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	 Over the years, machine tool manufacturers have moved steadily towards the enhancement 
of machining accuracy to improve the quality of finished products.  In this study, the thermal 
deformation of a machine spindle, which has a profound effect on machining accuracy, was 
investigated.  The temperatures of the front and rear spindle bearings, and of the environment 
as well as the Z-axis displacement on a model MC4200BL CNC lathe (Hybrid Sphere) were 
measured under long-term operating conditions.  Measurements were carried out at spindle 
speeds of 1000, 1500, 2000, 2500, and 3000 rpm, and the data were used to establish a model 
for the prediction of spindle displacement.  A back propagation neural network (BPNN) was 
used to establish the model and explore adjustments of the training function, the data training 
ratio, and the number of neurons in the hidden layer.  Results of the experiments showed that 
the coefficient of determination (R2) of the prediction model derived from the best parameters 
can be up to 0.9948.  This was much better than the 0.8273 achieved by the partial least squares 
regression method.

1.	 Introduction

	 Over the years, machine tool manufacturers have moved steadily towards the enhancement 
of machining accuracy to improve the quality of finished products.  Errors in accuracy, which 
can have a large impact on production, include those caused by geometry, by changes in 
temperature, and by the cutting force itself.(1,2)  To enhance production capacity, machines 
must work faster, and when working time increases, so does the temperature.  However, when 
processing time is increased, thermal error becomes more important and can seriously affect 
machining accuracy.  According to Bryan, thermal error accounts for between 40 and 70% 
of the total machining error.(3,4)  Thermal errors can arise from either an internal or external 
heat source.(5)  Internal heat is mainly generated by moving parts of the machine, such as the 
motor and spindle bearings, as well as the cutting process itself.  External heat comes from the 
operating environment.  In a conventional spindle, the main heat source is the bearings.(6)  To 
enhance machining accuracy, errors should be reduced and compensation for displacement 
applied.(7)  Many studies related to this problem have been carried out.  Zhu et al.(8) 
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used multiple regression to construct a thermal error prediction model and succeeded in 
reducing the thermal displacement error of 20 µm down to 4 µm, a reduction of about 75%.  
Xiaohong et al.(9) used the rough set theory to analyze the relationship between temperature and 
error, and were able to reduce thermal errors to less than 5 µm using a back propagation neural 
network (BPNN) training model.  Pahk and Lee(10) proposed a spindle temperature thermal 
error measurement system that used multiple linear regression, a neural network (NN), and 
the system identification method to establish a spindle-thermal error model.  Lin and Chang(11) 
used complex multivariate regression analysis to predict spindle thermal displacement at any 
particular time.  Li et al.(12) used the bat algorithm (BA) to optimize a traditional BPNN.  It is 
always difficult to confirm the number of hidden layers in a traditional BPNN, and using the 
BA-back propagation (BP) solved this modeling problem.  Ma et al.(13) used particle swarm 
optimization (PSO) and the genetic algorithm (GA) to improve the shortcomings of BPNN, 
and were able to improve processing accuracy from 67 to 78 and 89%, respectively.  There are 
many types of artificial neural networks (ANNs), and the BPNN has the additional feature of 
nonlinear input–output mapping.(14,15)

	 To solve the problem of inaccuracy caused by the thermal displacement of the spindle, it 
was necessary to establish a spindle thermal displacement model that could be used to predict 
these changes.  Traditionally, regression analysis and the generalized least squares are used 
for this.  Although these methods are relatively simple and easy to use, the prediction results 
are less than ideal.  Thermal error is dynamic and nonlinear, and in this study, an appropriate 
ANN was therefore selected to suit the features of the data and establish a model for prediction.  
However, Li et al.(12) observed that traditional BPNN often has trouble confirming the number 
of neurons in the hidden layer.  To attain the objective of this study, it was necessary to find 
the best BPNN parameter training function and ratio of data training, as well as overcome the 
problem of the number of hidden layer neurons.  This allowed the prediction ability of the model 
to be enhanced, which reduced deviations in prediction, improved machining accuracy, and 
established an excellent model that was superior to partial least squares regression (PLSR).

