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	 Cycling is a very popular activity worldwide and cyclists often listen to music while riding.  
This usually involves the use of a portable music player or a cellphone, which may present 
safety problems.  Since these devices may easily distract the attention of the cyclist.  This is 
a matter that has not received much attention but has great relevance to traffic safety.  In this 
study, the attention level of cyclists was measured and recorded as electroencephalograms (EEGs), 
and discrete wavelet transforms (DWTs) based on Daubechies wavelets were used to extract 
the EEG features.  Six different cycling activity patterns were investigated and eigenfunctions 
were used to classify the attention level.  After feature extraction by the DWTs, support vector 
machines (SVMs) and general regression neural networks (GRNNs) were employed to recognize 
different states of mind associated with specific cycling activities.  In Case I, the recognition 
rates of the SVM and GRNN were used to determine the state of mind associated with two 
different cycling activities, riding in a straight line and riding around obstacles.  In Case II, 
rider vigilance was investigated using the SVM and GRNN for eight different cycling scenarios.  
The experimental results validated the proposed method and showed the brainwave patterns 
to be clearly associated with different cycling activities.  The experimental results showed that 
looking at a cellphone screen or engaging in a call caused riders to miss very obvious peripheral 
stimuli and the use of a cellphone by a cyclist is a clear danger to the rider and traffic safety.

1.	 Introduction

	 Cycling is a very popular activity worldwide and cyclists often listen to music while riding.  
This usually involves the use of a portable music player or a cellphone and this may present 
safety problems since devices may easily distract the attention of the cyclist.  This matter 
has not received much attention(1–5) because most studies have concentrated on the effects 
of listening to music while driving a vehicle or a motorcycle,(6–12) and very few studies have 
investigated the effects of listening to music or operating a cellphone on cycling behavior.(13–17)  
In countries such as the Netherlands, the use of a smartphone and other MP3 players while 
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riding a bicycle is very common and not forbidden; however, listening to music while cycling 
is illegal in Germany and New Zealand.(17)  De Waard et al. observed that 7.7% of the cyclists 
were listening to an MP3 player while cycling in Groningen.(13)  On the basis of an internet 
survey of 2500 cyclists, Goldenbeld and Ehlers reported that 40% of cyclists between 12 and 17 
and 15% of those between 18 and 34 years of age always listened to music while they rode.  The 
percentage of cyclists who sometimes listened to music was found to be 76% for 12 to 17 year- 
olds, 54% for cyclists between 18 and 34, 23% for those between 35 and 50, and 14% for the 50+ 
age group.(14)   This report clearly showed that young cyclists listened to music while cycling 
more frequently than older riders.
	 Listening to music while riding is a factor that may be highly relevant to cycling accidents 
and has received little attention.  Music can influence human behavior, and the potential of 
music to influence mood is described as one of the most important functions of music.(15)  
Hyman et al. found that pedestrians who were talking on a cellphone missed very clear 
peripheral stimuli.  However, those who were listening to music did not miss the stimuli as 
frequently as those not doing so.(18)  Music can benefit driving performance according to the 
mood-arousal hypothesis, since listening to music can lead to a more optimal arousal level.(19,20) 
However, the distraction hypothesis suggests that music can divert attention from the task of 
driving and affect driving safety.(19)  However, for cyclists, the effects of listening to music 
are not very well known.  In cycling, loud music may decrease the reaction time of the rider to 
central stimuli and increase the response time to peripheral stimuli at the same time.(7,21)  In 
the internet survey by Goldenbeld and Ehlers, 55% of music-listening cyclists reported using 
two earbuds or over-ear headphones, 23% used only one ear bud, and the rest reported using 
a loudspeaker or different options from time to time.(14)  De Waard et al. found that auditory 
perception was negatively affected, with less traffic auditory information being processed by 
riders listening to music or when engaged in a phone call, particularly when earbuds were being 
used.  Most cyclists rely on sound to detect the approach or closeness of other vehicles.  The 
main effect of music or a phone conversation would be to dull sound and the cyclist could miss 
warning signals relevant to cycling safety.(15)

