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 We propose a novel cloud-based precise positioning system that uses visual sensing data.  
Any mobile module with a vision sensor and wireless communication can be a client and can 
receive benefit from this system.  When the client module takes a picture of an environment and 
uploads it to the server, it receives the shooting position with 6 degrees of freedom (DoFs) with 
an accuracy on the order of centimeters within a couple of seconds.  The server maintains a 
map of the environment and localizes the uploaded picture in the map.  The contributions of this 
paper are threefold.  First, we develop a new visual localization method using a 3D wireframe 
map.  The method proceeds in three steps: (i) the generation of an arbitrary perspective 2D 
image composed of line segments from a 3D wireframe map, (ii) the gradient dilation of a 
line segment image for effective image retrieval, (iii) pixelwise-AND-based image-similarity 
evaluation by parallel computing.  Second, we build 3D CAD models of an actual building from 
a 2D design drawing and with manual measurements.  Third, we experimentally evaluate our 
method using virtual sensing data.

1. Introduction

 The Internet of Things (IoT) is the network of physical objects embedded with sensors, 
actuators, software, and connectivity that enables these objects to be connected and to exchange 
data.  The IoT is a highly versatile technology that is expected to pervade many situations 
and environments, such as a home and a public space, by connecting resources and demands 
to supply efficient services.(1)  Moreover, the location information of resources and demands, 
which indicates the position information of objects related to the service, is very important in 
supplying a physical service.(2)  However, the positioning technology suited for the IoT context 
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has not developed sufficiently.  The requirements for IoT positioning are precision necessary 
and sufficient for applications, response speed suited to applications, long-term stability, low 
initial cost, low maintenance cost, low running cost, and the universality of coping with various 
sensors.  There are no technologies or studies to meet the above requirements at the same time.
 The problem of positioning a mobile object has been studied in the robotics for a long 
time.  When a robot needs to localize itself without knowledge of its environment, it must 
create a map of the environment at the same time.  Dissanayake et al. formulated this 
problem as simultaneous localization and mapping (SLAM) and Thrun et al. organized 
solutions for SLAM.(3,4)  Then, many SLAM-based localization solutions using a camera and 
a light-detection-and-ranging sensor (LiDAR) have been proposed and developed, and have 
recently become a key technology of self-driving vehicles.(5,6)  However, the large computational 
load and weight of sensors could be a bottleneck to applying sensors to small objects in IoT 
applications.
 An intelligent environment approach, in which an environment is customized by embedding 
with physical equipment, has also long been in development.  In automated factories and large 
warehouses, automated guided vehicles (AGVs) had been introduced early.(7)  First, physical 
guides made from metal were adopted, and they subsequently become a wire and magnetic and 
visual types, so as to reduce the cost of resetting.  As a visual marker, since QR codes are easy 
to install and are able to provide precise positioning, many researchers are studying for various 
applications in human living areas as well as at production sites.(8–10)  Regardless of the easy 
installation, the maintenance cost cannot be cut, making it difficult for the QR code approach 
to contribute to the IoT scenario.  The method using Wi-Fi signals surrounding a mobile object 
does not require the maintenance of devices physically.(11)  However, the mapping process is 
needed on a periodic basis, but the accuracy is low.  The maintenance and running costs and 
low accuracy are fundamental concerns in the intelligent environment approach for pervading 
human living areas.
 For realizing a positioning system with minimal maintenance and running costs as well 
as low computational burden on mobile objects, we have proposed a cloud-based positioning 
infrastructure system named Universal Map (UMap).(12)  The merits of the UMap are that it does 
not require any physical infrastructure in the environment, and the requirements of sensor and 
computational resources on the client are minimal.  The main research issues are how to prepare 
a map on the server and how to localize a query data from a client.  These problems have been 
studied in the field of computer vision.  Visual localization in large-scale environments is often 
dealt with as an image retrieval problem.  In urban environments, a geotagged image database (DB) 
is prepared beforehand, and the query image location is matched with the geotag information of 
the most similar image retrieved from the DB.(13–15)  However, the main demerit of this method 
is that it predicts only an approximate location of the query, not an accurate 6-degree-of-
freedom (DoF) position.  Another approach is to predict the 6-DoF camera pose with respect to 
a pre-constructed 3D map.  The map usually consists of a 3D point cloud built via the Structure-
from-Motion (SfM) method(16,17) or using data measured with a red-green-blue-depth (RGBD) 
sensor.(18)  The query pose is predicted by feature matching and solving a Perspective-n-Point 
(PnP) problem.  The demerit is that the map built at a time will become unusable after a certain 
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degree of environmental change has occurred.
 In contrast to the above 3D map, the UMap is composed of 3D wireframes and surfaces 
transformed from an architectural 3D CAD model.  Once the 3D wireframe map is constructed, 
it can be useful permanently unless the building suffers from damage.  The query image is 
converted to a line segment image and the camera position is predicted by retrieving the most 
similar line segment image in the DB generated from the 3D model.  In this paper, we propose 
a new method of using gradient dilation images for efficient retrieval.  The blurred lines make 
the retrieval process robust to pixel gaps in the image caused by camera position gaps.  Because 
of this effect, the prediction accuracy is expected to improve and the grid interval between DB 
images can be wide so that a smaller DB can be organized.  
 Our contributions are threefold.  First, we develop a generator for arbitrary perspective 
2D line segment images to organize an image DB.  Second, we develop an algorithm of 
gradient dilation transform to make a blurred line segment image.  Third, we develop a 
pixelwise-AND-based similarity-evaluation algorithm working on a graphic board for parallel 
computing.  All methods are validated by detailed experiments.

