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	 In this paper, we propose a novel trilateration-based indoor localization method utilizing 
active control of lighting devices.  The proposed method estimates the position of a target for 
measurement by utilizing a trilateration method based on the distances between the target 
and lighting devices calculated from the illuminance value obtained by active control.  The 
active control involves turning on lighting devices newly installed in the target area one by 
one.  Our method has three key ideas.  The first is to remove the effect of light sources other 
than the lighting equipment used for localization by utilizing only the difference between the 
illuminance values obtained before and after turning on each lighting device.  The second 
is to remove the influence of a human shadow by utilizing three lighting devices used for 
localization selected from four lighting devices newly installed in the target area.  The third is 
to accurately estimate the position of a target by introducing a distance-illuminance model that 
can calculate the distance between an illuminance sensor and a lighting device accurately.  To 
show the effectiveness of the proposed method, we conducted evaluation experiments.  It was 
found that the proposed method can estimate the position of a target with approximately 1 m 
error on average.

1.	 Introduction

	 Recently, owing to the astonishing progress of ubiquitous computing technology, various 
applications utilizing indoor location-based services (LBSs) have been developed.(1,2)  In 
particular, these days, smart home applications such as home appliance control to reduce 
energy consumption,(3,4) concierge services for residents,(5) and monitoring systems for 
elderly people(6,7) are attracting attention.  To realize these LBS applications, it is necessary 
to recognize a wide variety of daily living activities of people with high accuracy and low 
cost.  Therefore, studies on activity recognition utilizing indoor location information have been 
conducted actively in recent years.(8,9)
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	 As a representative example of an activity recognition study, Ueda et al.(10) have proposed 
an effective method for accurately recognizing 10 types of daily living activity, such as 
cooking, watching TV, and taking a bath, by utilizing information of indoor locations and 
the power consumption of home appliances.  In this work, an average estimation accuracy of 
approximately 87.1% as well as a localization accuracy within 1.4 m, was achieved by utilizing 
three power meters.  From this result, we found that realizing an effective indoor localization 
method that can achieve a localization accuracy of approximately 1 m is required for more 
accurate activity recognition.
	 Several localization methods have been proposed.  As a typical localization method, the use 
of camera-based systems is one of the most well-known methods.  Basically, multiple cameras 
are installed in a room, and they estimate the positions of people/objects by image processing.(11,12)  
However, since these methods require the installation of many cameras, they are costly.  Also, 
personal privacy is violated as the camera resolution increases.  
	 Passive radio frequency identification (RFID)-based localization methods have also 
been proposed.  These methods mainly estimate the positions of people/objects utilizing the 
directivity formed by the combination of a reader antenna and an RFID tag.(13,14)  However, 
these methods require one or more readers to receive radio waves from the RFID tag.  Thus, the 
deployment cost is very high for an ordinary user.  
	 Wi-Fi/BLE signal-based localization methods have also been proposed.(15–20)  These methods 
realize localization to some level of accuracy by employing trilateration, fingerprinting, signal 
strength (SS), time difference of arrival (TDoA), time of arrival (ToA), and angle of arrival (AoA).  
However, the localization accuracy is significantly reduced in some cases (e.g., to approximately 
5 to 10 m) owing to the reflection and diffraction of signals since the Wi-Fi/BLE signal is very 
unstable.
	 Currently, a localization method utilizing visible light (VL) has attracted attention as one of 
the methods that can solve the problems of existing localization methods.(21,22)  The VL-based 
localization method estimates the positions of people/objects with high accuracy by utilizing 
the difference in light intensity obtained by an illuminance sensor installed in an indoor 
environment.  Since this method uses only an illuminance sensor and lighting devices for 
localization, the installation cost is low and user privacy is not violated.  However, this method 
has the following two serious problems.  The first problem is that the method cannot maintain 
sufficient localization accuracy when it is affected by light sources other than the lighting 
devices used for localization, such as sunlight.  The second problem is that it cannot estimate 
the position of a user accurately owing to the influence of the human shadow when the user 
wears a wearable illuminance sensor such as glasses.  
	 In this paper, we propose a novel trilateration-based indoor localization method utilizing an 
active control of lighting devices to solve the problems of the VL-based localization method.  
The active control involves turning on lighting devices newly installed in the target area one 
by one.  Specifically, the proposed method first turns on three (or four) lighting devices newly 
installed in the target area one by one.  The illuminance value at the target observation point is 
measured by an illuminance sensor.  Then, the proposed method calculates the distance between 
the illuminance sensor and each lighting device by applying the measured illuminance value to 
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obtain a distance-illuminance model.  This model gives the relationship between the distance 
between the illuminance sensor, which is the target for measurement, and a lighting device and 
the illuminance value.  Finally, the proposed method estimates the position of the illuminance 
sensor by utilizing the trilateration method based on the calculated distance information.  We 
have already proposed the basic idea of this method in our previous work.(23)  However, we 
have not solved all the problems of the VL-based localization method.  In this paper, we extend 
the previous work to solve the problems.  Specifically, the main contributions of this paper are 
summarized as follows:

•	 	First, we propose an algorithm that can remove the effect of light sources other than the 
lighting devices used for localization (e.g., sunlight and ceiling light) by utilizing only the 
difference between illuminance values obtained before and after turning on each lighting 
device.

•	 	Second, as an extension of the method in our previous work,(23) we propose a novel 
algorithm that can remove the influence of a human shadow by utilizing three lighting 
devices used for localization selected from four lighting devices newly installed in the 
target area.

•	 	Finally, we show that the proposed method can accurately estimate the position of a target 
for measurement by introducing a distance-illuminance model, which can calculate the 
distance between an illuminance sensor and a lighting device accurately.

	 The rest of this paper is organized as follows.  Section 2 reviews the existing work related 
to this paper.  Section 3 gives a definition of the problem in our study and Sect. 4 presents 
our proposed trilateration-based indoor localization method.  The preliminary experiment is 
described in Sect. 5 and the evaluation experiments are described in Sect. 6.  Finally, Sect. 7 
concludes this paper.

