size estimation. Thus, a dehazing method
based on a DCP with an adaptive mask size (hereinafter referred to as ADCP) is proposed.
For regions where halo artifacts are not easily generated, a large mask size is used to estimate
dark channels while maintaining favorable dehazing performance. By contrast, a small mask
size is used to estimate dark channels in regions where halo artifacts are easily generated, thus
inhibiting the formation of halo artifacts on dehazed images. Subsequently, the y function was
corrected using a Gaussian filter to obtain a more favorable nonlinear relationship. Finally, the
ant colony optimization (ACO) algorithm was employed to determine the optimal parameters for
the Gaussian filter and y function. The ACO algorithm is modeled on the basis of the process
by which ants find food and lay down pheromones to seek the optimal path. The algorithm is
applicable to solving path planning optimization problems. Therefore, in this study, the process
of searching for optimal parameters as an optimal path searching problem was adopted. In
addition, a new dehazing performance index (DPI) was established as the cost function of the
ACO algorithm and used to evaluate image dehazing results based on the parameter search of
ACO. The experimental results of this study verified that the proposed method can effectively
mitigate the effect of halo artifacts generated by a DCP-based dehazing method without
compromising the dehazing performance.

This paper comprises five sections. Section 1 provides an introduction to the haze image
model, literature review, and research objective. Section 2 introduces the DCP-based single
image dehazing method and procedures. Section 3 describes the proposed ADCP-based single
image dehazing method. Section 4 presents the experimental results and discussion in which
the results are qualitatively and quantitatively evaluated. Finally, Sect. 5 concludes the study.

2. Dehazing Method Based on DCP

He et al. proposed the use of DCP to remove haze from a single image.”) The statistical
processing of multiple haze-free color images based on prior knowledge shows that nonsky or
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nonwhite regions of an object contain an extremely low or close to zero intensity in the RGB
components of an image patch. Hence, He et al. used this observation as the assumption of
their proposed method and estimated the dark channels of hazy images using constant pixel
numbers and patch sizes. Subsequently, they generated transmission maps and recovered haze-
free images. The workflow of the DCP-based image dehazing method is described below:

Step 1: A dark channel is calculated using constant-sized mask Q(x, y):

JU®(x,»)= min [ min (Ic(u,v))}, 3)
(u,)eQ(x,y)| ce{R,G,B}

where [ .(u, v) represents the RGB components of the input image and Q(x, y) represents the
range of mask centered at (x, y).

Step 2: Atmospheric light value 4 is estimated on the basis of Jdark (x,y). The pixel value of
the input image corresponding to the top 0.1% brightest pixels in the dark channel Jdark (x,y)1s
the atmospheric light estimate.

Step 3: A dark channel is estimated as

. I
Jk(x, )= min { min [ C(fl’v)ﬂ : @)
(u,v)eQ(x,y)| ce{R,G,B} Ac
Step 4: An estimated transmission map is obtained as
i(xy)=1-0xJ" (x,y), 5)

where @ represents a constant parameter that ranges from 0 to 1 and is used to regulate the
estimate error resulting from the effect of haze on a real dark channel.
Step 5: A guided filter® is used to refine the estimated transmission map:

{(x,y)= GIF(I(x,y), f(x,y),Ngl-f, 8), ©6)

where GIF( ) represents the guided filter function® and I(x, y) represents the hazy image used
to guide the estimated transmission map. Refining the map by using a guided filter can prevent
the effect of patches on the estimated transmission map, thus yielding a refined transmission
map 7(x,y), where Ngir = 20 is the size of the filter and & = 0.001, which is the smoothness
parameter.

Step 6: A haze-free image is estimated as

I.(x, —;lc
()= L)

- k +4.,ce{R,G,B 7
max [ 7(x, ), 1o | . 7

where ty represents the lower bound of transmission to prevent zero denominator in Eq. (7).
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3. Dehazing Method Based on DCP with Adaptive Mask Size

This chapter introduces the method proposed in this study as well as the estimation of the
adaptive mask size and optimized parameters using the ACO algorithm.