2. Materials and Methods

2.1 Overview of cloud-based positioning system 

 The system overview of the cloud-based positioning system named UMap is drawn in 
Fig. 1.  The UMap consists of three subsystems: a central server that maintains a 3D wireframe 
map; clients who access the server to obtain their own positions; agents who detect and report 
environmental changes to the server.  The client usually uploads the newest sensing data, then 
the server localizes the sensing data in the 3D wireframe map.  Finally, the localization result is 
downloaded to the client.  
 The UMap has been developed multidirectionally.  Various types of data, such as a standard 
camera image,(12) an omnidirectional camera image,(19) and 3D line segment data from an 
RGBD sensor(20) and a LiDAR sensor,(21) are confirmed to be query data for the UMap.  To 
improve performance, the restructuring of the DB(22) and an investigation of the allowance 

Fig. 1. (Color online) Overview of the cloud-based positioning system (UMap).
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error between a map and an actual environment(23) have been performed.  Moreover, the agent 
part has been developed where the structure edge from the 3D wireframe model and color 
edges detected from the borders of a poster are integrated into the hybrid map to cope with 
environmental changes.(24)

 In this paper, we deal with the server-client part of the UMap.  The workflow of the proposed 
method is drawn in Fig. 2.  A sensing data, which is an image taken by client’s camera, is sent 
to the server.  The server receives the image and detects line segments.  Then, the line segment 
image is used as a query for the retrieval process.  The image DB is created by a DB image 
generator (DBIG) beforehand.  The DBIG reads a 3D CAD model and generates an arbitral 
projection image.  The details of each process are described in each subsection.

2.2 Sensing and inquiry processes on the client side

 A problem of posing a rigid body in 3D space generally has 6 DoFs.  The UMap basically 
can cope with a 6-DoF positioning problem.  On the other hand, the geometrical condition of 
constraint depending on the application reduces the DoF.  In this study, we assumed a client 
module set on a cart, as shown in Fig. 3(a).  In this case, the UMap deals with a 3-DoF posing 
problem: predicting values for the x-axis, y-axis, and θ angle (horizontal angle) when the z-axis, 
vertical angle, and roll angle are constant.

Fig. 2. (Color online) Workflow of the proposed method.

Fig. 3. (Color online) (a) Example of cart and embedded client module. (b) Sample images taken by a camera and 
line segment images.

(a) (b)
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2.3 Pre-processing to the sensing image for retrieval process on the server side 

 The server executes a line segment detection process to the uploaded camera image 
immediately.  Any line detection algorithms can be used for this process, such as a Hough 
transform, a canny method, and a line segment detector.  On the basis of our pilot experiment, 
we found that the line segment detector was best suited for our system.  Examples of a sensing 
image and their line segment images are shown in Fig. 3(b).  Each line segment image is resized 
to the DB image before the retrieval process.

2.4 3D CAD models for prior map

 We built 3D CAD models of an actual building on the basis of their 2D design drawings 
and manual measurements.  During the construction of CAD models, we noted that there are 
unignorable differences between the 2D design drawing and the actual building.  For example, 
we noted that a door in the actual building does not exist in the drawing and the end of the wall 
is short compared with the drawing.  To correct these differences, the manual measurement 
process was used.  In Fig. 4, the 3D CAD models constructed are shown.  