2.	 Related Work

	 Many indoor localization methods related to our research that employ several techniques, 
such as Wi-Fi, BLE, magnetic fields, RFID, infrared, and ultrasounds, have been proposed.(24,25) 
	 As a typical localization method, there are several studies in which the position of the user 
was estimated by utilizing stereo cameras.  Krumm et al.(11) have proposed a vision system 
that uses several stereo cameras to track multiple people simultaneously.  Checka et al.(12) have 
proposed an effective multimodal tracking framework that can track multiple people by using 
a combination of audio and video observations.  These systems have several stereo cameras 
installed in a room and they estimate the position of the user by processing the images taken 
from the cameras.  However, to realize indoor localization for every room, the installation of 
many stereo cameras is required and the cost becomes a burden to the user.  Moreover, a stereo 
camera always captures the posture of the user.  Since this intrudes on the user’s privacy, these 
systems are not suitable for our study.  
	 There are several studies of indoor localization that utilize pedestrian dead reckoning (PDR).(26)  
In these studies, the position of the user is estimated by utilizing inertial sensors, such as an 
accelerometer and a gyroscope, in a smartphone.  However, the reduction in the accumulated 
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error of the sensors is challenging.  Moreover, Active Bat utilizes ultrasonic waves to estimate 
the position of a user.(27)  This system can estimate the position of the user accurately by 
utilizing the TDoA technique.  However, the ultrasonic localization system costs more than 
€3000, which is too high for ordinary users.  Therefore, it is difficult to use this system in our 
target environment.
	 There are also studies in which the position of the user is estimated by utilizing the 
transmission of a radio wave.  Pilot is a device-free localization system that uses the channel 
state information (CSI) of a wireless local area network (WLAN).(28)  However, this system 
requires the installation of several access points (APs).  Also, a complex site survey of the 
radio wave is required to use the system.  Since the installation and survey cost is a burden on 
ordinary users, the construction of localization systems using the transmission of a radio wave 
is very difficult.  Therefore, a localization system that can be constructed easily and cheaply is 
required.
	 Some approaches utilizing Wi-Fi/BLE signals have also been proposed.  These approaches 
realize localization to some level of accuracy by employing trilateration,(15) fingerprinting,(16) 
SS,(17) TDoA,(18) ToA,(19) and AoA.(20)  However, because the signals of Wi-Fi/BLE are very 
unstable, the localization accuracy is significantly reduced in some cases (i.e., to approximately 
5 to 10 m) owing to the reflection and diffraction of signals.  Thus, these approaches may not be 
able to achieve the localization accuracy we are aiming for.
	 As another approach, a system using the vibration generated from footsteps during a 
living activity has been proposed.  For example, Kashimoto et al.(29) have proposed a piezo 
sensor-based indoor localization system that estimates the position of a user by utilizing a 
piezo component attached to the floor.  This system estimates the position of the user from 
the vibration type associated with four living activities (i.e., step, open door, close door, and 
so forth.) obtained by multiple piezo sensors.  Although a system prototype has already been 
implemented, the localization accuracy obtained using the system has not yet been investigated.  
Hence, its feasibility is not known.
	 Several approaches based on a passive RFID system have also been proposed.  As one of 
the representative techniques, Hähnel et al.(13) have proposed an indoor localization method 
using a probabilistic model called the sensor model, formed by the combination of a reader and 
an RFID tag.  Fujimoto et al.(14) have proposed an indoor localization method that can quickly 
and accurately estimate the position of an RFID tag simply by rotating a reader so that it faces 
an observation point.  This method estimates the position of an RFID tag attached to an object 
accurately by utilizing a communication area model that is generated from the communication 
range corresponding to the relative angle of the reader antenna and RFID tag.  Jiang et al.(30) 
have proposed a method called 3D-OmniTrack, which can accurately track the 3D localization 
and orientation of a target object.  However, in these methods, the installation cost of the passive 
RFID system is very high since these systems require one or more readers (or special wearable 
readers/sensors) to receive the radio wave from the RFID tag.  Therefore, a low-cost system is 
required for the target environment.
	 The approach of utilizing VL is currently attracting attention as a technique that can achieve 
high position estimation accuracy.(21,22)  The VL-based approach basically estimates the 
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position of a user and/or object from the difference in light intensity (i.e., illuminance value) 
obtained by an illuminance sensor installed in an indoor environment.  Since this approach uses 
only an illuminance sensor and lighting devices (i.e., no other special devices are required) for 
localization, it is a comparatively low-cost and easy-to-construct localization system.  Also, this 
approach can estimate the user’s position without accumulating localization errors or infringing 
on user privacy since it does not use an accelerometer, cameras, or audio.  However, this 
method has two problems.  The first is that it cannot maintain sufficient localization accuracy 
because it is affected by light sources other than the lighting equipment used for localization, 
such as sunlight.  The second is that it cannot estimate a user’s position accurately owing to 
the influence of the human shadow when a user wears a wearable illuminance sensor such as 
glasses.  These problems are important challenges to be solved in our study.  

3.	 Problem Definition for VL-based Localization

	 In this paper, we focus on the VL-based localization method.  In this section, we define the 
problem of the VL-based localization targeted in this paper before describing our proposed 
method.  First, we describe the prerequisites of the target space and lighting devices used for 
our study.  Then, we define the problem of the VL-based localization in our study.  Finally, we 
describe the approach used to solve the problems in our study.

3.1	 Prerequisites of target space

	 We first describe the prerequisites of the target space in this study.  We assume an ordinary 
room in a general house as the target space.  Figure 1 shows an example of a target space.  
As shown in Fig. 1, we assume that the area (i.e., the area in pink) that is affected by newly 
installed lighting devices at the edge of the target space is the target area in which localization 
is conducted.  We assume that the following prerequisites are satisfied in the target space:

Fig. 1.	 (Color online) Example of target space.
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•	 	Multiple lighting devices can be newly installed at the edge of the target area.
•	 	Ordinary furniture, home appliances, and ceiling lights are installed in the target area.  
•	 	Sunlight enters the target area from a window installed in the target space.

3.2	 Prerequisites of lighting devices

	 Next, we explain the prerequisites of the lighting devices used in this study.  The VC-based 
localization method estimates the position of a target for measurement from the difference 
in illuminance value obtained by an illuminance sensor.  Thus, this method does not use 
accelerometers, cameras, or voice to avoid an accumulated error and protect the privacy of 
users.  Also, since this method uses multiple lighting devices to conduct localization, it has to 
construct a localization system by utilizing devices that can be installed at a comparatively low 
cost.  Therefore, we consider that it is necessary to use lighting devices that are widely used in 
general households to easily construct a localization system.  Additionally, it is necessary to be 
able to easily switch the state of lighting devices (i.e., ON and OFF) at any time to measure the 
difference in light intensity.  Hence, the prerequisites of the lighting devices used in this study 
are summarized as follows:

•	 	Incandescent or LED lights used as ordinary lighting devices are used for localization.
•	 	There are two states of the lighting devices: ON and OFF.
•	 	The state of the lighting devices can be changed by remote control at any time.
•	 	The coordinates of each lighting device installed for localization are known.