2.	 Method

2.1	 Experimental equipment and architecture

	 In this study, we adopted the ball-type CNC lathe (model MC4200BL) from Mike Machine 
Industry Co., Ltd., together with the SYNTEC21-TA-type controller of Syntec Technology 
Co., Ltd., and the Posa spindle (model TAC-10-CY), which is a belt-type spindle.  Temperature 
sensors are mainly divided into contact and noncontact types.  The noncontact type requires 
much equipment to go with, such as the assist optical system, and the equipment cost is much 
higher than that of the contact type.  In addition, for the machine tool, the noncontact type is 
more difficult to install.  Therefore, contact temperature sensors are buried in the front and 
rear bearings of the spindle.  In this study, we adopted the DS18B20 temperature sensor; it 
can measure temperature in the range from −55 to 125 ℃ and has a resolution of 0.5 ℃, and 
the sampling frequency is 5 Hz.  Its special feature is to convert the measured temperature 
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data into digital format, and the accuracy will not be affected during the receiving process.  
Moreover, the microcontrol board Arduino Uno equipped with a USB serial port was used as 
the data capture module.  As for the laser displacement meter, we used KEYENCE’s IL-S025 
and IL-1000 to measure the displacement through noncontact measurement.  The IL-S025 has 
a measurement range of 20 to 30 mm and a resolution of 1 µm, and the sampling frequency is 
5 Hz.  Finally, the NI-6341 capture card was used to capture signals.  
	 The experimental flow chart of the study is shown in Fig. 1.  The machine spindle speeds 
used in the experiments were 1000, 1500, 2000, 2500, and 3000 rpm.  The spindle was run 
at each temperature for a measured time.  The sensors used to measure the temperature were 
embedded in the front and rear bearing housings on the spindle assembly of a model MC4200BL 
CNC lathe (Hybrid Sphere).  Measurements were made at 5 s intervals and the displacement of 
the Z-axis was measured at the same time using a laser displacement meter.  To establish the 
BPNN model, the training function and the proportion of training data were adjusted, and the 
coefficient of determination (R2) based on the number of hidden layer neurons was found.  The 
root mean square error (RMSE), ratio of performance to deviation (RPD), mean square error 
(MSE), and mean absolute error (MAE) were all used to determine the degree of prediction and 
to explore the parameters needed to establish the best model compared with PLSR.

2.2	 BPNN

	 The BPNN, a classic ANN, is a combination of multilayer perceptron (MLP) and error back 
propagation (EBP).  The BPNN is a supervised learning network; this means that it requires 
a set of training materials that includes input features and target results.  The main feature of 
the BPNN is the updating of the weight between points by calculating the error to enhance the 

Fig. 1.	 Experimental flowchart.
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prediction ability of the model.  The advantages of the BPNN are that it can perform nonlinear 
input and output mapping and also use the gradient descent method(16) to reduce errors and give 
better results.

2.2.1	 BPNN theory

	 Figure 2 is the basic architecture of the BPNN.  The input layer is orange, the hidden 
layer is blue, and the output is yellow.  The blue arrow represents the weight of the input 
layer connecting the hidden layer, the yellow arrow represents the weight of the hidden layer 
connecting the output layer, and the BPNN flow chart is shown in Fig. 3.
	 The sigmoid function was used to calculate the equation of the hidden layer output value, as 
shown in Eqs. (1) and (2).(17)

	 k ik i
i

net w x=∑ 	 (1)

	 1
1 exp( )k

k
h

net
=

+ −
	 (2)

In these equations, hk is the input value of the kth hidden unit, netk is the weighted product sum 
of the input values, xi is the input value of the ith input unit, and wik is the connected weight 
value between the ith input unit and the kth hidden unit.
	 By using the sum of the squared errors of all the output nodes of the network as the objective 
function, the error calculation equation is as shown in Eq. (3).(18)

Fig. 3.	 BPNN flow chart.Fig. 2.	 (Color online) BPNN architecture.
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In this equation, E is the error, y(i) is the actual value, and ŷ(i) is the predicted value.