2.5 DB of 2D images with correct position information

 For query image localization, the important features of the 3D CAD models are structural 
boundaries of the building between wall and wall, ceiling and wall, floor and wall, door and 
wall, and window and wall.  These boundaries are projected and drawn as line segments in 
an image when the viewpoint and view direction with several camera projection parameters 
are given.  The viewpoint and view direction represent the 6-DoF position in the 3D-map 
coordinate system.  Therefore, the problem of query image localization is converted to the 
problem of searching for the reasonable viewpoint and view direction for projecting the line 
segment image, which is similar to a query image.  Moreover, the problem of searching a view-

(a) (b)

Fig. 4. (Color online) (a) 3D CAD model of O-building in Aoyama Gakuin University (AGU) (total floor area:  
approx. 11000). (b) 3D CAD model of 2nd building of Dept. of Architecture (total floor area: approx. 3000).
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point direction is the same as retrieving the best similar image in an image DB consisting of 
many drawn images with various viewpoint directions.
 We developed a DBIG for the efficient drawing of line segment images with specified 
camera parameters.  The DBIG is an application executed on Windows and based on the 
Open GL library.  Table 1 shows the camera parameters for drawing an image.  When these 
parameters are given, the DBIG can draw an image as if a camera has taken a picture in the 
3D wireframe map.  Moreover, the DBIG accepts various ranges of axes and grid intervals 
to automatically generate images for the DB.  The required parameters for this process are 
described in Table 2.  For example, in the case of 0 ≤ x, y ≤ 10, 0 ≤ θ ≤ 360, dx = dy = 0.1, z = 1.2, 
dθ = 10, and ϕ = ψ = 0, 360000 images are generated.  A DBIG scene that displays camera 
positions for the DB and a sample picture are shown in Fig. 5.

Table 1
Parameters for drawing an image using DBIG.

Parameter Unit Description

Camera position and posture

x, y, z m Viewpoint in coordinate system of 3D wireframe map
θ degree Horizontal view direction (yaw)
ϕ degree Vertical view direction (pitch)
ψ degree Roll direction

Camera specification
α degree Horizontal angle of view

Wimg pixels Width of the image
Himg pixels Height of the image

(a) (b)

Fig. 5. (Color online) (a) DBIG shot of bird’s-eye-view mode where a virtual camera is drawn in the center.  
(b) Picture taken by the virtual camera in the DBIG.

Table 2
Parameters for generating a DB using DBIG.
Parameter Unit Description
xmin, xmax, ymin, ymax, zmin, zmax m Range of each axis
dx, dy, dz m Grid interval in each axis
θmin, θmax, ϕmin, ϕmax degree Range of each rotational axis
dθ, dϕ degree Angle interval in each axis
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2.6	 Gradient	dilation	transform	for	efficient	similarity	evaluation

 The image retrieval process is conducted as a similarity evaluation.  In our previous 
method,(12) the similarity between two line segment images was equal to the total number of 
surviving pixels, after pixelwise logical conjunction.  However, this method is too sensitive 
to the position gap.  When the shooting position of the query image moves slightly (for 
example 1.0 cm), the line segments in the image move more than 1 pixel.  Even if the camera 
movement is small, in the images, the line segments that overlap each other do not overlap after 
the movement.  This phenomenon possibly makes the DB image with the shooting position 
geometrically closest to the query image becomes lower in similarity than the other DB images.
 To solve the above problem of hypersensitivity to viewpoint shifts, the blur process is 
used.  We first applied the distance transform for the blur process and confirmed that the 
distance-transformed images are robust to viewpoint shifts.(25)  However, the distance transform 
approach has difficulties in limiting the dilation width and in designing an arbitrary gradient.  
Therefore, we developed a new blur process named gradient dilation transform.  We assume that 
a line segment image drawn in gray scale, where the color intensity of a pixel on line segments 
is 1 and that of a background pixel is 0.  Let pi, j

DB denote the color intensity of a target pixel 
(i, j) and q the distance from the nearest pixel on line segments.  Let qw denote the width of 
dilation and plimit the lower limit of color intensity.  Then, the color intensity of each pixel in the 
transformed image is given as

 ,

11 ( )

0 ( ).

limit
wDB

wi j

w

p q q q
qp

q q

− − ≤= 
 >

 (1)

 Examples of gradient dilation images are shown in Fig. 6.