	 As the target for measurement in this paper, we assume that an illuminance sensor can be 
placed at any position in a target area or that a user wears a wearable illuminance sensor.

3.3	 Problem definition

	  In this section, we define the problem.  Figure 2 shows a conceptual diagram of the problem 
definition for VC-based localization.  The set of target areas in the target space that satisfy the 
prerequisites mentioned in Sect. 3.1 is denoted by A.  The set of lighting devices (indicated by 
circles) newly installed at the edge of each target area  ( )a a A∈  is denoted by 1 2{ , , , }nL l l l=  , 
and the set of ceiling lights is denoted by 1 2{ , , , }nL l l l′′ ′ ′=  .  The position coordinate of an 
illuminance sensor, which is the target for measurement (indicated by a star), installed at an 

Fig. 2.	 (Color online) Diagram of problem definition.
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arbitrary position in a is denoted by u, or the position coordinate of a user wearing a wearable 
illuminance sensor is denoted by u'.  The illuminance value measured by an illuminance sensor 
is denoted by lux.  The state of the lighting device  ( )i il l L∈  is denoted by pi (ON/OFF) and the 
installation coordinate is denoted by xi.  The sets of pi and xi are denoted by 1 2{ , , , }nP p p p= 

 
and 1 2{ , , , }nX x x x=  , respectively. ip′,  ix′, P', and X' are similarly defined for a ceiling light 
(indicated by a ring).  Also, the state (with/without) of sunlight (indicated by an arrow) entering 
area a is denoted by s.  The aim of our study is to estimate u or u' when lux, L, P, and X are 
given in an arbitrary a A∈ .  

4.	 Proposed Method

	 In this section, we describe our proposed VL-based localization method.  First, we give an 
outline of the proposed method.  Then, we describe the localization algorithms of the proposed 
method.  Finally, we describe the distance-illuminance model, which is the core mechanism in 
our proposed method.  

4.1	 Outline

	 The ultimate goals of this paper are (1) to propose a novel localization method that can solve 
the problems of the VL-based approach and (2) to investigate the effectiveness of the proposed 
method by performing evaluation experiments assuming a real environment.  To achieve 
these objectives, we found that our proposed method needs to fulfill the following three main 
requirements as discussed in Sects. 2 and 3:

Req. 1:	 The method should be able to estimate the target’s position even when there is 
an influence of external light, such as sunlight.
Req. 2:	 The method should be able to estimate the target’s position even in an 
environment influenced by a human shadow.
Req. 3:	 The method should be able to achieve sufficient localization accuracy (specifically, 
approximately 1 m).

	 In this paper, to realize an effective approach that can fulfill all the above requirements 
while making the best use of the advantages of VL-based localization, we propose a novel 
trilateration-based indoor localization method utilizing active control of lighting devices.  The 
active control involves turning on the lighting devices newly installed in the target area one by 
one.  The proposed method estimates the position of the target for measurement (illuminance 
sensor) by utilizing a trilateration method based on the distances between the target for 
measurement and lighting devices calculated from the difference in illuminance value obtained 
by active control.
	 There are three key ideas of the proposed method in order to fulfill Reqs. 1 to 3.  The first 
idea is that the proposed method can ignore the effect of light sources other than the lighting 
equipment used for localization (e.g., sunlight and ceiling light) by utilizing only the difference 
between illuminance values obtained before and after turning on each lighting device (Req. 1).  
The second idea is that the proposed method can ignore the influence of a human shadow by 
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utilizing three lighting devices used for localization selected from four lighting devices newly 
installed in the target area (Req. 2).  The third idea is that the proposed method can accurately 
estimate the position of a target for measurement by introducing a distance-illuminance model 
that can calculate the distance between an illuminance sensor and a lighting device accurately 
(Req. 3).  Also, the proposed method can estimate the position of a target for measurement 
accurately not only in a 2D environment but also in a 3D environment.

4.2	 Localization algorithms

	 In this section, we describe the following two localization algorithms of the proposed 
method: Algorithm 1 is a localization algorithm used to estimate the position of the illuminance 
sensor and Algorithm 2 is a localization algorithm used to estimate the position of a user who is 
wearing a wearable illuminance sensor.  Before describing the proposed localization algorithms, 
we first describe some functions defined uniquely in order to understand them:

Algorithm 1  Localization algorithm used to estimate position of illuminance sensor.
1: 	 { } 0,0,0P ←

2: 	 ( ) ChangeLight P
3: 	  1i ←
4: 	 ( ) 0 ()lux getIllumination←

5:  while i < 4 do
6: 	 ( )1 1p i − ←

7: 	 ( )ChangeLight P
8: 	 ( ) ()lux i getIllumination←

9: 	 ( ) ( ) ( )1lux i lux i lux i′ ← − −

10: 	 ( ) ( )( )d i getDistanceModel lux i′←

11: 	 1i i← +
12:  end while
13:  ()x getPositionLightSource←

14:  while ( ) ( ) ( ) ( )( )1 2 1 , 2d d distance x x− >  do
15: if d(1) > d(2) then
16: 	 ( ) ( )1 1 99 / 100d d← ×

17: 	 ( ) ( )2 2 101 / 100d d← ×
18: else
19: 	 ( ) ( )1 1 101 / 100d d← ×

20: 	 ( ) ( )2 2 99 / 100d d← ×
21: end if
22:  end while

23:  while ( ) ( ) ( ) ( )( )1 2 1 , 2d d distance x x+ <  do

24: 	 ( ) ( )1 1 101 / 100d d← ×

25: 	 ( ) ( )2 2 101 / 100d d← ×
26:  end while
27:  ( ) ( ) ( ) ( )( )1 , 2 , 1 , 2q intersection d d x x←

28:  ( ) ( )( ), 3 , 3u near q d x←
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Algorithm 2  Localization algorithm to estimate user wearing wearable illuminance sensor. 
1: 	 { } 0,0,0,0P ←

2: 	 ( ) ChangeLight P
3: 	  1i ←
4: 	 ( ) 0 ()lux getIllumination←
5:  while i < 5 do
6: 	 ( )1 1p i − ←

7: 	 ( )ChangeLight P

8: 	 ( ) ()lux i getIllumination←

9: 	 ( ) ( ) ( )1lux i lux i lux i′ ← − −

10: 	 ( ) ( )( )d i getDistanceModel lux i′←

11: 	 1i i← +
12:  end while
13:  ()x getPositionLightSource←

14:  ( ),U estimatedPosition x d←′
15:  1i ←
16:  while i < 5 do
17:  ( ),U excludeIfOutOfRange U i′←′
18:  1i i← +
19:  end while 
20:  ( )u getAveragePosition U←′ ′

•	 ( )ChangeLight P  
Change each lighting device to the lighting state corresponding to pattern P .

