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	 High-precision hyperspectral image classification when the number of samples is small is 
the focus of research in the field of hyperspectrum.  At present, there are few studies on the 
effect of different training set samples on classification accuracy.  To determine the effect 
of different training set samples on the classification accuracy of a hyperspectral image, the 
hyperspectral image of an Indian Pines farm is used as the data source.  In this work, we study 
the classification accuracy results of support vector machine (SVM) and back propagation (BP) 
neural network when the training set samples are 1, 2, 5, 10, and 20%.  Simulation results show 
that the overall accuracy (OA), average accuracy (AA), and Kappa coefficients of SVM and BP 
increase continuously with the number of samples in the training set.  Under different numbers 
of training set samples, the classification accuracy of BP is greater than that of SVM.  When the 
number of samples in the training set is 20%, the recognition accuracy of the BP classification 
method for seven features (Grass-pasture, Grass-trees, Hay-windrowed, Oats, Wheat, Woods, 
and Stone-Steel-Towers) is higher than 90%, and the recognition accuracy of Hay-windrowed 
features is 93.97%.

1.	 Introduction

	 Hyperspectral imagers can acquire spectral imaging data from hundreds of narrow and 
continuous bands in the visible-to-infrared spectral region.  Each pixel of a hyperspectral image 
exists in the form of a vector, whose different elements correspond to spectral response values 
at different wavelength bands.  Since different substances reflect different electromagnetic 
energies on a specific wavelength band, different substances can be distinguished on the basis 
of their spectral characteristics.  Hyperspectral images have the characteristics of high spectral 
resolution, wide spectral range, and strong spectral correlation.(1–3)  They can detect the feature 
category that cannot be detected by multispectral images and are widely used in environmental 
detection, military security, astronomy, forestry protection, mineralogy, and other fields.
	 Classifying each pixel in a hyperspectral image is an issue that should be resolved in 
an application.  According to the current classification method, the hyperspectral image 
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classification method based on machine learning is the mainstream method of feature 
classification, which mainly uses a pattern recognition classifier to classify ground objects.  For 
example, Zhang et al. determined the spatial information in the homogeneous region using the 
relative homogeneity coefficient through the Markov random field and combined the spectral 
features with the spatial information to effectively improve the classification effect of the 
support vector machine (SVM) classifier.(4)  Chen et al. used the window method to introduce 
spatial information through the joint sparse representation of pixels in the window, in order to 
minimize the reconstruction error and obtain the classification result.(5)  Guo et al. adopted the 
support tensor machine (STM) method to solve the hyperspectral classification problem and 
introduced the spatial information through the special structure of tensor feature expression to 
realize the hyperspectral classification of a spectral-spatial information joint.(6)  Gurram and 
Kwon  proposed a contextual SVM classification method based on kernel space embedding by 
introducing spatial information by averaging it in the nuclear Hilbert space.(7)

	 However, the training set of small samples is one of the key points in the research 
on hyperspectral image classification, but the effect of different training set samples on 
classification accuracy has been rarely studied.  The SVM maps the original feature vector 
to the high-dimensional space through the kernel function and realizes the classification by 
establishing the decision surface, which has strong small sample training classification ability.  
The back propagation (BP) neural network has a high classification accuracy, a strong parallel 
processing ability, a strong robustness and fault tolerance to noise, and can fully approximate 
complex nonlinear relationships.  Therefore, to determine the effect of different training set 
samples on the classification accuracy of a hyperspectral image, the hyperspectral image of an 
Indian Pines farm is used as the data source.  In this paper, when the training set samples are 1, 2, 
5, 10, and 20%, the classification accuracies of SVM and BP are compared and analyzed.

2.	 Materials and Methods

2.1	 Data source

	 The Indian Pines experimental dataset is an image of a farmland in Indiana, USA, taken in 
1992 with the AVIRIS sensor.  The image resolution is 145 × 145 pixel, the spatial resolution is 
20 m, the spectral band range is 400–2500 nm, and the spectral resolution is 9.7–12 nm.  After 
removing the bands with severe atmospheric absorption and noise effects, the remaining 200 
bands were used for experiments.  The data sample of the image is 10249 in total and contains 
16 types of feature information.  The real object image is shown in Fig. 1.  The specific category 
name and the number of pixels contained in each class are shown in Table 1.