2.7 Pixelwise-AND-based similarity evaluation

 The similarity evaluation between a query image and a DB image is conducted by pixelwise 
AND calculation.  Let pi, j

query, pi, j
DBk, and pi, j

AND denote the color intensities of a target pixel 
(i, j) in the query, k-th DB, and resulting AND images, respectively; then, the resulting pixels 
are given as

(a) (b) (c) (d)

Fig. 6. Examples of gradient dilation images: (a) qw = 0, (b) qw = 10, (c) qw = 20, and (d) qw = 30.
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queryAND DBk

i j i j i jp p p= ⋅ . (2)

 Figure 7(a) shows an overlay image of a query image, a k-th DB image, and a resulting 
AND image.  The pixels in the overlay image can be classified into 6 classes, A, B, C, D, E, 
and F, as shown in Fig. 7(b).  Let num(X) represent the total number of member pixels in class 
X and int(X) the sum of the color intensities of member pixels in class X.  Then, we define the 
similarity sk between the query image and the k-th DB image as

 
int(B) int(C)

num(A) num(B) num(C) num(D)ks +
=

+ + +
. (3)

 The image in the DB that has the maximum similarity is regarded as the best-matched image 
and its position is adopted in the prediction result of the positioning system.

3. Experimental Evaluation

3.1 Experimental environment and conditions

 We conducted 2 types of experiment.  In experiment I, we investigated the maximum 
performance of our method assuming sufficient computational resources.  The validity of 
the similarity index was evaluated in this experiment.  In experiment II, we investigated the 
practical performance.  Every experiment was conducted in the environment of the 5th floor of 
the O-building in Aoyama Gakuin University (AGU) [Fig. 4(a)].  We used a smartphone device 
(Lenovo Phab 2 Pro) as the client module in both experiments.  The camera parameters are 
α = 74.6 degree, Wimg = 320 pixel, and Himg = 180 pixel.
 The performance of the positioning method was basically measured by the error distance 
between the predicted position and the groundtruth.  Since our method can predict the view 
direction as well as the view position, we extended the error distance to the error norm.  Let q 
and bk denote the coordinate value vectors of the query and k-th DB images, respectively, then 

(a) (b)

Fig. 7. (Color online) (a) Example of overlay image with pixel class indication where the line segments of the 
query, k-th DB, and resulting AND images are drawn in magenta, green, and white, respectively. (b) Venn diagram 
of pixel classes.
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the error norm ek is defined as

 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )

k k

k q k q k q k q k q k q

e

x x y y z z θ θ φ φ ψ ψ

= −

= − + − + − + − + − + −

b q

,
 (4) 

where the unit of x, y, and z is meter, and the unit of θ, ϕ, and ψ is radian.  Note that we presume 
that an error of 0.1 rad (≈ 5.7 degree) equals an error of 0.1 m.  
(1) Experiment I: In order to deeply investigate the relationship among the parameters of the 

DB, similarity index, and error norm, we limited the target area to 4 m2 and conducted 
experiments with scrupulous configurations.  We prepared 200 types of DB in total with 
various grid intervals, angle intervals, and gradient dilation widths.  We also prepared 
10 query images randomly.  These query images were virtual sensing images.  Then, the 
position of each query image was predicted by our proposed positioning method.  The 
positions of virtual cameras for the virtual sensing image and several arrangements of 
virtual cameras for DB images are shown in Fig. 8.

(2) Experiment II: We used a standard PC (Core i7 3.7GHz, 32 GB RAM) with a graphic board 
(GTX 1080 Ti 11 GB VRAM) as a server machine covering the target area.  To investigate 
the environmental characteristics, two areas were selected as experimental fields.  Area A 
was a long corridor with an area of 70 m2 that included highly symmetric and repetitive 
elements.  Area B was a T-junction of the corridor that appeared asymmetric.  With the size 
of a DB image assumed to be 320 × 180, the maximum number of DB images that can be 
loaded on the graphic board at one time was 100000.  This limitation was due to the VRAM 
size of 11 GB and our implementation method.  We prepared 6 types of DB for each area.  
The details are described in Table 3.  For this experiment, 250 query images were prepared 
randomly for each area.  The location of each area and virtual camera positions for virtual 
query images are shown in Fig. 9.

(a) (b)

Fig. 8. (Color online) (a) Positions of virtual cameras for virtual sensing image and (b) arrangements of virtual 
cameras for DB images.
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3.2 Results and discussion

(1) Experiment I: Figure 10 shows (a) a typical overlay image and (b) a graph of the similarity 
and the error norm versus all DB images when the position of the query image is predicted.  
It is confirmed that the predicted DB image, k = 595, with the maximum similarity is very 
close to the correct answer, k = 585, the error of which is minimum.  Although the predicted 
number is not the optimum, the similarity curve appears to be smooth and unimodal, and 
it is expected that the method can predict a value close to the optimum.  In other cases, the 
similarity graph tends to be unimodal.  This finding supports the validity of the similarity 
index defined as Eq. (2).