•	 ()getIllumination  
Get the illuminance value measured by the illuminance sensor at the moment.

•	 ( )( )getDistanceModel lux i′  
Get the distance between a lighting device and an illuminance sensor utilizing the 
distance-illuminance model with the measured illuminance value as the argument.

•	 ()getPositionLightSource  
Get the installation coordinates of three lighting devices.

•	 ( )1 2,distance x x  
Get the distance between two coordinates x1 and x2.

•	 ( )1 2 1 2, , ,intersection d d x x  
Get the intersections of two circles/spheres with center x and radius d.

•	 ( ), ,near q d x  
Get the intersection closer to the circle/sphere represented by x and d among q values, 
which indicate intersection coordinates.

•	 ( ),estimatedPosition x d  
Get each estimated position coordinate of the four combination patterns described in 
Sect. 4.2.2 using x and d.
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•	 ( ),excludeIfOutOfRange U i′  
Exclude U′(i) from U′ if U′(i) is a position coordinate outside of the target area.

•	 ( )getAveragePosition U ′  
Get the average of all position coordinates of U′.

	 In the above, P indicates the set of lighting patterns of each lighting device.  For example, 
when the state of the third lighting device is ON and that of the other lighting devices is OFF, 
P is denoted by {0,0,1} or {0,0,1,0}.  lux'(i) indicates the illuminance value considering only the 
influence of the ith lighting device, x indicates the installation coordinate of the lighting device,  
d indicates the distance between the illuminance sensor and the lighting device, q indicates 
the intersection coordinates obtained from intersection(), and U' indicates the set of u'.  Also, 
the proposed method is trilateration-based indoor localization.  Therefore, our algorithms use 
the intersection of three circles as the estimated position in the case of 2D localization and the 
intersection of three spheres as the estimated position in the case of 3D localization.  In the 
following sections, we describe the localization algorithms of the proposed method.

4.2.1	 Localization algorithm used to estimate position of illuminance sensor (Algorithm 1)

	 First, we describe the localization algorithm used to estimate the position of an illuminance 
sensor.  Basically, when the proposed method estimates the position of the illuminance 
sensor installed in target area a (hereafter, called u), it estimates u by using three lighting 
devices 1 2 3{ , , }L l l l=  newly installed in a target space.  The distance 1 2 3{ , , }D d d d=  between 
each lighting device and an illuminance sensor can be estimated by applying the difference 
between illuminance values observed before and after turning on each lighting device to a 
distance-illuminance model based on the results of preliminary experiments (refer to Sect. 
4.3).  The key idea of this algorithm is that it can ignore the effect of light sources other than 
the lighting devices used for localization (e.g., sunlight and ceiling light) by considering only 
the difference between illuminance values obtained before and after turning on each lighting 
device (corresponding to Req. 1).  The installation coordinate 1 2 3{ , , }X x x x=  of each lighting 
device is already known, as described in Sect. 3.1.  Hence, as shown in Fig. 3, this algorithm 
can estimate u by applying the installation coordinate X and distance D of each lighting device 
to the trilateration method.  The details of this algorithm are described in Algorithm 1 and 
summarized as follows:

1.	 	First, the state of all lighting devices used for localization starts from OFF (called the 
initial state).  The algorithm first obtains the illuminance value in the initial state (lines 
1–4).

2.	 	After obtaining the illuminance value in the initial state, the algorithm turns on each 
lighting device alternately (e.g., l1→l2→l3) by utilizing the active control.  The algorithm 
calculates the difference between illuminance values obtained before and after turning 
on a lighting device and obtains the illuminance value after removing the effect of light 
sources other than the lighting devices used for localization (lines 6–9).
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3.	 	The algorithm calculates the distance between the target for measurement and a lighting 
device by applying the illuminance value obtained by the active control to a distance-
illuminance model (line 10).

4.	 	The algorithm repeats procedures 2 and 3 until all distances are calculated (lines 5–11).
5.	 	Then, the algorithm creates three circles/spheres with the installation position of each 

lighting device as the center and with each calculated distance as the radius.  After that, 
the algorithm checks that two circles/spheres selected randomly from the three created 
circles/spheres intersect (lines 14 and 23).

6.	 	At this time, two cases arise where two circles/spheres do not intersect.  The first is 
the case where both circles/spheres are small, and the second is the case where one 
circle/sphere is too large compared with the other circle/sphere.  If these cases occur, 
the algorithm repeatedly makes adjustments until the two circles/spheres intersect by 
changing their size by 1% intervals (lines 15–21, 24, and 25).

7.	 	After the algorithm obtains the two intersecting positions of two circles/spheres, it selects 
the position closer to the remaining circle/sphere as the final estimated position for a 
target for measurement (lines 27 and 28).

	 In the trilateration-based indoor localization method, there are cases where intersections 
created by three circles/spheres often cannot be calculated due to various factors.  In such 
a case, there is a problem that the existing methods of using the average position of three 
intersections as the estimated position of the target for measurement cannot be applied.  In 
order to solve such a problem, Paterna et al.(15) have proposed the weighted trilateration method.  
In our algorithm, based on a part of this method, we adopt a heuristic approach in that two 
intersections are forcibly created by adjusting (enlarging/reducing) the size of two randomly 
selected circles/spheres and selecting the intersection closer to the remaining circle/sphere 
among those intersections as the estimated position of target for measurement.