2.2	 SVM and BP classifier

	 SVM is a typical supervised classification model.(8)  The basic principle is to find the 
classification hyperplane so that the two sample points can be separated.  In fact, it is a problem 
to solve a convex optimization.  Let d

ix R∈  denote the training sample and { }1, 1iy ∈ + −  denote 
the corresponding category label, then the optimization problem of SVM can be described as
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where w is the weight vector, b is the intercept of the decision function, ζi is the slack variable, 
C is the penalty coefficient, and Φ(∙) is the nonlinear mapping function.
	 The BP neural network is a model for dealing with nonlinear problems.(9)  It is generally 
composed of input, hidden, and output layers.  The basic principle is to feed back the results of 
neural network learning to the hidden layer and adjust the weights and thresholds so that the 
total error is minimized to meet the expected learning requirements.  The specific calculation 
steps of BP are as follows:  
Step 1: Calculate the middle layer output.
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where q is the number of middle layers, m is the number of input layers, k is the number of 
learning, Wij is the connection weight from the input layer to the middle layer, and θj is the 
threshold of the middle layer.
Step 2: Calculate the output layer output.
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Fig. 1.	 (Color online) Real object image.

Table 1
Category names and numbers of pixels of 16 features.
Number Class Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93
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where n is the number of output layers, Vjt is the connection weight of the middle layer to the 
output layer, and vt is the output layer threshold.
Step 3: Reverse transmission, calculate the error between the weight, the threshold, and the 
set value, and continuously update the weight and threshold in the neural network, so that the 
output of the output layer is made to be as close as possible to the expected output.

2.3	 Classification accuracy evaluation index

	 After the hyperspectral images are classified, it is necessary to evaluate objectively the 
classification results.  Generally, four indicators are often used for the evaluation, namely, 
class accuracy (CA), overall accuracy (OA), average accuracy (AA), and Kappa coefficient.  
CA is used to indicate the proportion of the correct classification result of each feature in the 
corresponding sample.  OA indicates the proportion of the total correct classification results in 
all samples.  AA represents the average of the proportions in which each category is correctly 
classified, taking into account the classification of each category.  The Kappa coefficient is a 
ratio that takes into account the effect of uncertainty on the classification results and is used for 
consistency testing.  The calculation formulas of these four evaluation indicators are as shown 
in Eqs. (4)–(7), respectively.
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Here, in practical applications, it is assumed that there are k categories of features, and by 
comparing the classification results with the real results, the confusion matrix R of k × k can be 
obtained.  R represents the number of samples in which category j is recognized as i.  T denotes 
the total number of the test samples.

3.	 Results and Discussion

	 In each ground, 1, 2, 5, 10, and 20% are selected as training set samples, and the remaining 
samples are used as test set samples to verify the classification accuracies of SVM and BP 
classifiers in different training set ratios.  This is shown in Table 2.  It can be seen from Table 2 
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that as the number of samples in the training set increases, the OA, AA, and Kappa coefficients 
of SVM and BP continue to increase.  This is because the more samples in the training set, the 
richer the mark information and the local structure information contained, and the selected 
features can save more global similarity or local geometric property information, so the 
classification accuracy is higher.  Moreover, the classification accuracy of BP is higher than that 
of SVM under different numbers of training set samples.
	 When the number of samples in the training set is 1%, the OA accuracy of both SVM and 
BP is about 60%.  When the number of samples in the training set is 2%, the OA accuracy of 
SVM is about 67% and that of BP is about 70%.  When the number of samples in the training 
set is 5%, the OA accuracy of both SVM and BP is about 75%.  When the number of samples in 
the training set reaches 10 and 20%, the OA accuracy of both SVM and BP is more than 80%.
	 In addition, when the number of training set samples is 20%, the BP classifier’s recognition 
accuracy for seven objects (Grass-pasture, Grass-trees, Hay-windrowed, Oats, Wheat, Woods, 
and Stone-Steel-Towers) is higher than 90% and the recognition accuracy of the Hay-windrowed 
object is 93.97%.  The recognition accuracy of the Soybean-clean object is about 85%.  The 
recognition accuracies of the four objects (Corn-notill, Soybean-notill, Soybean-mintill, and 
Buildings-Grass-Trees-Drives) are between 80 and 85%.  The recognition accuracy of the 

Table 2
Classification accuracies of SVM and BP in different training set ratios (unit: %).