	 However, few studies have been made using electroencephalograms (EEGs) to investigate 
changes in brainwaves related to cycling behavior.  Mental state is the most important factor 
in cycling safety, and a bad mood, distraction, or fatigue may be frequent causes of traffic 
accidents involving cyclists.  Five different electrical patterns, or brainwaves, known to be 
associated with mental state can be detected across the human cortex.  These brainwaves can 
be observed with an EEG device and in decreasing order of frequency are gamma, beta, alpha, 
theta, and delta.  Each wave is associated with a specific mental function and all five waves 
are displayed by the normal conscious human brain.  However, one particular wave will be 
dominant depending on the state of consciousness.  Nithiya et al. used EEGs to study the alpha 
waves in patients with attention deficit and used this information in the design of relaxation 
therapy.(22)  Crowley et al. studied attention and meditation using the Tower of Hanoi problem 
and an EEG detection system to determine degrees of attention.(23)  Lin et al. proposed a real-
time driver vigilance system to detect fatigue and sleepiness in an attempt to find ways of 
reducing traffic accidents.(24)



Sensors and Materials, Vol. 32, No. 1 (2020)	 389

	 This study has been organized as follows.  Section 2 presents the feature extraction 
approach.  First, discrete wavelet transforms (DWTs) based on Daubechies wavelets was used 
to extract the EEG features.  Second, six eigenfunctions were used to compute eigenvalues 
for classification.  As reported in Sect. 3, the classifiers of the brainwaves were studied to 
determine associations with different cycling activities.  Two types of classifier, support vector 
machines (SVMs) and general regression neural networks (GRNNs), are introduced briefly.  In 
Case I, the mind states of two types of cycling activity were studied, riding in a straight line 
and riding to avoid obstacles.  As the experiment progressed, the EEG signals from the subjects 
were captured using a MindWave headset.  The classifiers, SVMs and GRNNs, were then 
studied to recognize brainwave patterns for the two types of cycling activity.  Rider vigilance 
with respect to the related activities was then investigated using the SVM and GRNN data from 
Case II as reported in Sect. 4.  For each specific cycling movement, types of cycling-related 
activity were studied.  It was assumed that there were two different classes of mind state, 
“relaxed” and “attentive”, and pattern recognition was needed to define the classes of samples 
to train the classifiers.  Once the classifiers had been trained, it was necessary to evaluate their 
performance on an independent (labeled) test set.  The recognition performance data from the 
SVM and GRNN were then studied and discussed.  In Sect. 5, the results are discussed and 
conclusions are drawn.

2.	 EEG Signal Analysis and Feature Extraction

2.1	 Principle of WT

	 The EEG signals collected from the subjects were nonstationary signals that varied with 
emotion.  Fast Fourier transforms (FFTs) of the EEG signals in the time and frequency domains 
did not clearly reveal their features.  Two feature capture methods, the short-time Fourier 
transform (STFT) and DWT, were used to analyze the changes in EEG signals associated 
with different cycling activities.  The STFT, proposed by Gabor,(25) was used, whose equation 
is given by Eq. (1).  Gabor used window-type functions to improve the FT analysis of non-
stationary signals, because the FFT has the drawback of only providing a frequency information 
component without frequency changes over time.  The STFT uses a window-type function 
to divide the signal into a number of time intervals, and the signal sequences for different FT 
segments are shown in Fig. 1.

Fig. 1.	 (a) STFT analysis and (b) wavelet analysis.(26,27)

(a) (b)
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	 Here, g(t − τ) is the window function used as the displacement function, τ is the shift factor, 
and ω is the modulation factor.
	 Because the STFT uses a fixed width for the window function (Fig. 1), the resolution of the 
frequency domain depends on the size of the time frame.  To obtain good resolution in the time 
domain, a narrow time frame can be used, but this results in poor resolution in the frequency 
domain.  On the other hand, choosing a wider time frame for better resolution in the frequency 
domain gives poor resolution in the time domain.  In 1984, Goupillaud et al. proposed the WT 
to overcome the problem of the STFT fixed time window.(26)  The WT not only retains the STFT 
characteristic of localization analysis, but also overcomes the problem of the window function 
with different time intervals.  The WT allows the adjustment of the size of the time frame for 
different frequency bands.  At low frequencies, a long time frame is chosen to obtain good 
resolution, and a short time frame gives good resolution at high frequencies.  Figure 1 shows the 
analysis characteristic of the WT compared with the STFT methods.(26)  In 1988, Daubechies 
proposed the WT, a hierarchy of wavelets that have orthogonal and compact support.  
Daubechies wavelets are widely used in solving signal analysis problems such as self-similarity 
properties of a signal and abnormal signal discontinuities.(27)  Generally, the properties of a 
wavelet are effectively limited in duration, have an average value of zero, and can be expressed 
as

	 2( ) 0 and | ( ) |t dt t dtψ ψ
∞ ∞

−∞ −∞
= < ∞∫ ∫ ,	 (2)

where ψ(t) is the wavelet function.