4.2.2	 Localization algorithm used to estimate position of user wearing wearable 
illuminance sensor (Algorithm 2)

	 Second, we describe a localization algorithm used to estimate the position of a user wearing 
a wearable illuminance sensor (hereafter, called u').  If a user is wearing a wearable illuminance 
sensor such as glasses, the illuminance value measured by an illuminance sensor may be 

Fig. 3.	 (Color online) Example of localization to estimate position of illuminance sensor.
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relatively small since the light emitted from a lighting device is blocked by the user’s body (called 
the influence of the human shadow).  Therefore, Algorithm 1 cannot estimate u' accurately 
because it incorrectly calculates the distance between a user and the lighting device to be 
farther than the actual distance owing to the influence of the human shadow.  This algorithm 
estimates u' by utilizing four lighting devices 1 2 3 4{ , , , }L l l l l=  newly installed in the target space 
to solve this problem.  The key idea in this algorithm is that it can ignore the influence of the 
human shadow by effectively utilizing three lighting devices used for localization selected from 
four lighting devices by the active control (corresponding to Req. 2).  This algorithm uses four 
patterns corresponding to the combinations ( 31 2 3 1 2 2 4 314 4{ , , }, { , , }, { , , }, and { , , }l l l l l l l l l l l l ) of 
the three lighting devices used for localization.  For example, as shown in Fig. 4, the algorithm 
calculates the estimated positions 1 2 3 4{ , , , }U u u u u′ ′ ′ ′ ′=  utilizing these patterns by the same 
procedure as Algorithm 1.  The algorithm accurately estimates u', which is the final estimated 
position, by excluding all estimated positions influenced by a human shadow (i.e., estimated 

(a) (b)

(c) (d)

Fig. 4.	 (Color online) Example of localization to estimate position of user who is wearing wearable illuminance 
sensor (case where lighting device l4 is influenced by human shadow). (a) Localization utilizing combination pattern 

1 2 3{ , , }l l l . (b) Localization utilizing combination pattern 1 2 4{ , , }l l l . (c) Localization utilizing combination pattern 
2 3 4 { , , }l l l . (d) Localization utilizing combination pattern 1 3 4{ , , }l l l .
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positions outside the target area a) from U' as shown in Figs. 4(a)–4(d).  The details of this 
algorithm are described in Algorithm 2 and are summarized as follows:

1.	 	First, the state of all lighting devices used for localization starts from the initial state.  
The algorithm first obtains the illuminance value in the initial state (lines 1–4).

2.	 	After obtaining the illuminance value in the initial state, the algorithm turns on each 
lighting device alternately (e.g., l1→l2→l3→l4) by utilizing the active control.  The algorithm 
calculates the difference between illuminance values obtained before and after turning 
on a lighting device and obtains the illuminance value after removing the effect of light 
sources other than the lighting devices used for localization (lines 6–9).

3.	 	The algorithm estimates the distance between the target for measurement and a lighting 
device by applying the illuminance value obtained by the active control to a distance-
illuminance model (line 10).

4.	 	The algorithm repeats procedures 2 and 3 until all distances are calculated (lines 5–11).
5.	 	After calculating each distance, the algorithm calculates each estimated position 

1 2 3 4{ , , , }U u u u u′ ′ ′ ′ ′=  by utilizing the four combination patterns ( 31 2 3 1 2 2 4 314 4{ , , }, { , , }, { , , }, and { , , }l l l l l l l l l l l l

31 2 3 1 2 2 4 314 4{ , , }, { , , }, { , , }, and { , , }l l l l l l l l l l l l ) used for localization by the same procedure as Algorithm 1 (line 14).
6.	 	Then, the algorithm excludes all estimated positions that are judged to be outside the 

target area from the estimated positions 1 2 3 4{ , , , }U u u u u′ ′ ′ ′ ′=  to remove the influence of the 
human shadow (lines 16–19).

7.	 	Finally, by calculating the average estimated position from the remaining estimated 
positions, the algorithm obtains its position as the final estimated position of the target for 
measurement (line 20).

4.3	 Distance-illuminance model

	 The trilateration-based indoor localization method estimates the position of the target for 
measurement based on the distance information between the target and at least three anchor 
nodes whose installation positions are known.  Therefore, an effective method that can 
calculate the distance between them correctly is required to estimate the position of the target 
for measurement accurately.  In this section, we propose a distance-illuminance model as an 
effective and novel method of calculating the distance between an illuminance sensor and a 
lighting device to estimate the position of a target for measurement accurately (corresponding to 
Req. 3).  The distance-illuminance model gives the relationship between the distance between 
the illuminance sensor, which is the target for measurement, and a lighting device, and the 
illuminance value.  The distance-illumination model is created by the following procedure:

1.	 	First, only one lighting device is turned on and the illuminance value is measured at 
multiple observation points in the target area.

2.	 	Data about the distance between each observation point and the lighting device, as well 
as illuminance values at these observation points, are recorded.

3.	 	A linear or nonlinear approximation model is then calculated from the recorded data 
using the least-squares method.

4.	 	Finally, this model is used as the distance-illuminance model.
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	 The illuminance value obtained by the illuminance sensor gradually decreases as the 
observation point moves away from the lighting source (illumination device) according to 
the inverse square law.(31)  However, this property varies significantly depending on the 
measurement environment, the type of illuminance sensor used for measurement, and so on.  
It is very difficult to create a generic distance-illuminance model that takes into consideration 
all of these influences.  Hence, in this paper, we use a mathematical model created from 
premeasured illuminance values in the actual target area used for our study as the distance-
illuminance model.  We discuss preliminary experiments to create a distance-illuminance 
model in detail in Sect. 5.

5.	 Preliminary Experiment

	 In this section, we describe the preliminary experiment to create the distance-illuminance 
models used in 2D and 3D localizations.  We first describe the experimental environment 
and then the method used in the preliminary experiment.  Finally, we describe the obtained 
distance-illuminance models used in 2D and 3D localizations.

5.1	 Experimental environment

	 Figure 5 shows the experimental environment in the preliminary experiments.  In our 
study, we assume an ordinary room in a house as the target space/area in the experimental 
environment.  Therefore, we used the smart home in our university, shown in Fig. 5(a), as the 
testbed to conduct various experiments.  Also, the floor size of the target area (colored area), as 
shown in Fig. 5(b), is 3530 × 4150 mm2.  Since the distance-illuminance model must be created 
as accurately as possible in our study, preliminary experiments were conducted in the situation 
of no external light sources (i.e., sunlight, ceiling light, and so forth.) other than the lighting 
devices used for the measurement.  Additionally, to eliminate the effect of furniture and home 
appliances, they were removed from the target area.