3.1 Estimation of the adaptive mask size

As mentioned above, using a large or small mask size to estimate dark channels has its
advantages and disadvantages. Hence, in this study, ADCP, which is based on the inverse ratio
of the gradient of a hazy image, is proposed. In the estimation of dark channels, the mask
size varies in different scenarios. For example, a small mask size is used for regions with a
large gradient, and a large mask size is used for regions with a small gradient. Therefore, the
adaptive mask size is defined as

M(x,y)= {N(l —G(x, y))}/J 1, @®)

where G(x, y) represents the gray-scale gradient of the input image, (x, ) represents any
coordinate in the image, and G(x, y) is normalized from 0 to 1; y represents the amount of
nonlinear correction; and N represents the upper bound of mask size. Because pixel is a unit of
mask size, the adaptive mask size ranges from integer 1 to N+ 1. G(x, y) is calculated using the
Sobel operator, which calculates the image edge. The convolution algorithm is performed on
the gray-scale values of the input image by using two 3 X 3 masks, subsequently obtaining the
horizontal and vertical gray-scale gradients Gy(x, y) and G,(x, y), respectively, shown as

1 0 -1

Gx(xay): 2.0 -2 X[gray(x:y), &)
I 0 -1
1 2 1

Gy(x’y)= 0 0 0 X]gray(xay), (10)
-1 -2 -1

where Iy,q,(x, y) represents the gray-scale image of the input image. Integrating Gi(x, ) and G,(x, y)
yields the gray-scale gradient of each pixel point (x, y) as

G(x,3) =[G, (x.0)* + G (x.3)* ()

In calculating the dark channels, this study found that a small mask size was used for large-
gradient pixels and, therefore, the corresponding dark channel was not underestimated.
However, the pixels neighboring those with a large gradient have a small gradient, causing
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the corresponding dark channel to be underestimated. Hence, a Gaussian filter was used to
smoothen the image gradient so that the gradient of regions on the image where the gradient
varies considerably (high frequency) is smoothened without affecting the gradient of regions
with a small gradient variation (low frequency). However, the Gaussian filter size and standard
deviation also affect the determination of the dark channel mask size, which also indirectly
affects the final quality of the dehazed image.

Figure 2 shows the graph of gradients with different y values and the corresponding mask
size. When y = 1, the curves are linear and inversely proportional to each other, indicating
that the larger the gradient, the smaller the corresponding mask size, and the smaller the
gradient, the larger the corresponding mask size. The corresponding curves vary according
to y, indicating that y is an adjustable parameter used to correct nonlinear function relations.
Thus, adaptive mask size M(x, y) was used instead to calculate the constant mask size of dark
channels, and Eq. (4) for dark channel calculation was rewritten as

Jrk (x,y)=  min min (I (u, . 12
M5 (5 ) (u,v)eM(x,y)[ce{R,G,B}( o V))} (12)

To further describe the aforementioned method, an example of one-dimensional (1D)
simulation data is provided in Fig. 3, in which Fig. 3(a) shows 1D gray-scale values. A
significant change in gray-scale value was found at pixel indices 45 and 95. The results of
using a 1 x 15 pixel mask to estimate dark channels are shown in Fig. 3(b), which reveals the
underestimation of dark channels on the right of pixel index 45 and on the left of pixel index 95.
Such underestimation results in the generation of halo artifacts in dehazed images; therefore,
the aforementioned adaptive mask size method was employed. First, the 1D gray-scale gradient
was calculated and smoothened using the Gaussian filter. The results are shown in Fig. 3(c),
which reveals two larger gradients at pixel indices 45 and 95. A larger and smooth gradient
was also found near pixel indices 45 and 95. Subsequently, the smooth gradient in Fig. 3(c) was

0 01 02 03 04 05 06 07 08 09 1 G(xy)

Fig. 2. (Color online) Graph of gradients with different y values and corresponding mask size (N = 14).
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Fig. 3.  (Color online) Example of 1D data on (a) 1D gray-scale values, (b) dark channel with 1 x 15 pixel mask, (c)
smoothened gradient, (d) adaptive mask size, and (¢) adaptive dark channel.

incorporated into Eq. (8) to calculate the corresponding adaptive mask size, as indicated in Fig.
3(d): the large gradient corresponds to the small mask size and the small gradient corresponds to
the large mask size. Hence, the larger gradient found near pixel indices 45 and 95 corresponds
to a smaller mask size in Fig. 3(d). Finally, the adaptive mask size was used to calculate the 1D
gray-scale dark channel. The results are illustrated in Fig. 3(e). Compared with Fig. 3(b), Fig.
3(e) shows improvement in the underestimation of dark channels on the right of pixel index 45
and on the left of pixel index 95.
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3.2 Estimation of optimized parameters using ACO algorithm