2.2	 Principle of DWT

	 Before the classification of the attention level based on the measurements of brainwaves, the 
DWT was used to extract the features of the EEG signals.  As a general rule, WTs are divided 
into continuous wavelet transforms (CWTs) and DWTs.  A CWT involves the signal conversion 
method proposed by Meyer et al. and was first used in 1980.  A CWT provides multiple 
resolutions in the time-frequency analysis of the instantaneous features of non-stationary 
signals.(28)  The CWT shown in Eq. (3) transforms a continuous signal into a highly redundant 
signal with two continuous variables, translation and scaling.  For a continuous function x(t), the 
CWT coefficient relative to the real-valued wavelet ψ(t) is given by Eq. (4).
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Here, s and τ are the scale and translation parameters, respectively.  Wψ(s, τ) is the WT 
coefficient and ψ(t) is the fundamental mother wavelet.  However, the CWT requires a long time 
for calculation because it generates large wavelet coefficients.
	 The first DWT was derived by Haar in 1909.(29)  He proposed what has become known as 
the Haar sequence.  This is a sequence of wavelets of rescaled “square-shaped” functions, which 
together form a wavelet family or base.  The mother wavelet function ψ(t) of the Hear wavelet 
can be described as

	
1 , 0 1 2

( ) 1, 1 2 1
0, otherwise

t
t tψ

≤ <
= − ≤ <


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with the scaling function
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	 The most commonly used DWT set was formulated by Daubechies in 1988.(28)  This 
formulation is based on the use of recurrence relations to generate progressively finer discrete 
samplings of an implicit mother wavelet function; each sampling has twice the resolution of 
the previous scale.  In her seminal paper, Daubechies derived a family of wavelets, the first 
of which is the Haar wavelet, also known as Db1.  Interest in this field has grown enormously 
since then, and many variations of the original Daubechies wavelets have been developed.  The 
DWT was introduced to overcome the long computing times needed for a CWT.  It does not 
generate large amounts of redundant information and allows the system to decompose signals to 
a subband level.
	 In the DWT, the original signal is decomposed into different band characteristics using 
high-pass and low-pass filters.  The high-pass filters are designed to allow the signal in a 
specified band to pass, but signals below a given threshold are filtered.  The low-pass filters 
can also allow signals below a specified threshold to pass.  After filtration, the original signal 
is decomposed into approximate and detailed signals at different levels.  In the DWT, the 
mother wavelet is shifted and scaled in powers of two.  This means that s and τ can be defined 
as s = 2 j and τ = 2 

jk, where ,j k Z∈ .  The filter bank implementation of wavelets computes 
the wavelet coefficients of a discrete set of child wavelets for a given mother wavelet ψ(t).  The 
wavelet function of the DWT is

	 ,
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where j is the scale parameter and k is the shift parameter.  Therefore, the DWT can be defined 
as
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	 Consider an original signal x(t) that has been decomposed by the DWT by being passed 
through a series of filters.  The low-pass filter has an impulse response g[n] and the signal also 
passes through a high-pass filter with an impulse response h(t).
	 The resulting outputs can be decomposed into approximation coefficients (from the low-pass 
filter) and detailed coefficients (from the high-pass filter).  The original signal passes through 
both filters and the output is the convolution of the two signals given as
	

	 [ ] [ ] [ ]low
k

y n x k g n k
∞

=−∞
= −∑ , 	 (9)

	 [ ] [ ] [ ]low
k

y n x k h n k
∞

=−∞
= −∑ , 	 (10)

where x[n] is the input sequence in the discrete-time system and g[n] and h[n] are the impulse 
responses of the low-pass and high-pass filters in the discrete-time domain, respectively.  The 
original signal can be decomposed using g[n] and h[n], which are quadrature mirror filters.  
According to the Nyquist rule, half the samples can be discarded and the filtered output of 
the above is then down-sampled by a factor of 2.  The resulting output is further filtered by 
new low-pass and high-pass filters with half the cutoff frequency of the previous ones.  This 
filtration increases the frequency resolution, and the approximation coefficients are decomposed 
by further filtration until the desired level is reached.  Figure 2 is known as a filter bank, 
where the binary trees represent a subspace with a different frequency localization.  The DWT 

Fig. 2.	 (Color online) Basic decomposition of DWT.(26)
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carries out hierarchically organized decomposition and the level j is chosen according to the 
desired cutoff frequency.  Figure 2 shows an implementation of a three-level forward DWT 
based on a two-channel recursive filter bank, where g[n] and h[n] are low-pass and high-pass 
analysis filters, respectively.  In the figure, the block ↓2 represents the factor 2 down-sampling 
operator.  The input signal x[n] is recursively decomposed to a total of four subband signals: an 
approximation version A3[n] and detailed versions, D1[n], D2[n] , and D3[n], of three resolutions.