2.2.2	 Training function

	 In this study, we used three training functions, as follows:
	 1. Trainlm: The updated weight and bias values were optimized according to Levenberg–
Marquardt.(19)  The BPNN model achieves the fastest convergence, but it requires a lot of 
random access memory (RAM).
	 2. Trainbr: This minimizes the linear combination of square error and weight according to 
the Bayesian Regulation,(20) and confers the generated network with good generalized quality.  
It takes slightly longer than the other methods, but is suitable for more complicated data.
	 3. Trainscg: According to the scaled conjugate gradient method,(21) it reduces the time taken 
to search the network when adjusting the direction; it consumes fewer resources and is suitable 
for use with less RAM.

2.3	 PLSR

	 PLSR is a regression modeling method suitable for multi-dependent and multi-independent 
variables.  In the modeling process, the principal component analysis (PCA)(22) is extracted as 
much as possible from the independent and dependent variables, and the correlation between 
the extracted principal components is then maximized.  Simply put, PLSR is a combination of 
three methods: PCA, canonical correlation analysis (CCA), and multiple linear regression.(23)

	 The main components are extracted from the input and output actual values; the equations 
are as follows.(14)

	 X = UαT + X0	 (4)

	 Y = KγT + Y0	 (5)

In these equations, X is the independent variable matrix, and Y is the dependent variable matrix. 
Moreover, U and K are the principal component matrices of X and Y, αT and γT are the load 
vector matrixes of X and Y, and X0 and Y0 are the residual matrices of X and Y, respectively.
	 The regression equation of PLSR is(24)

	 1 1 2 2 i iy x x xβ β β ε= + + + + .	 (6)

In this equation, β is the regression coefficient, ε is the error, xi is the ith independent variable, 
and y is the dependent variable.
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2.4	 Model verification coefficient

	 To verify the prediction ability of the model, the R2, RMSE, RPD, MSE, and MAE were used.  
The R2 values lies between 0 < R2 < 1, but the model has a better prediction ability when the R2 
value is close to 1.  The formula is as shown in Eq. (7) below.(25)
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In Eq. (7), SSres is the residual sum of squares, SStot is the total sum of squares, fi is the ith 
predictive value, yi is the ith actual value, and ȳ is the average value.
	 RMSE, MSE, and MAE were used to calculate the errors; the smaller the error, the better the 
prediction ability.  The following three equations [Eqs. (8)–(10)] can be used to calculate the 
three types of error.(26)
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In these equations, fi is the ith predictive value and yi is the ith actual value.
	 When RPD < 1.4, the prediction ability of the model will be poor, when 1.4 < RPD < 2, the 
prediction ability will be fair, and when RPD > 2, the prediction ability will be excellent.  The 
RPD equations are as shown in Eqs. (11) and (12).(27)
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In the equations, SD is the standard deviation, yi is the ith actual value, and ȳ is the average 
value.  
	 The several verification coefficients shown above can be used to compare the prediction 
ability of the model with respect to the number of neurons in the hidden layer, the training 
function, and the data training ratio to find the best parameters.
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3.	 Experimental Results and Discussion

3.1	 BPNN parameter adjustment and PLSR model

	 In this study, the training temperature and displacement data after adjustments of the 
training function, the data training ratio, the number of hidden layer neuron interval, and the 
number of hidden layer neurons were used for comparison with five indicators, namely, R2, 
RMSE, RPD, MSE, and MAE, and as references for the enhancement of the prediction ability of 
the model.

3.1.1	 Comparison of training function

	 As mentioned in the first chapter, the BPNN has a disadvantage in that it is difficult to 
confirm the number of neurons in the hidden layer.  Therefore, in this study, the BPNN 
parameters were adjusted to find the best parameters.  With the other parameters fixed, the 
training results were taken as the average of 10 training exercises with three types of training 
function: Trainlm, Trainbr, and Trainscg, and the results of each spindle speed under different 
training functions, R2, RMSE, RPD, MSE, and MAE, were compared [Figs. 4(a)–4(e)].

