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 In the field of sports, there are increasing opportunities to use inertial measurement units 
(IMUs) to enhance the training process and improve the performance of athletes.  We focus on 
kendo, a traditional martial art using shinai (bamboo swords) in Japan, and propose methods 
for detecting and recognizing strike activities using IMUs towards realizing a kendo skill 
improvement support system.  We used a sensor data set of strike activities obtained from 14 
participants (seven kendo-experienced and seven inexperienced persons).  We attached four 
IMUs to the participants’ right wrist, waist, and shinai (tsuba and saki-gawa).  First, to detect 
the strike activity, we calculated the dynamic time warping (DTW) distance between the 
training data and the time series data, and detected the strike activity sections.  The proposed 
method detected strike activities with a high accuracy of 95.0%.  Next, to recognize the strike 
activity, we recognized five types (Center-Men, Right-Men, Left-Men, Dō, and Kote).  In the 
person-dependent (PD) case, we achieved an accuracy of 89.5% using data of the right wrist.  In 
the person-independent (PI) case, we achieved an accuracy of 54.9% using IMUs attached to 
the three positions.  These results clarified the points to be improved in the proposed method to 
realize the support system.

1. Introduction

 In recent years, information and communication technology (ICT) in sports has been 
actively promoted.  ICT makes it possible for athletes and coaches to quantitatively analyze 
numerical data of game content and training performance.  Therefore, the utilization of ICT 
is expected to enhance the training process, increase tactical patterns in games, and improve 
athletes’ performance in various sports.(1)  In rugby, inertial measurement units (IMUs) and 
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GPS are used to quantify athletes’ workload during training and games.(2–4)  This enables the 
performance analysis of athletes and minimizes the risk of overtraining and injury, so many 
professional sport teams utilize ICT.
 Recently, with the spread of smartphones and smartwatches equipped with many sensors 
and the improved usability of analysis software, ICT can easily be used even by amateur 
athletes and the general public.  Among the various sensors, IMUs are expected to be used for 
sports, because they can obtain the motion information of players in both indoor and outdoor 
scenarios with high accuracy.(5)  In basketball and climbing, there are studies that analyzed the 
activity using an IMU attached to the wrist.(6,7)  We have also been studying motion recognition 
and support in weight training, which is a basic sports activity, by using IMUs.(8)  IMUs are 
also used in Japanese traditional martial arts.  For example, in iaido, there are some studies 
conducted to analyze and evaluate the proficiency level of players using IMUs and motion 
capture measurements.(9,10)  In kendo, there are also some studies conducted to evaluate the 
proficiency level of strike activities using acceleration and pressure sensors attached to shinai 
(bamboo swords) and armor.(11,12)  However, to the best of our knowledge, no study has been 
conducted to detect and recognize strike activities to monitor kendo players using IMUs.  In 
this paper, we focus on kendo, which is a traditional martial art in Japan, and propose a method 
for detecting and recognizing strike activities using IMUs towards realizing a kendo skill 
improvement support system.
 Kendo is a traditional Japanese martial art, like fencing, in which players wear protective 
armor and use shinai in order to strike each other.  There are four basic strike activities in 
kendo: 1) “Men”, which strikes the head; 2) “Tsuki”, which thrusts the throat; 3) “Dō”, which 
strikes the waist; 4) “Kote”, which strikes the wrist.  Men is classified into three types: strikes to 
the center (Center-Men), upper right (Right-Men), and upper left (Left-Men) of the head.  Since 
an incorrectly performed Tsuki can cause injury, we do not cover Tsuki in this study.  In kendo, 
Ki-Ken-Tai, which is the harmony between spirit, shinai handling, and overall body movement 
during striking, is very important to gain a point.  Therefore, it is necessary to master each 
strike activity perfectly to improve one’s skill.  One of the best ways to improve kendo skills is 
to practice swinging actions.  Practicing swings can help one to understand the body movement 
required for an accurate strike activity.  It is better not to practice alone, but to obtain advice 
based on objective information from a coach and other players.  However, it is difficult for 
each student to obtain enough advice for each activity because a coach instructs multiple 
students.  This problem may decrease practice efficiency and motivation, as well as increase 
the risk of injury due to practice swinging in wrong forms.  To solve the above-mentioned 
problems, the objective of this study is to realize a kendo skill improvement support system that 
enables players to perform effective kendo practice that improves the practice efficiency and 
performance even alone by using wearable IMUs.  This system assumes that players attach an 
IMU to their body and shinai, and practice performing strike activities.  It is composed of the 
following three steps: 1) detecting a strike activity section from the obtained sensor data; 2) 
recognizing the type of strike activity; 3) evaluating the strike activity and providing feedback.  
In a previous study, we conducted strike activity recognition using the inertial sensor data set 
collected from six participants (two kendo-experienced and four inexperienced persons).(13) 
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 In this paper, we propose a new method for detecting and recognizing strike activities by 
practice swings using IMUs.  We increased the number of participants to 14 (seven kendo-
experienced and seven inexperienced persons) and used a sensor data set of strike activities by 
practice swings obtained from the 14 participants.  We attached four IMUs to the participants’ 
body (at the right wrist and waist) and shinai (at the sword guard called the tsuba and at the tip 
called the saki-gawa) during our experiment and obtained sensor data for each position.  In our 
method, to detect the strike activity, we calculated the dynamic time warping (DTW) distance 
between the presegmented training data and the time series data, and detected the strike activity 
section.  Furthermore, we classified five types of strike activity (Center-Men, Right-Men, Left-
Men, Dō, and Kote) using a machine learning method.
 The rest of this paper is organized as follows.  In Sect. 2, we review the existing work related 
to this paper.  In Sect. 3, we present our proposed detection and recognition methods.  In Sect. 4, 
we describe the experiment overview.  The evaluation and experimental results are described in 
Sect. 5.  Finally, Sect. 6 concludes this paper.