  Table 4 shows the aggregate results chosen from all prediction experiments with every 
prepared query and DB.  In the most accurate case, where dx = dy = 0.1, dθ = 1.0, and qw = 
10 pixels, the average error norm is 0.075 m.  

(2) Experiment II: Figures 11(a) and 11(b) show graphs of the cumulative frequency of prediction 
results.  In the case of area A, the prediction accuracy is expectedly not very high.  Because 
of the symmetric appearance and many repetitive elements, the similarity of an incorrect 
position DB image becomes incidentally higher than that of an adapting correct DB image.  
Although this problem is difficult to solve using only visual information, the consistency 

Table 3
Specifications of DBs (dz, dϕ, dψ = constant) for experiment II.

Range Grid interval
dx = dy

Angle interval
dθ (°)

GD width
qw pixels

Number of 
images

Area A
−6 < x < 37.5
0.2 < y < 1.8

Approx. 70 m2
0.4

2 0, 10 98100
5 0, 10 39240
8 0, 10 24525

Area B
−6 < x < 37.5
0.2 < y < 1.8

36 m2
0.4

2 0, 10 45540
5 0, 10 18216
8 0, 10 11385

Fig. 9. (Color online) 5th floor of O-building in AGU including virtual cameras.
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of movement or another sensing modality, such as Wi-Fi signals, will lead to a solution.  In 
the case of area B, it is confirmed that the parameter setting of the DB has a considerable 
effect on prediction accuracy.  To improve the accuracy, the grid and angle intervals should 
be small, and the gradient dilation width should be set to 10 rather than 0.  In the best case, 
where dx = 0.4, dθ = 2, and qw = 10, the rate of images predicted with error under 0.5 m is 

(a) (b)
Fig. 10. (Color online) (a) Obtained overlay image and (b) graph of similarity and error versus all DB images.

Table 4
Average error norm (m) of each condition.

dx =dy (m)
0.1 0.2 0.4 0.5

θw (pix) 0 10 20 0 10 20 0 10 20 0 10 20

dθ (°)

1 0.087 0.075 0.075 0.120 0.113 0.113 0.152 0.152 0.153 0.325 0.226 0.295
3 0.189 0.155 0.160 0.201 0.161 0.327 0.310 0.191 0.267 0.480 0.222 0.471
5 0.190 0.172 0.172 0.261 0.208 0.205 0.478 0.246 0.342 0.686 0.267 0.504
7 0.341 0.314 0.327 0.346 0.347 0.365 0.459 0.452 0.399 0.550 0.451 0.383
9 0.223 0.225 0.214 0.319 0.257 0.548 0.331 0.324 0.531 0.547 0.302 0.473

(a) (b)

Fig. 11. (Color online) Prediction results in areas (a) A and (b) B. 
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around 80%.  One of the reasons why some images are matched with the wrong DB image 
is the miss-shooting of query images.  Since the virtual sensing images are generated 
randomly, some images are not suited to positioning.  For example, if the image is taken 
very near the front of a wall, the image tends to become all white without any line segments.  
Actually, the query image data set includes some all white or comparable images.  In the 
practical case, multiple sensing can alleviate this problem.  

  The round-trip time from the time when the client uploads an image to the time when the 
client receives the predicted position information was below 1.0 s in all experiments.  We 
confirmed that the system can be used in practical applications, owing to the use of a graphic 
board.

4. Conclusions

 We proposed a cloud-based positioning system using a 3D wireframe model as a map.  To 
localize the query image taken by the client in the 3D map, we developed a 2D image generator.  
This generator reads the 3D wireframe model and outputs arbitrary viewpoint images 
consisting of line segments efficiently to organize an image DB.  The positioning problem is 
converted to an image-retrieval problem, that is, finding the most similar image to the query 
image from the DB.  To enhance the image similarity evaluation process, we developed a new 
image blur method named gradient dilation transform, which is suited to blurred line segments 
with detailed tuning.  We also developed a method of evaluating the similarity between two 
line segment images on the basis of pixelwise AND.  This process can be implemented on a 
graphical processing unit with calculation by parallel computing.  
 We conducted two types of experiment and confirmed that the smallest average error 
is 0.075 m in an ideal setting.  In the case of a T-junction of the corridor that appeared 
asymmetric, 80% of the query images are successfully predicted at an error less than 0.50 m; 
the round trip time is below 1.0 s in all experiments.  
 One of the topics for future study is evaluation with real sensing query.  We confirmed, in a 
pilot experiment, that real sensing data could be predicted correctly like virtual sensing query.  
We will conduct the experiment as soon as the real sensing dataset is ready.
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