2.3	 DWT analysis of EEG signals

	 The human brain contains many billions of neurons and the structure is divided into regions 
such as the prefrontal cortex, thalamus, cerebellum, and corpus callosum.  An EEG system is 
used to detect prefrontal cortex activity.  This region is associated with interpretation, judgment, 
attention, and relaxation.(22)  In general, EEG signals can be divided into five bands: delta, theta, 
alpha, beta, and gamma.  Delta waves usually appear during deep sleep and their frequency 
band is from 0.1 to 3 Hz.  Brainwaves within the frequency band from 4 to 7 Hz are theta 
waves, which usually appear during drowsiness.  The frequency band of alpha waves is from 
8 to 12 Hz and alpha waves usually appear during relaxation or rest.  Beta waves, which range 
in frequency from 13 to 30 Hz, are associated with concentration and active thinking.  Gamma 
waves, from 31 to 50 Hz, appear during periods of high mental activity.  The significance of 
each brainwave band is summarized in Table 1.(30)  In this study, the Neurosky MindWave™ 
EEG-monitoring headset was used to retrieve the brainwave data.  The headset can measure 
brainwave signals safely and easily and its Sky ThinkGear ASIC chip has been designed for 
health and wellness, as well as educational and popular EEG technology use.(31)  According 
to the international 10–20 system, the NeuroSky headset is designed for use in position Fp1 to 
retrieve EEG signals.  Position A1 is the reference ground (as shown in Fig. 3).  Signals from the 
NeuroSky headset were transferred to a PC via Bluetooth and the raw data was analyzed using 
the following DWT method.
	 The sampling frequency of the NeuroSky EEG headset is 512 Hz and, in this study, the 
MATLAB wavelet toolbox was used to generate the Daubechies Db4 wavelet components of 
the EEG signals for decomposition analysis.  The EEG signals were decomposed into five DWT 
levels based on the significance of the brainwave types (see Table 1).  There are five dyadic 
wavelet levels and the input signal x(n) was recursively decomposed into six subband signals: an 
approximation signal A5(n) and five detailed signals, D1(n), D2(n), D3(n), D4(n), and D5(n).  Each 
of these wavelet levels corresponds to f with its band given in Table 2.

Table 1
Frequency of brainwave types and significance.(26)

Brainwave type Frequency (Hz) Significance
Delta 0.1–3 Deep sleep
Theta 4–7 Drowsiness or early sleep
Alpha 8–12 Relaxation or rest
Beta 13–30 Mental concentration and active thinking
Gamma 30–50 High mental activity
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where fS is the sampling frequency ( fS = 512) and N represents the number of data points in the 
original signal and is also the high frequency limit of the frequency band represented by level j.  
If the number of data points is chosen as N = 128, then the five detailed signals of the DWT can 
be mapped into the brainwave bands shown in Table 1.  For example, the corresponding delta 
band is 0.1–3 Hz, which can be mapped into A5; the theta band, 4–7 Hz, can be mapped into D5 
and the alpha band, 8–12 Hz, can be mapped into D4.  Each of these wavelet levels corresponds 
to a frequency band as shown in Table 2.  After DWT decomposition, it is necessary to find the 
specific eigenfunctions to compute the eigenvalues for classification.

2.4	 EEG signal feature extraction using DWT obtained from eigenfunctions

	 Multiresolution DWT analysis was used to convert the original signals to an approximation 
signal A5(n) and five detailed signals, D1(n), D2(n), D3(n), D4(n), and D5(n).  Then, the DWT for 
the EEG signals was used to observe the key features associated with the attention level of the 
cycling subject.  However, EEG signals are non-stationary signals that vary with the emotion 
and the features of the signals could not be identified easily by only WDT analysis.  Therefore, 
six eigenfunctions were applied to analyze the feature patterns for classification as shown in 
Eqs. (12)–(17).