(a) (b)

Fig. 5.	 (Color online) Experimental environment in preliminary experiment. (a) Smart home testbed. (b) Floor 
size of target area.
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5.2	 Experimental method

	 The major objective of the preliminary experiments was to create the distance-illuminance 
models used in 2D and 3D localizations according to the procedure described in Sect. 4.3.  Also, 
we consider that investigating the versatility of the proposed method is one of the important 
objectives of this study.  Therefore, we use two different combinations of light devices and 
illuminance sensors according to each experimental pattern in order to investigate whether 
the proposed method works effectively even when using different lighting devices.  Figure 6 
shows the lighting devices (LED light and incandescent light) and the illuminance sensors 
[SensorTag CC2650STK(23,32) and SenStick(33–36)] used for the preliminary experiments.  We 
used the combination of the LED light and SensorTag CC2650STK when creating the distance-
illuminance model used in 2D localization and the combination of the incandescent light and 
SenStick when creating the distance-illuminance model used in 3D localization.  SenStick is 
a tiny BLE board in which eight types of sensor are embedded and has been used in various 
studies on activity recognition and so on.  The illuminance sensor mounted on SensorTag 
CC2650STK is a TEXAS INSTRUMENTS Inc. OPT3001.  The illuminance sensor mounted on 
SenStick is a ROHM Co., Ltd. BH1780GLI.
	 Figure 7 shows the installation position of the lighting device and the observation points 
when creating each distance-illuminance model.  The observation points used to measure the 

(a) (b) (c) (d)

Fig. 6.	 (Color online) Devices used in experiment. (a) LED light, (b) SensorTag CC2650STK, (c) incandescent 
light, and (d) SenStick.

Fig. 7.	 (Color online) Installation position of lighting device and observation points. (a) Case of creating 
distance-illuminance model used for 2D localization. (b)  Case of creating distance-illuminance model used for 3D 
localization.

(a) (b)
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illuminance values are set according to the characteristic of the lighting device used in the 
2D or 3D localization.  To be specific, the observation points shown in Fig. 7(a) are set on a 
straight line since the LED light (model number: a09099) has high directivity.  By contrast, 
the observation points shown in Fig. 7(b) are set in a grid since the incandescent light (model 
number: LW100V57W2PA) has high light diffusivity.  In the preliminary experiments, 
we installed the LED light at a height of 1.1 m and the incandescent light at a height of 
2.1 m.  Moreover, we measured the illuminance value at each observation point utilizing the 
illuminance sensor corresponding to each preliminary experiment that installed at a height of 1.1 m.

5.3	 Results of distance-illuminance models used for 2D and 3D localizations

	 Figure 8 shows the creation result of each distance-illuminance model.  The vertical axis 
shows the illuminance value and the horizontal axis shows the distance between the illuminance 
sensor and the lighting device.  
	 From the result in Fig. 8(a), the illuminance value measured at each observation point 
decreases at almost regular intervals until the distance between the illuminance sensor and the 
lighting device is 3 m, after which it decreases much more slowly.  Therefore, the distance-
illuminance model is defined as a function of distance that is piecewise linear.  We empirically 
obtain the approximation model by applying the least-squares method.  As a result, the distance-
illuminance model for 2D localization is given by

	
4.21 14.96 ( 3)
0.63 5.01 ( 3),

d L
L

d L
− + ≥

=  − + <
	 (1)

where L is the illuminance value (lx) and d is the distance between the illuminance sensor and 
the lighting device (m).  On the other hand, from the result in Fig. 8(b), the illuminance value 
smoothly decreases exponentially as the distance between the illuminance sensor and the 
lighting device increases.  Therefore, we empirically model the data using an approximation 

(a) (b)

Fig. 8.	 (Color online) Creation of distance-illuminance model. (a) Distance-illuminance model used for 2D 
localization. (b) Distance-illuminance model used for 3D localization.
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curve by applying the least-squares method.  As a result, the distance-illuminance model used 
for 3D localization is given by

	 3.02184.55 .L d −= 	 (2)

	 In our study, we conduct localization experiments utilizing these distance-illuminance 
models.  In Sect. 6, we describe evaluation experiments on localization in detail.

6.	 Evaluation Experiment

	 In this section, we describe the evaluation experiment.  We first describe the environment 
and localization system in the experiments.  Then, we describe the evaluation method and 
discuss the experimental results.  Finally, we describe the limitation of the proposed method.

6.1	 Experimental environment

	 In this section, we describe the experimental environment.  The target area in the evaluation 
experiments is the same as that in the preliminary experiment described in Sect. 5.  The main 
objective of the evaluation experiment is to determine whether all the requirements mentioned 
in Sect. 4 are fulfilled.  To test the effectiveness of the proposed method in detail, we conduct 
experiments that assume an actual environment and consider two states: the “ideal state” and 
“realistic state.”  In the ideal state, the target space is free from furniture and home appliances, 
and there are no external light sources (i.e., sunlight or ceiling light) other than the lighting 
devices used for localization.  By contrast, in the realistic state, furniture and home appliances 
are present and external light sources influence the target space.  In this paper, we verify 
the effectiveness of our proposed method utilizing two experimental patterns (2D and 3D 
localizations) for each state.  Figure 9 shows the layout of the furniture and home appliances in 
the realistic state used in the 2D and 3D localization experiments.  The colored parts show home 
appliances.  

Fig. 9.	 (Color online) Layout of furniture and home appliances in realistic state. (a) 2D localization experiment. (b) 
3D localization experiment.

(a) (b)
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6.2	 Localization system for experiment

	 In this section, we describe the localization system for the evaluation experiment.  Figure 10 
shows the configuration of our localization system.  Our system consists of the following five 
equipment: (1) lighting devices, (2) iRemocon, (3) illuminance sensor, (4) PC, and (5) router.  
iRemocon is a remote controller controllable via a Wi-Fi network.  iRemocon is trained to 
switch between the state of each lighting device by learning the infrared signal used to control 
them.  Also, iRemocon transmits the control signal to each lighting device when receiving a 
special character string (control command) by TCP/IP communication.  During the localization 
process, the illuminance sensor (target for measurement), which is installed in the target area, 
transmits the obtained illuminance values to a PC.  The PC controls each lighting device by 
transmitting the control command (the command to switch the state of each lighting device) 
to iRemocon via a router.  The system estimates the position of the target for measurement by 
utilizing illuminance values obtained by the illuminance sensor while turning on each lighting 
device one by one.  At this time, the order of switching the state is random.  

6.3	 Experimental method

	 In this section, we describe the experimental method.  We conduct experiments for 
the following two cases: Case 1) a localization experiment to estimate the position of the 
illuminance sensor installed in the target area; Case 2) a localization experiment to estimate the 
position of a user wearing a wearable (glasses-type) illuminance sensor.  We describe each case 
below in detail.