In estimating the aforementioned adaptive mask, adjusting the size g, of the Gaussian filter
for gradient smoothening, the standard deviation g,, and the amount of nonlinear correction,
y, can yield improved dehazing performance. This study employed the ACO algorithm®
to determine the optimal parameters. ACO is based on the foodseeking behaviors of ant
colonies. When searching for food, ants lay down pheromone trails as they return to their
colony. Other ants will follow the pheromone trail. When more ants travel back and forth
from the food source to their colony, the pheromone density becomes higher on short paths
than on long ones, and positive feedback eventually leads to many ants following the shortest
path. The ACO algorithm is applied to combinatorial optimization problems (e.g., travelling
salesman, quadratic assignment, and job-shop scheduling problems) in a discrete space. The

parameters g, g5, and y were configured for path selection. Plans are shown in Fig. 4, where

the range of g is assumed to be g, € {xll,xé,---,x},---x}vl} with N} being the number of g, the

range of g, is g, € {x12 ,x% ,---,sz-,---x,z\,2} with N, being the number of g, and the range of y is
ye {x13 ,xg,'--,x,i,-nx?v}} with N3 being the number of y. In an ant colony, any ant will choose

a path. Therefore, a set of parameters can be obtained as (g, g5, ¥) = (x} ) Xf, Xi ). As shown

in Fig. 4, different combinations of path parameters generate different dehazing results, which
are evaluated using an objective function (i.e., DPI). Finally, the pheromone deposited along the
path of the optimal parameter combination is corrected and left for use by the next iteration of
the ACO algorithm. See Ref. 21 for details on the algorithm.

3.3 Using the dehazing method based on ADCP
The section introduces the complete method of removing haze using the proposed ADCP.
Figure 5 presents the workflow of the ADCP-based dehazing method, which details the

aforementioned procedures. The gray-filled square block shows the improvements made to the
DCP-based method.

Colony

oNololel
oNololel
oNololo}

Fig. 4. Schematic diagram of ACO parameter path configuration.
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Fig. 5. ADCP-based dehazing process.

Figure 6 shows an example of image dehazing using the proposed ADCP. Figure 6(a) shows
the original image. Figure 6(b) shows the dark channels estimated using the constant mask
size (15 x 15). Figure 6(c) shows the dark channels estimated using the adaptive mask size. A
comparison of the figure diagrams shows that in Fig. 6(b), the dark channel in the region with
scene depth discontinuity was underestimated, resulting in the generation of halo artifacts on
the dehazed image. As shown around the tree leaves in Fig. 6(d), the method proposed in this
study can effectively prevent the formation of a large portion of halo artifacts. Figure 6(¢)
presents the image dehazing result.

4. Results and Discussion

To verify the effectiveness of the proposed study, qualitative and quantitative assessments
were performed. This section first describes the DPI used in this study and then outlines the
two experiments conducted on the benchmark images. The first experiment involved the use
of a constant parameter in ADCP, and the second experiment involved the use of the ACO
algorithm to determine optimized parameters. Subsequently, dehazing results are compared
with those of a DCP-based dehazing method. The MATLAB R2017a program and Windows 10
operating system were employed.

4.1 DPI

To quantitatively assess the image dehazing effect, an appropriate DPI is required. Two
types of DPI are introduced in this section. First, Hautiére et al. proposed the rate of new
visible edge, DPIp.(lg) Because the effect of haze is absent in a dehazed image, a dehazed image
will contain more details than a pre-dehazed image. Therefore, DPI, is defined as

n,—n,

DPI, ==——= (13)

o
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d T ©

Fig. 6.  (Color online) Estimation of dark channels using adaptive mask size: (a) image of a brick house, (b) dark
channel estimated using constant mask size, (c) dark channel estimated using adaptive mask size, (d) dehazing
result of dark channels using constant mask size, and (e) dehazing result of ADCP-based method.

where 7, and 1, represent the numbers of edges in dehazed and hazy images, respectively. The
larger the DPI,, the stronger the dehazing effect. However, this DPI has an obvious problem,
that is, it does not consider the effect of distortion of a dehazed image.