Table 2
Decomposition of EEG signals into different brainwave frequency bands.
Wavelet level Frequency (Hz) Brainwave type
A5 ( j = 0) 0–4 Delta
D5 ( j = 1) 4–8 Theta
D4 ( j = 2) 8–16 Alpha
D3 ( j = 3) 16–32 Beta
D2 ( j = 4) 32–64 Gamma

Fig. 3.	 (Color online) NeuroSky MindWave headset and 10–20 International EEG layout.(32)

(a) (b)
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	 To gain an understanding of the effects of different cycling-related activities, optimal pattern 
recognition was needed, and so the brainwaves were classified using the different feature 
patterns of the DWT components.

3.	 Classification of Extracted Brainwave Features Using SVM and GRNN

3.1	 Experimental setup

	 The EEG signals were captured using the NeuroSky headset.  The detectors were located at 
position PF1 on the subject’s head to retrieve the raw EEG signals (see Fig. 3) and position A1 
was used as the reference ground.  Signals from the headset were transmitted to the computer 
via Bluetooth.  The experimental arrangement and system block diagram are shown in Fig. 4.  
The experiments in case I were designed to investigate the prevailing brainwave patterns for 
two different types of cycling activity: riding along a straight path and taking a path around 
obstacles.  Eight different cycling-related scenarios were used and the brainwaves of the subject 
were recorded under different cycling conditions, as shown in Fig. 5, to gain an understanding 
of the mind state associated with the two activities.  The EEG signals were processed and 
analyzed to determine the relationship between the mental state and the riding situation.  The 
experiment was carried out by six different subjects three times each.  Each experiment, both 
along a straight path and along a path with obstacles, lasted between 16 and 20 s to ensure a 
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steady riding speed.  The distance traveled along the straight path was about 24 m.  There were 
six obstacles on the path with obstacles that were 3 m apart.  The stored EEG brainwave records 
from the subjects were analyzed and Figs. 6 and 7 respectively show the DWT decomposition 
of EEG signals collected from a subject riding along the straight path and a subject riding along 
the path with obstacles carrying out any other activity.
	 The theta, alpha, and beta waves are associated with attention (see Tables 1 and 2), and 
therefore the DWT was used to extract the feature bands of D3, D4, and D5 for the computation 
of eigenvalues.  Table 2 shows that D5 covers the theta band, D4 the alpha band, and D3 the 
beta band.  To choose a suitable eigenfunction for the DWT components for the classification 
of the attention level, the eigenvalues of D3, D4, and D5 were obtained using the eigenfunctions 
shown in Eqs. (12)–(17).  To understand the effect of the cycling-related activity on the attention 
level, the SVMs and GRNNs were both employed to classify the brainwaves of the subjects 
from the EEG data collected during the riding experiments.  Because the subjects necessarily 

Fig. 4.	 (Color online) Experimental platform for the recognition of brainwaves.

Fig. 5.	 (Color online) Scenarios for eight different cycling-related activities in Cases I and II.
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paid more attention to riding when bypassing obstacles than when riding in a straight line, two 
classification algorithms were used to distinguish activity requiring a high level of attention 
from that with a relaxed mind.  The relationship between the two mind states revealed by the 
experiments can help us determine what type of activity would cause distraction detrimental to 
driving safety.  

Fig. 7.	 DWT decomposition of an EEG signal for a subject riding along a path with obstacles.

Fig. 6.	 DWT decomposition of an EEG signal for a subject riding along a straight path.
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3.2	 Classification of mind state using the SVM

	 Recently, kernel-based analysis has become popular in data mining applications because it 
provides a surprisingly rich way to interpolate between pattern analysis, signal processing, and 
pattern recognition methods.(33)  One successful example of a kernel-based learning algorithm is 
the SVM, which has been employed in many classification problems.(34–38)  SVMs are machine-
learning algorithms proposed by Cortes and Vapnik to categorize data into two groups.(39)  The 
main basic concept of the SVM is to find a hyperplane that can separate two or more different 
classes of data.  The SVM must be trained using a set of samples that are marked as belonging 
to one category or another.  After training, using a group of given data, the SVM can classify 
new data according to the established hyperplane.
	 Given a training set { } 1( , ) N