6.3.1	 Localization experiment to estimate position of illuminance sensor (Case 1)

	 For Case 1, we estimate the position of the illuminance sensor installed in the target area.  
We use Algorithm 1, utilizing the active control of three lighting devices in this experiment.  In 

Fig. 10.	 (Color online) Configuration of localization system for evaluation experiment.
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Case 1, we use two experiment patterns (2D and 3D localizations).  Also, the combinations of 
lighting devices and illuminance sensors used in 2D and 3D localizations are the same as in the 
previous experiment discussed in Sect. 5.  That is, we use the same combination of an LED light 
and SensorTag CC2650STK in 2D localization and the same combination of an incandescent 
light and SenStick in 3D localization.  
	 In each experimental pattern in Case 1, we conduct experiments under the following six 
environmental conditions in Table 1 according to the definitions of the ideal and realistic states: 
(1) 2D_ideal_state, (2) 2D_with_funiture_appliance (state of ceiling light is OFF, without 
sunlight, with furniture and home appliances), (3) 2D_with_sunlight (state of ceiling light is 
OFF, with sunlight, without furniture and home appliances), (4) 2D_ON_ceiling_light (state 
of ceiling light is ON, without sunlight, furniture, and home appliances), (5) 3D_ideal_state, 
and 6) 3D_realistic_state.  Figures 11(a) and 11(b) show the installation positions of the lighting 
devices and illuminance sensor in Case 1 for 2D and 3D localizations, respectively.  Small 
circles show observation points and large circles show the installation positions of the lighting 
devices.  In 2D localization, since the height at which the illuminance sensor is installed must 
be the same as that of the lighting devices (LED lights), the illuminance sensor is installed at a 
height of 1.1 m.  In 3D localization, to consider the effect of the difference in the height of the 
installation position of the illuminance sensor, we conduct an experiment utilizing two patterns 
in which it is installed at heights of 1.0 and 1.5 m.  Also, the three incandescent lights used in 
3D localization are installed at a height of 2.1 m.  The localization process is performed three 
times at each observation point.  

Table 1   
Environmental conditions in Case 1.

Condition Experimental pattern Furniture and home 
appliances Sunlight State of ceiling light

2D_ideal_state

2D localization

without without OFF
2D_with_funiture_appliance with without OFF
2D_with_sunlight without with OFF
2D_ ON_ ceiling_light without without ON
3D_ideal_state 3D localization without without OFF
3D_realistic_state with with ON

(a) (b)

Fig. 11.	 (Color online) Installation positions of lighting devices and illuminance sensor in Case 1. (a) 2D 
localization experiment. (b) 3D localization experiment.
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	 In Case 1, we evaluate the average localization error (hereafter, called the average error) and 
the maximum localization error (hereafter, called the maximum error) to show that the proposed 
method can estimate the position of a target for measurement with high accuracy even with the 
effect of external light sources, such as sunlight and ceiling light.

6.3.2	 Localization experiment to estimate position of user wearing wearable illuminance 
sensor (Case 2)

	 In Case 2, we estimate the position of a user wearing a wearable illuminance sensor in the 
target area.  We use Algorithm 2, utilizing the active control of four lighting devices in this 
experiment.  We also use Algorithm 1 for comparison to show the superiority of Algorithm 2.  
The illuminance sensor used in Case 2 is the glasses-type wearable illuminance sensor shown 
in Fig. 12(a).  This wearable illuminance sensor comprises SenStick attached to glasses made by 
a 3D printer.  Figure 12(b) shows the glasses-type illuminance sensor being worn.  As shown in 
Fig. 12(c), during the experiment, the glasses-type illuminance sensor is always worn at a height 
of 1.5 m, which is the height of the user’s eyes.
	 Case 2 uses the layout shown in Fig. 9(b) and is conducted using only environmental 
conditions with the realistic state.  Figure 13 shows the installation positions of the lighting 

(a) (b) (c)

Fig. 12.	 (Color online) Wearable illuminance sensor and example of wearing illuminance sensor. (a) Wearable 
illuminance sensor (glasses-type). (b) Demonstration of glasses-type wearable illuminance sensor. (c) Wearing 
position during experiment.

Fig. 13.	 (Color online) Installation positions of lighting devices and illuminance sensor in Case 2.
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devices and illuminance sensor in Case 2.  Small circles show the observation points, where the 
user stands, and large circles show the installation positions of the lighting devices.  In Case 2, 
we conduct 2D and 3D localizations simultaneously by utilizing the incandescent light installed 
at a height of 2.1 m.  The lighting devices used for Algorithm 1 are the same as in Fig. 11(b).  In 
this experiment, at each observation point, the user faces the direction of the installed lighting 
devices and performs the localization process.  This is done for every lighting device; thus, the 
localization process is performed 12 times (= 3 trials × 4 directions) at each observation point.
	 In Case 2, we also evaluate the probability that the estimated position is within the target 
area (called the probability estimate), in addition to the average error and maximum errors, 
to show that the proposed method can estimate the position of a user wearing an illuminance 
sensor accurately even in an environment that is influenced by the user’s shadow.  

6.4	 Results and discussion

6.4.1	 Experimental results (Case 1)

	 Table 2 shows the experimental results in Case 1.  The average error (Ave.  error) is the 
average (i.e., 2D: 30 trials = 3 trials × 10 observation points; 3D: 60 trials = 3 trials × 10 
observation points × 2 patterns) of the localization errors at all observation points.  The 
maximum error (Max. error) is the largest localization error.  The difference from the ideal state 
is the difference between the average errors of the ideal state and the other conditions.  
	 The results in Table 2 show that the average error under all experimental conditions is 
less than 1 m and the maximum error is approximately 1 m.  Also, the difference from the 
ideal state under all experimental conditions is less than 0.15 m.  These results show that the 
proposed method can estimate the position of a target for measurement accurately not only in 
the ideal state but also under experimental conditions assuming the real environment.  The 
proposed method can remove the effect of light sources other than the lighting devices used for 
localization by applying the difference between illuminance values obtained before and after 
turning on each lighting device to the appropriate distance-illuminance model according to the 
experimental pattern.  Therefore, the proposed method can estimate the position of a target for 
measurement with very high accuracy even with the effect of external light sources, such as 
sunlight and ceiling light.  Additionally, from the results in Table 2, we also find that there is 
almost no change in average error among the different layouts of furniture and home appliances.  
Hence, we find that the proposed method can fulfill Reqs. 1 and 3 mentioned in Sect. 4.