Second, Hsich er al.?? proposed a new two-objective DPI, termed DPI;, which takes into
consideration the image dehazing intensity u and post-dehazing image distortion e and is
defined as

DPI; = \/w,uz +(1- w)e2 ) (14)

where w represents the weight coefficient, which ranges from 0 to 1, and is used to balance the
weight of the image dehazing intensity x4 and post-dehazing image distortion e. Hsieh et al.
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suggested setting w to 0.64 to ensure a favorable visual quality and a stronger dehazing effect.
The smaller the DPI;, the stronger the dehazing effect. The dehazing intensity x4 and image
distortion e are defined as

1 x=dim,, y=dim
ydark
pm——— Y Jr (), (15)
dim, x dim,, el
e =\|MSE(I,J )+ MSE(Ig,J )+ MSE(I 3, ) . (16)
where dim, and dim, represent the width and height of an image, respectively; J 44k, )

represents the dark channel; MSE( ) represents the calculated mean squared error function; /g,
Ig, and Ip are the RGB channels of the input image; and J R J G and J p are the RGB channels
of the dehazed image. Hsieh et al®” hypothesized that the mean of dark channels in a dehazed
image is smaller than that in a hazy image. To avoid color distortion, the mean squared error of
RGB components in dehazed and hazy images must not differ significantly. Finally, Hsieh et al.
combined their two performance indicators according to the weight ratio and determined weight
appropriately. However, the experimental results showed that the mean squared error of RGB
components in dehazed and hazy images differed considerably, and that this difference was
not entirely caused by color distortion. The present study showed that in the hue, saturation,
value (HSV) color space, the hazy image is less saturated and brighter than the dehazed image,
leading to a large mean squared error between the RGB components in the dehazed and hazy
images. Furthermore, hazy and dehazed images have similar hues, suggesting a conflicting
phenomenon: for a strong dehazing effect, a large image distortion e is inevitable, but the mean
squared error of RGB components in dehazed and hazy images cannot differ significantly in
order to prevent color distortion. Therefore, for this study, Hsieh et al.’s DPI image distortion e
was modified into the mean squared error of the hue channel, DPI;, which is defined as

where

e=+MSE(I;;,J ) - (18)

Iy and Jy represent the hues of hazy and dehazed images, respectively. Therefore, the smaller
the DPI);, the stronger the dehazing effect. The weight w was set to 0.64 as recommended by
Hsieh et al.

4.2 Experiment 1: results of ADCP based image dehazing using a constant parameter

In the experiment, ADCP was a constant parameter. By experience, the size of a Gaussian
filter for ADCP was set to 11 x 11, the standard deviation g, of the Gaussian filter was 10,
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and the amount of correction, y, was 2. Subsequently, the ADCP- and DCP-based dehazing
results were compared qualitatively and quantitatively. Experimental testing was performed on
common images, such as a forest, a brick house, a paddy, sakura trees, mountain, groves, and a
highway.

Figure 7 presents the ADCP- and DCP-based dehazing results. The second column of the
diagram contains the original hazy images; the third column comprises images following DCP-
based dehazing; and the column furthest to the right contains images processed by ADCP-
based dehazing. According to Fig. 7, pronounced halo artifacts were found in the following
locations after the images were dehazed using DCP: near the treetop (forest), the area with depth
discontinuity (brick house), around the tree branch (Sakura), the area with depth discontinuity

Constant parameter
ADCP
e

Images Haze images

DCP[7]

Forest

Brick house

Paddy

Sakura

Mountain

Grove

Highway

Fig. 7. (Color online) Comparison of image dehazing results in Experiment 1.
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(mountain), and the area around vehicles and motorcycles (highway). These artifacts were
caused by the underestimation of dark channels in areas with depth discontinuity. Nevertheless,
using ADCP can effectively mitigate the halo artifacts generated after dehazing so that images
appear clearer. In addition, the paddy images show that compared with the DCP-processed
image, the ADCP-processed image is more saturated in color. The ADCP-based dehazing
method can also eliminate the haze between tree groves, thereby rendering a clearer view.

Table 1 shows the DPI results based on Fig. 7. The second and third columns are the
evaluation results of DPI, and reveal that in most situations, using the ADCP-based method
yields more satisfactory results. Thus, the proposed method exhibits more favorable dehazing
performance and can remove most of the haze effect, thereby revealing more edge information.
The fourth and fifth columns are the evaluation results of DPI;;,. The result of using the
ADCP-based dehazing method was superior to that of using the DCP-based dehazing method,
suggesting that the proposed method not only performs well in haze removal but also effectively
prevents color distortion that would otherwise occur after image dehazing.

4.3 Experiment 2: results of ADCP-based image dehazing using optimized parameters

The second experiment involved using the optimized parameters of ADCP obtained using
the ACO®Y algorithm. The size of the Gaussian filter was set to g, €[7,9,11,---,25], the
standard deviation of the Gaussian filter to g €[1,2,3,---,10], and the amount of correction to
7 €[0.6,0.65,0.7,---,3]. The numbers of ant colonies and iterations were set to 30. The objective
function was DPI,. Experimental testing was performed on images of a street, a cityscape,
Tiananmen, a train, a woman, a railway, and a parking lot. Table 2 shows the optimized
parameters obtained for the different images.