i i ix y = , where N is the size of the training set and yi is the class 
label of data xi, and assuming only two classes for classification, yi = {−1, +1}, if the data xi can 
be linearly separated by hyperplanes, the best hyperplane should separate the two classes with 
the maximum margin as shown in Fig. 8, i.e., the distance from the hyperplane to the closest 
samples is maximal.  In Fig. 8, x ∙ w + b = 0 is the hyperplane with the maximal margin of 2 / w  
and the circled samples are known as support vectors.  In this study, a linear hyperplane cannot 
be found; therefore, a nonlinear mapping ϕ (see Fig. 9) is introduced to map the data into a 
linear space H where they are linearly separable.  The SVM maps the training set into a higher-
dimensional feature space via the mapping ϕ, then a separating hyperplane wTϕ(x) + b = 0 
that maximizes the margin of separation between the classes can be found.  One of the most 
important properties of SVMs is that only the inner product K(x1, x2) = <ϕ(x1), ϕ(x2)>, i.e., 
the kernel, is needed.  The choice of the kernel is a specific problem for classification and the 
common kernel functions are linear, polynomial, the radial-based function (RBF), and the 
sigmoid function, which are described as follows.

Fig. 8.	 (Color online) SVM separates two classes of data on a hyperplane with the maximum margin.
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	 Linear:
	 1 2 1 2( , )K x x x x= ⋅ ,	 (18)

	 Polynomial:
	 1 2 1 2( , ) ( 1)dK x x x x= ⋅ + ,	 (19)

	 RBF:

	 2
1 2 1 2( , ) exp( )K x x x xγ= − − ,	 (20)

	 Sigmoid:
	 1 2 1 2( , ) tanh( )K x x kx x δ= ⋅ − .	 (21)

	 In this study, two of the above kernel functions, the RBF and polynomial, were used for the 
SVM classifier to investigate the accuracy of classification.
	 Case I.  Classification of the mind states for different cycling movements
	 In the first study, three subjects performed the two cycling conditions three times.  Figure 
5 shows the details of these two conditions.  The first involved riding in a straight line and the 
second involved avoiding obstacles.  Each experiment lasted between 16 and 20 s to ensure a 
steady riding speed.  The distance traveled along the straight path was about 24 m and there 
were six obstacles on the path, with 3 obstacles that were apart.  At the same time, the EEG 
signals of the subjects were captured as 30 sequences of signals for each subject, giving 90 
samples from each scenario and a total of 180 samples for classification.  The DWT was used to 
extract the feature sequences of D3, D4, and D5, which were used to obtain the eigenvalues from 
Eqs. (12)–(17).
	 There were two brainwave patterns to be classified: the first was “relaxed”, associated with 
cycling in a straight line, and the second was “attentive”, associated with the task of avoiding 
obstacles.  The following three testing modes were used: internal training, the half-external test, 
and the external test.  In the half-external test, half the samples were used to train the SVM, 

Fig. 9.	 (Color online) Mapping a training set into a higher-dimensional feature space via a kernel.
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but all the samples were used for testing.  In the external test, half the samples were used for 
training and the other half were used for testing.  Table 3 presents the SVM classification results 
using two different kernel functions:  the polynomial and RBF.  In the half-external test, half 
the samples (90/180) were used for training.  In the external test, there was no repetition of the 
training and all 90 samples were tested.  The recognition rate was defined as 

	 100%Number of correct classified samplesRecognition rate
Number of total testing samples

= × .  	 (22)

	 The examination of Table 3 (SVM recognition rate) shows that the RBF kernel function 
is better than the polynomial kernel function.  Therefore, the RBF kernel was used for SVM 
recognition in the study.  Table 4 shows the recognition rates for the SVMs using the different 
eigenfunctions to compute the features D3, D4, and D5.  It can be seen that the MAV gives the 
best recognition rate.  Figure 10 shows the resulting hyperplane, the testing data, the classified 
data, and the support vectors obtained by the proposed method, where the first scenario “relaxed” 
is denoted by “Med”, and “Att” represents the second scenario “attentive”.  The coordinates 
in Fig. 10 are the values obtained by the eigenfunction MAV of D3, D4, and D5 of the DWT.  
To compare the SVM recognition rate with those of other methods, the same problem was 
investigated using the GRNN in Sect. 3.3.

3.3	 Classification of mind state using GRNN

	 There are three common types of artificial neural network (ANN), the supervised,  
unsupervised, and associated learning networks.  The GRNN is a supervised learning network 
that evolves from a probabilistic neural network (PNN).(40)  It is also an antecedent-supervised 
learning network with a layered neuron structure, as shown in Fig. 11.  The GRNN architecture 
has four layers: input, pattern, summation, and output.  It can handle linear and nonlinear 
regression problems, as well as classification.