Table 2
Experimental results in Case 1.
Condition Ave. error (m) Max. error (m) Difference from ideal state (m)
2D_ideal_state 0.44 0.85 —
2D_with_funiture_appliance 0.48 1.00 0.04
2D_with_sunlight 0.50 1.06 0.06
2D_ ON_ ceiling_light 0.52 1.07 0.08
3D_ideal_state 0.47 0.89 —
3D_realistic_state 0.61 1.13 0.14
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	 Figure 14 shows the distribution map of the localization error under each experimental 
condition.  The circles show the size of the average error at each observation point.  The results 
in Fig. 14 show that the average errors of the observation points near the wall are slightly larger 
than those of other observation points under all experimental conditions.  The LED light used in 
2D localization has high directivity.  Therefore, the average error becomes small at observation 
points in the measured direction of the distance-illuminance model and becomes slightly larger 
at observation points near the wall.  However, as shown in Figs. 14(a)–14(d), the average error 
at each observation point is not so large because the average error is less than 1 m under all 
experimental conditions.  Thus, we consider that the directivity of the LED light has little effect 
on the localization accuracy.  In 3D localization, we consider that the reason why the average 
error at some observation points including near the wall becomes slightly larger is because the 

Fig. 14.	 (Color online) Distribution map of localization error under each condition. (a) 2D_ideal_state. (b) 2D_
with_funiture_appliance. (c) 2D_with_sunlight. (d) 2D_ON_ceiling_light. (e) 3D_ideal_state. (f) 3D_realistic_
state.

(a) (b)

(c) (d)

(e) (f)
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Table 3 
Experimental results in Case 2.
Condition Ave. error (m) Max. error (m) Probability estimate (%)
2D_Alg_1 0.96 2.76 46.5
2D_Alg_2 0.90 1.73 80.6
3D_Alg_1 1.17 2.76 46.5
3D_Alg_2 1.07 2.49 80.6

height of the installation position of the illuminance sensor, which is a target for measurement, 
is different from that in the preliminary experiment.  However, as shown in Figs. 14(e) and 14(f), 
the average error at each observation point is not so large since the average error is less than 1 
m under all experimental conditions.  Hence, we consider that the difference in the height of the 
installation position of the illuminance sensor has little effect on the localization accuracy.

6.4.2	 Experimental results (Case 2)

	 Table 3 shows the experimental results in Case 2.  The average error (Ave. error) is the 
average (i.e., 108 trials = 3 trials × 4 directions × 9 observation points) of the localization errors 
at all observation points.  The maximum error (Max. error) is the localization error with the 
largest value among all localization errors.  The probability estimate is the probability that the 
estimated position of the target for measurement is within the target area.  Also, 2D_Alg_1 and 
3D_Alg_1 denote that the localization process is performed by Algorithm 1 utilizing the active 
control of three lighting devices, and 2D_Alg_2 and 3D_Alg_2 denote that it is performed by 
Algorithm 2 utilizing the active control of four lighting devices.  
	 As shown in Table 3, when the localization process is performed by Algorithm 1, the average 
errors are 0.96 and 1.17 m in 2D and 3D localizations, respectively.  These results show that 
these conditions have sufficiently high localization accuracy.  However, the probability estimate 
of these conditions is 46.5%, which is relatively low.  This result shows that the position of the 
target for measurement cannot be estimated in more than half of the localization processes.  On 
the other hand, when the localization process is performed by Algorithm 2, the average errors 
are 0.90 and 1.07 m in 2D and 3D localizations, respectively.  These results show that these 
conditions have sufficiently high localization accuracy.  Also, the probability estimate of these 
conditions is 80.6%, which is higher than that of the conditions utilizing Algorithm 1.  This is 
because Algorithm 2 can remove the influence of a human shadow by effectively utilizing three 
lighting devices used for localization selected from four lighting devices by the active control.  
Hence, from these results, we find that the proposed method can fulfill all the requirements 
mentioned in Sect. 4.

6.5	 Limitation

	 Through the experiments in Sect. 6.4, we confirmed the effectiveness of the proposed 
method.  However, our method still has a limitation on the influence of flickering owing to the 
active control of lighting devices.  The influence of flickering caused by the active control of 
lighting devices changes depending on the frequency of performing the localization process.  
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If we track a user’s position frequently, the proposed method needs to continuously perform 
active control.  As a result, the user might feel discomfort.  By contrast, we consider that the 
user will not feel flickering when the proposed method is used periodically at fixed intervals 
(e.g., approximately once every 10 or 30 min).  Also, we consider that it is likely that a user feels 
discomfort when the active control of lighting devices is performed during a specific activity, 
e.g., watching TV.  We consider that the discomfort to the user may be reduced by performing 
the active control of lighting devices while avoiding the specific activity recognized by certain 
methods.(8,9)

7.	 Conclusion

	 In this paper, we have proposed a trilateration-based indoor localization method utilizing 
active control of lighting devices.  The proposed method estimates the position of the target 
for measurement by utilizing a trilateration method based on the distances between the target 
for measurement and lighting devices calculated from the difference in illuminance value 
obtained by the active control.  To show the effectiveness of the proposed method, we conducted 
evaluation experiments for two cases: (1) a localization experiment to estimate the position of 
the illuminance sensor installed in the target area and (2) a localization experiment to estimate 
the position of a user wearing a wearable illuminance sensor.  The following are primary 
findings of this study:
•	 	The proposed method can estimate the target’s position with 1 m accuracy or higher even 

with the influence of external light sources (such as sunlight and ceiling light) other than the 
lighting devices used for localization by considering only the difference between illuminance 
values obtained before and after turning on each lighting device.

•	 	The proposed method can estimate the target’s position with approximately 1 m accuracy 
even in an environment influenced by a human shadow by effectively utilizing three lighting 
devices selected from four lighting devices by the active control.

•	 	The proposed method can estimate the target’s position accurately by utilizing the 
appropriate distance-illumination model according to each experimental pattern, not only in 
the ideal state but also under experimental conditions simulating a real environment.

	 As future work, we plan to optimize how to select two circles/spheres in our algorithm, e.g., 
we consider that we need to try all combination patterns and then select the best combination 
pattern among them.  Also, we will devise a distance-illuminance model that takes into account 
the influence of light reflection by a wall.  Even if multiple targets for measurement exist in 
the target area, we will devise a localization algorithm that can estimate the position with high 
accuracy.  Additionally, we will devise an optimal placement method for lighting devices used 
for localization.
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