(a) (b)

(c) (d)

(e)

Fig. 4.	 (Color online) BPNN training function comparison. (a) R2, (b) RMSE, (c) RPD, (d) MSE, and (e) MAE.
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	 According to the results shown in Figs. 4(a)–4(e), the values of R2 and RPD using Trainlm 
at each speed were higher than those using Trainbr and Trainscg, and the values of RMSE, 
MSE, and MAE were lower than those using Trainbr and Trainscg.  It is clear that Trainlm had 
the highest prediction effect.  The analysis shows that the prediction abilities of these training 
functions, for spindle thermal displacement prediction, ranked from high to low are Trainlm, 
Trainbr, and Trainscg.

3.1.2	 Data training ratio

	 The results shown in Sect. 3.1.1 indicate that Trainlm had the best prediction ability at data 
ratios of 70 and 80%.  Each training data ratio was the average of 10 training sessions.  The 
comparison results are shown in Figs. 5(a)–5(e).
	 Figures 5(a)–5(e) show that when the data training ratio of the BPNN is 80%, the values 
of R2 and RPD at each rotation speed are higher than 70%, but the values of RMSE, MSE, 

Fig. 5.	 (Color online) Model data training ratio of BPNN. (a) R2, (b) RMSE, (c) RPD, (d) MSE, and (e) MAE.

(a) (b)

(c) (d)

(e)
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and MAE are lower than 70%.  The verification coefficients show that 80% has the highest 
prediction effect.  The analysis showed that the data training ratio of the BPNN was predictive 
of the spindle thermal displacement.

3.1.3	 Hidden layer neuron number intervals

	 The results described in Sect. 3.1.1 showed that Trainlm had the best prediction ability, and 
in Sect. 3.1.2, it can be seen that the best BPNN prediction was at a training data ratio of 80%.  
Under these circumstances, the number of hidden layer neurons increased by 5 each time, 
training for each hidden layer was performed 10 times, and the average was used.  The results 
are shown in Figs. 6(a)–6(e).
	 According to the results shown in Figs. 6(a)–6(e), when the number of neuron intervals in the 
hidden layer of the BPNN is 40, the values of R2 and RPD at 1000, 1500, 2000, and 2500 rpm 
are higher than those in the other hidden layers, and the value of RMSE, MSE, and MAE are 

(a) (b)

(c) (d)

(e)

Fig. 6.	 (Color online) BPNN hidden layer neuron interval. (a) R2, (b) RMSE, (c) RPD, (d) MSE, and (e) MAE.
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lower than those in the other hidden layers.  The verification coefficients show that the highest 
prediction rate is coincident with the number of hidden neuron intervals of around 40.  Further 
analysis confirmed that for this displacement model, the hidden layer interval of 40 gives the 
best prediction rate.

3.1.4	 Selection of the number of hidden layer neurons

	 All the results in Sects. 3.1.1 to 3.1.3 show that for Trainlm, the data training ratio of BPNN 
is 80%, and the number of hidden layer neurons that gives the best prediction is 40.  The 
number of neurons in the hidden layers from 35 to 50 is increased by one each time.  Training 
was performed 10 times and an average was taken; the comparison results are shown in Figs. 
7(a)–7(e).

Fig. 7.	 (Color online) Number of hidden layer neurons of BPNN. (a) R2, (b) RMSE, (c) RPD, (d) MSE, and (e) 
MAE.

(a) (b)

(c) (d)

(e)
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	 According to the results shown in Figs. 7(a)–7(e), when the number of neurons in the hidden 
layer of the BPNN is 42, the values of R2 and RPD at each rotation speed are higher than those 
in the other hidden layers.  On the other hand, the values of RMSE, MSE, and MAE are lower 
than those in the other hidden layers.  The verification coefficients show the highest prediction 
effect with 42 neurons in the hidden layer and further analysis confirms this.  From the results 
described in Sects. 3.1.1 to 3.1.4, the number of hidden layer neurons of 42 gives the best results 
and is the best parameter to use for the prediction of the thermal deformation of the spindle.