Table 4
SVM recognition rates obtained using different eigenfunctions.
Classifier Internal training Half-external test External test
(Training/Test) 180/180 90/180 90/90
MAX 98.89% 78.33% 58.89%
MIN 96.67% 77.78% 60.00%
RAN 94.44% 72.78% 48.89%
SD 90.56% 77.22% 61.11%
MAD 96.67% 72.78% 48.89%
MAV 96.11% 83.89% 72.22%

Table 3
SVM recognition rates for Case I.
Classifier type Internal training Half-external test External test
(Training/Test) 180/180 90/180 90/90
SVM (RBF) 98.33% 80.00% 60.00%
SVM (Polynomial) 98.33% 78.89% 57.78%
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Fig. 11.	 GRNN network architecture.Fig. 10.	 (Color online) Hyperplane, testing data, 
classified data, and support vectors obtained by the 
proposed method.

	 In a classification with m-dimensional input vector training samples, the GRNN can use the 
samples to estimate the function values of unknown samples with a weighted average method as 
follows:
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	 Here yj is the jth function value of an unknown sample, wk is the kth weighted value of a 
given sample, ykj is the jth function value of the kth given sample, and q is the total number of 
given samples.  The weighted wk value  can be obtained as follows:
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where xi is the ith-dimensional spatial coordinate of the unknown sample, xik is the ith-
dimensional coordinate of the kth sample for the given sample space, δ is the smoothing 
factor, and m is the sample space dimension.  When the given samples are input to the 
GRNN for training, the learning rule used by the network will search for an appropriate 
smoothing parameter.  Table 5 presents the recognition rates for the GRNN using the different 
eigenfunctions for the SWT features D3, D4, and D5.  The recognition rates obtained by 
the GRNN for the eigenfunctions of MIN, RAN, SD, and MAD are much better than those 
obtained by the SVM.  However, in the external test, the SVM had better recognition rates than 
the GRNN using the MAX and MAV eigenfunctions.  To summarize, for the external test, the 
SVM using MAV is clearly the better classifier a recognition rate of 72.22%, compared with 
70.00% for the GRNN.
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	 In these experiments, the features D3, D4, and D5 were used to compute the eigenvalues 
because the theta, alpha, and beta brainwaves are associated with an attentive state.  However, to 
explore the overall significance and relative importance of the EEG components of D3, D4, and 
D5, classification was carried out using the SVM and GRNN with only two DWT components 
(see Table 6).  The results show that D3 and D4 are more important than D5, but the SVM and 
GRNN classifiers using the D3 + D5 components of the SWT showed a better recognition 
rate than the other two cases.  In a comparison of the SVM and GRNN, using the D3 + D4 

components, the SVM using D3 + D4 + D5 showed a small improvement of the recognition 
rate and is better than SVM using only D3 + D4.  However, the recognition rate of the GRNN 
using D3 + D4 + D5 is much better than GRNN using D3 + D4.  As shown in Table 1, the human 
attentive state is closely associated with alpha and beta brainwaves.  The experimental results 
shown in Table 6 are clearly consistent with Table 1.

4.	 Classification of Rider Vigilance Using SVM and GRNN

	 In the Case I experiments, the brainwaves of a rider following a straight path and one with 
obstacles were analyzed using the SVM and GRNN.  In Case II, rider vigilance was investigated 
during various cycling-related activities, as shown in Fig. 5, also using the SVM and GRNN.  
Four different cycling-related activity patterns were studied: (1) riding without any other activity, (2) 
listening to music, (3) looking at a cellphone screen, and (4) communicating using a cellphone.
	 Case II.  Classification of mind states for the different cycling-related activities 
	 In Case II, six subjects performed eight different scenarios with the different cycling-related 
activities described in Fig. 5.  Scenarios 1–4 involve riding along a straight path while engaging 
in the following activities: (1) no additional activity, (2) listening to music, (3) looking at the 
screen of a cellphone, and (4) while communicating with a cellphone.  Scenarios 5–8 involve 
following a path that has obstacles to be avoided and included the same activities as in scenarios 
1–4.