Classification 1% ratio 2% ratio 5% ratio 10% ratio 20% ratio
SVM BP SVM BP SVM BP SVM BP SVM BP

Alfalfa 44.12 31.82 72.00 66.67 29.17 35.29 80.00 76.19 58.70 58.97 
Corn-notill 45.21 53.07 56.06 67.81 67.05 74.38 76.98 80.94 82.51 84.14 
Corn-mintill 58.10 53.05 49.80 56.11 66.44 60.59 78.34 78.13 80.55 78.74 
Corn 41.57 18.13 38.99 39.29 39.35 42.65 60.00 56.27 62.71 67.34 
Grass-pasture 80.24 83.76 78.97 71.72 89.33 90.62 82.23 82.25 91.83 93.77 
Grass-trees 74.45 73.44 75.84 77.57 85.73 87.47 90.30 92.55 89.56 92.36 
Grass-
pasture-
mowed

  0.00 0.00 90.48 40.91 88.89 42.86 84.00 88.00 90.48 62.96 

Hay-
windrowed 80.30 76.90 94.05 88.98 91.08 87.23 92.42 91.01 96.86 93.97 

Oats 19.35 11.86 30.43 44.44 50.00 66.67 54.55 100.00 75.00 90.91 
Soybean-notill 37.04 40.46 66.85 67.61 62.28 75.47 72.23 79.15 79.82 83.40 
Soybean-
mintill 59.70 58.27 64.42 65.51 73.48 74.44 80.53 83.04 81.46 84.48 

Soybean-clean 49.04 43.64 55.35 50.10 79.30 64.26 83.65 78.13 88.28 85.52 
Wheat 83.26 90.10 80.75 84.42 91.61 92.50 89.60 91.75 96.99 92.00 
Woods 81.91 88.08 90.83 88.92 91.88 91.44 91.37 92.06 92.58 93.42 
Buildings-
Grass-Trees-
Drives

37.18 43.95 46.06 61.29 53.44 68.00 77.09 74.73 75.00 81.12 

Stone-Steel-
Towers 98.28 23.08 100.00 87.78 100.00 96.20 98.63 97.10 95.83 91.43 

OA 60.16 60.41 67.95 70.29 75.17 76.92 81.76 83.13 84.72 86.05 
AA 55.61 49.35 68.18 66.19 72.44 71.88 80.75 83.83 83.63 83.41 
Kappa 54.06 54.20 63.07 65.81 71.60 73.64 79.14 80.76 82.51 84.06 
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Corn-mintill object is 78.74%.  The recognition accuracy of the Corn object is 67.34%.  The 
recognition accuracy of the Alfalfa object is the lowest (58.97%).
	 Figure 2 shows classification identification maps of SVM and BP in different training set 
ratios.  When the number of samples in the training set is very small, the phenomenon of “pepper 
salt” in the classification maps of SVM and BP is very clear.  When the number of samples in 
the training set is increasing, the phenomenon of “pepper salt” in the classification maps of 
SVM and BP is gradually decreasing.  Moreover, the BP classification map is smoother than the  
SVM classification map under different training set ratios.

Fig. 2.	 (Color online) Classification identification maps of SVM and BP: (a) 1% of SVM, (b) 1% of BP, (c) 2% of 
SVM, (d) 2% of BP, (e) 5% of SVM, and (f) 5% of BP.
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4.	 Conclusions

	 In this paper, the Indian Pines data set is used as the experimental data of a hyperspectral 
image, and 1, 2, 5, 10, and 20% are selected as the training set samples in 16 types of ground, 
and the remaining samples are used as test samples.  The simulation results reveal the 
classification accuracies of SVM and BP classifiers in different training set ratios, which 
provide a reference for finding the best training set samples.
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