3.2	 Prediction of displacement

	 Training was carried out using the experimental results described in Sects. 3.1.1 to 3.1.4, at 
the spindle rotation speeds of 1000, 1500, 2000, 2500, and 3000 rpm, and the results are shown 
in Figs. 8–12.
	 Figure 8 shows the thermal displacement model at a spindle rotation speed of 1000 rpm, 
where R2 was 0.9947, RMSE was 0.000199, RPD was 13.74, MSE was 3.95 × 10−8, and MAE 
was 0.000157.  The orange line is the actual displacement value, whereas the blue line is the 
predicted displacement value.
	 Figure 9 shows the thermal displacement model at a spindle speed of 1500 rpm, where R2 
was 0.9948, RMSE was 0.000284, RPD was 13.84, MSE was 8.09 × 10−8, and MAE was 0.000227.

Fig. 8.	 (Color online) Result of thermal displacement predicted by BPNN at a spindle rotation speed of 1000 rpm.

Fig. 9.	 (Color online) Result of thermal displacement predicted by BPNN at a spindle speed of 1500 rpm.
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	 Figure 10 shows the thermal displacement model at a spindle rotation speed of 2000 rpm, 
where R2 was 0.9936, RMSE was 0.000418, RPD was 12.45, MSE was 1.75 × 10−7, and MAE 
was 0.00033.
	 Figure 11 shows the thermal displacement model at a spindle speed of 2500 rpm, where R2 
was 0.9935, RMSE was 0.000556, RPD was 12.42, MSE was 3.21 × 10−7, and MAE was 0.000452.
	 Figure 12 shows the thermal displacement model at a spindle speed of 3000 rpm, where R2 
was 0.9936, RMSE was 0.000562, RPD was 12.53, MSE was 3.15 × 10−7, and MAE was 0.000446.

Fig. 10.	 (Color online) Result of thermal displacement predicted by BPNN at a spindle speed of 2000 rpm.

Fig. 11.	 (Color online) Result of thermal displacement predicted by BPNN at a spindle speed of 2500 rpm.

Fig. 12.	 (Color online) Result of thermal displacement predicted by BPNN at a spindle speed of 3000 rpm.
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	 To summarize the results shown in Figs. 8–12, in the model trained with the best parameter, 
the predicted value is very close to the actual value, the lowest R2 value is 0.9935, and the 
highest is 0.9948, which is a very high prediction rate.  The experiments clearly show that the 
BPNN established by the best parameter can effectively enhance the prediction ability of the 
model.
	 Figure 13 shows the thermal displacement model predicted by PLSR at a spindle speed of 
1000 rpm, where R2 was 0.8273, RMSE was 0.0011, RPD was 2.27, MSE was 1.29 × 10−6, and 
MAE was 0.000807.  It can be seen that the predicted displacement value was significantly 
different from the actual displacement value.  At other speeds, PLSR showed even greater 
differences between the predicted and measured displacement values.  The BPNN model R2 
established by the best parameters can be up to 0.9948, compared with the partial least squares 
regression where R2 = 0.8273.  

4.	 Conclusion

	 In this study, temperature sensors were used to measure thermal changes in front and 
rear spindle bearings of a model MC4200BL CNC lathe, as well as the temperature of the 
environment.  A laser displacement meter was used to measure dimensional changes in the 
Z-axis at the same time.  A BPNN was used and parameters including the training function, 
the data training ratio, and the number of neurons in hidden layers were adjusted to determine 
the accuracy of the prediction of judgment models with five different indicators, namely, R2, 
RMSE, RPD, MSE, and MAE.  Comparisons revealed that the model showing the best prediction 
was generated using the Trainlm parameter Training Function.  The data training ratio was 
80% and the number of neurons in the hidden layer was 42.  This parameter, generated from 
the experiment, was used to establish the model, and the results showed very good prediction, 
where R2 was 0.9948, RMSE was 0.000284, RPD was 13.84,  MSE was 0.0000000809, and 
MAE was 0.000227; the predicted displacement values were very close to the actual values.  
A comparison of BPNNs established with the best parameters with the partial least squares 
regression model showed that the BPNN using the best parameters has a better prediction ability 
than PLSR regardless of R2 or the maximum error.  Moreover, the verification index of R2 shows 

Fig. 13.	 (Color online) Result of thermal displacement predicted by PLSR at a spindle speed of 1000 rpm.
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that of the BPNN to be 0.9948, which is much higher than the 0.8273 of the PLSR.  These best 
BRNN parameters effectively enhance the robustness and predictive accuracy of the model.
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