Table 6
Comparison of recognition rates of SVM and GRNN using different features.
Classifier SVM (%) GRNN (%)
D3 + D4 	 71.11 	 63.33
D3 + D5 	 66.67 	 60.00
D4 + D5 	 61.11 	 62.22
D3 + D4 + D5 	 72.22 	 70.00

Table 5
Recognition rates obtained by GRNN using different eigenfunctions.
Classifier eigenfunction Internal training (%) Half-external test (%) External test (%)
MAX 	 100.00 77.78 55.56 
MIN 	 100.00 80.56 61.11 
RAN 	 94.44 83.33 66.67 
SD 	 95.56 80.00 63.33 
MAD 	 85.56 72.78 56.67 
MAV 	 99.44 85.00 70.00 
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	 Similarly, this pattern recognition problem required that the classes of samples to train the 
SVM and GRNN classifiers be defined.  Once the classifiers were trained, it was necessary to 
evaluate their performance on an independent (labeled) test set assuming that there were two 
different mind states, “relaxed” and “attentive”.  Table 7 shows the specified label for the eight 
scenarios.  The EEG signals of the six riders were captured using the MindWave headset as they 
rode; 30 sequences of the EEG signal were captured for each incident.  There were 180 samples 
of EEG signals for each scenario, making a total of 1440 samples for classification.  The 
performance was evaluated as in Case I.  There were three testing modes, internal training, the 
half-external test, and the external test.  For the half-external test, half the samples were used to 
train the classifiers, but all were used for testing.  Table 8 shows the experimental results for the 
SVM and GRNN.  The experimental results showed that the GRNN had higher performance 
than the SVM in the internal training and half-external test, but the SVM performed slightly 
better than the GRNN in the external test.
	 The experimental results for the internal training and half-external test in Cases I and II 
showed that the GRNN had better recognition performance than the SVM.  However, the SVM 
classifier had slightly better performance than the GRNN in the external test.  Overall, the 
GRNN had superior performance to the SVM, and the following comments can be made:
(1)	Riding around obstacles requires more attention than riding along a straight path.
(2)	Looking at the screen of a cellphone distracts the rider’s attention and this can be dangerous 

in traffic.  
(3)	Communicating with a cellphone requires action on the riders part.  This diverts attention 

from the task of riding, which can be dangerous in traffic.
(4)	Riding along a straight path while listening to music may be safe because it does not require 

much attention.
	 In summary, looking at a cellphone screen or communicating with a cellphone can cause a 
rider to miss important peripheral stimuli and can cause traffic accidents.  Cellphones should 
not be used while cycling.

Table 7
Mind state: relaxed/attentive for eight scenarios.

Subjects 1–6
Riding along a straight path

Scenario 1 Scenario 2 Scenario 3 Scenario 4
⁎ ⁎ ◎ ◎

Riding while avoiding obstacles
Scenario 5 Scenario 6 Scenario 7 Scenario 8

◎ ◎ ◎ ◎
Relaxed: ⁎, Attentive: ◎

Table 8
SVM and GRNN recognition rates: Case II.
Subjects 1–6
Classifier Internal training Half-external test External test
(Training/Test) 1440/1440 720/1440 720/720
SVM 86.04% 79.03% 71.11%
GRNN 99.58% 85.28% 70.69%
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5.	 Conclusions

	 The NeuroSky EEG headset was used to capture the EEG brainwave signals of subjects 
as they rode along a predetermined track.  To extract the features of the EEG signals, the 
Daubechies Db4 wavelet components were used in a decomposition analysis of the EEG 
signals.  The brainwave types are shown in Table 1, and on their basis, the EEG signals were 
decomposed into five DWT levels.  The input signal x(n) was recursively decomposed into six 
subband signals: an approximation signal A5(n) and five detailed signals, D1(n), D2(n), D3(n), 
D4(n), and D5(n).  Human attention is related to the theta, alpha, and beta brainwaves, and the 
D3, D4, and D5 DWT bands were used to compute the eigenvalues.  The best eigenvalues for 
classification were found by determining the recognition rates of the SVM and GRNN using 
six different eigenfunctions, as shown in Tables 4 and 5.  In Case I, the SVM and GRNN were 
used to recognize the mind states of two different cycling activities, riding along a straight path 
and riding along a path with obstacles.  The SVM had a better recognition rate than the GRNN 
with the Max and MAV eigenfunctions.  To summarize, for the external test, the SVM using 
MAV was the better classifier with a recognition rate of 72.22%, compared with 70.00% for 
the GRNN.  In Case II, rider vigilance was investigated using the SVM and GRNN for eight 
different cycling scenarios.  The experimental results showed that the GRNN exhibited better 
classification than the SVM in the internal training and half-external test, but the SVM had 
slightly better performance than the GRNN in the external test.  From the experimental results, 
we conclude that cyclists should not use cellular phones when riding, because looking at the 
screen or actually communicating with a cellphone can reduce a rider’s ability to notice obvious 
peripheral stimuli that occur in real traffic situations.
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