In Fig. 8, the first column shows the hazy image, the second column presents the images
dehazed using DCP, the third column shows the images dehazed using ADCP with a constant
parameter (parameter setting was the same as that of Experiment 1), and the last column
provides images dehazed using ADCP with an ACO-optimized parameter. Images in the
second column show that halo artifacts were formed around the vehicles in the street image, at
the edge of tree leaves in the cityscape image, at the edge of buildings in the Tiananmen image,

Table 1
Comparison of DPI results for dehazed images in Experiment 1.
Methods
DPI, DPI;,

Images Constant parameter Constant parameter

DCP[7] ADCP DCP[7] ADCP
Forest 0.0577 0.0902 0.0467 0.0419
Brick house 0.2351 0.2599 0.0477 0.0429
Paddy 0.0941 0.1342 0.0683 0.0618
Sakura 0.0126 0.0312 0.0459 0.0389
Mountain 0.0421 0.0714 0.0519 0.0490
Grove —0.0349 -0.1004 0.1179 0.1014
Highway 0.2911 0.3152 0.2175 0.2086

Average 0.0997 0.1145 0.0851 0.0778
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Table 2
Optimized parameters obtained for the test images using ACO.
Tmages Parameters
&s 8o A
Street 2323 9 2.8
Cityscape 2525 8 2.6
Tiananmen 2121 9 3.0
Train 2525 8 3.0
Woman 2323 8 2.8
Rail 2323 10 2.8
Parking lot 2525 8 3.0
- T — DCP[7] Ccnsta;l}) lzjali;ameter Optimized P;rameter
Street
Cityscape
Tiananmen
Train
Woman
Rail
Parking lot

Fig. 8. (Color online) Comparison of image dehazing results in Experiment 2.
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Table 3
Comparison of results for dehazed images in Experiment 2.
Methods
Constant parameter Optimized parameter

Images DCP ADCP ADCP
Street 0.0846 0.0636 0.0537
Cityscape 0.1480 0.1405 0.1326
Tiananmen 0.1056 0.0990 0.0939
Train 0.0527 0.0456 0.0407
Woman 0.0768 0.0702 0.0651
Rail 0.1208 0.1165 0.1115
Parking lot 0.2305 0.2277 0.2263
Average 0.1170 0.1090 0.1034

at the edge of trains in the train image, around the pedestrians in the railway image, and around
the buildings on the right of the parking lot image. According to images in the third column,
ADCP with a constant parameter can mitigate the effect of halo artifacts. Results in the fourth
column revealed that ADCP with an optimized parameter can more effectively inhibit the
formation of halo artifacts in the images. Provided that the dehazing capability is unaffected,
the proposed method can effectively prevent halo formation in image dehazing. Table 3 shows
the DPI;;, values of dehazed images in Fig. 8. Because DPI;; was used as the objective function
in ACO, it yielded favorable convergence with an adequate number of iterations and effectively
estimated more appropriate ADCP parameters. The experimental results indicate that the
optimal dehazing result was obtained using ADCP with optimized parameters, provided that
the dehazing effect and color distortion were both accounted for.

5. Conclusion

In this study, a DCP-based image dehazing method that uses an adaptive mask size was
proposed. This ADCP method automatically determines the mask size at every location
according to the gradient of the input image. Thus, the proposed method not only prevents
the underestimation of dark channels but also mitigates the halo problems associated with
DCP-based image dehazing. The ACO algorithm was adopted in this study to find the
optimal parameter for ADCP and render more favorable dehazing results. To ensure that
the proposed ADCP can remove haze effectively without causing color distortion in dehazed
images, a new DPI—DPI;;—was proposed. This new indicator focuses on hue retention
without compromising image dehazing performance. The proposed method uses DPI;;, as the
objective function in ACO and, after a sufficient number of iterations, it can estimate dehazing
parameters that can be applied to the ADCP-based method. The experiments in this study
verified that the proposed method generated optimal results as determined by qualitative
and quantitative comparisons. However, tiny halo artifacts, color oversaturation, and color
distortion can still be found in some parts of the images processed by the ADCP-based method.
Future studies should continue to explore more favorable image dehazing methods to produce a
more satisfactory visual quality.
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