2. Related Work

 In various sports, activity analysis and monitoring systems using ICT can be expected to 
have many effects such as improving the performance of athletes and reducing the risk of injury.  
Several methods for them have been proposed and can be divided into three: 1) camera-based 
methods that analyze images of sports activity; 2) global navigation satellite system (GNSS)-based 
methods that analyze tracking information obtained by attaching a GNSS device to a player’s 
body; 3) sensor-based methods that analyze sensor data obtained by attaching some IMUs to a 
body or sports equipment.(14–16)

 The camera-based methods do not require the attachment of devices to the body, so the 
player can measure sports activity without feeling any discomfort.  Therefore, camera-based 
methods are the most frequently used method in sports analysis.  In particular, there are optical 
motion capture systems used for the measurement of high-speed sports activity and a direct 
linear transformation (DLT) method using a digital video camera.(17,18)  These methods are 
frequently used for more accurate measurement.  However, when using multiple cameras, the 
system becomes large-scale and expensive.  Also, when using only one camera, there are blind 
spots that cannot be measured because the measurement range is limited. 
 GNSS-based methods require the attachment of a device to the body to track the player.  
These methods are frequently used in sports where games are played in large outdoor fields 
such as American football(19) and soccer.(20)  Catapult PLAYERTEK(21) can analyze players’ 
mileage, play area, and accuracy of formation from the data obtained by tracking their location 
information in the game, and it can also be used for tactics.  However, tracking is limited to 
outdoor sports because tracking accuracy is significantly reduced indoors.
 Sensor-based methods require the attachment of IMUs to the body to obtain the sensor 
data of player’s motion.  The IMUs can obtain the motion information of players both indoors 
and outdoors with high accuracy.  However, in these methods, it is difficult to intuitively 
understand the player’s motion only by using the obtained data.  Thus, there are many studies 
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that analyze activity during sports by using IMUs and provide effective feedback to the players 
so that they can practice efficiently.  Blank et al. attached inertial sensors to table tennis rackets 
and recognized eight different basic stroke types using data collected from 10 amateur and 
professional players.(22)  The SONY Smart Tennis Sensor(23) can measure the hitting point, 
shot type, swing speed of the racket, and so forth by attaching the sensor device to the racket.  
James et al. analyzed Men, which is the most basic strike activity of kendo, by attaching an 
accelerometer at the tip of a wooden sword.(24)  As a result, they reported that the accelerometer 
can quantitatively evaluate the difference in swing characteristics between beginners and 
professionals.  However, they did not measure other strike activities and did not recognize 
activities using machine learning.
 In our proposed method, the strike activities are analyzed using the sensor data obtained 
from IMUs.  There are three reasons for employing this approach.  First, this support system 
assumes that the player uses it alone.  A camera-based method using a video camera or a 
smartphone camera is not easy for players to use because it takes time to set the camera and 
adjust the angle of view.  Second, kendo is an indoor sport.  Therefore, GNSS-based methods, 
such as using GPS, are not practical.  Lastly, with the development of wearable computing in 
recent years, various wearable sensors such as wristwatch, glasses, and belt types have been 
developed.  Moreover, since many of them are equipped with an IMU, we can expect further 
expansion of the support system in the future.

3. Methods

3.1 Kendo skill improvement support system

 In this section, we describe the kendo skill improvement support system that enables kendo 
players to practice effectively even alone.

3.1.1 Overview

 The final goal of this support system is to recognize strike activities by practice swings, as 
well as to provide feedback only by attaching some IMUs to the body and shinai.  With this, we 
aim to improve players’ strike activities in terms of correctness.  Therefore, as shown in Fig. 1, 
the support system is composed of the following three steps: 1) detecting a strike activity section 
from the obtained sensor data; 2) recognizing the type of strike activity; 3) evaluating the strike 
activity and providing feedback.  In this paper, we focus on the detection and recognition of 
strike activities by practice swings.

3.1.2 Target activities

 Strike activities are only made towards specified target positions, all of which are protected 
by armor.  Figure 2 shows the striking positions of five strike activities, the target activities in 
this study.  The names of the strike activities are Men (Center-Men, Right-Men, and Left-Men), 
Dō, and Kote, which are explained as follows.
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• Men (Center-Men, Right-Men, and Left-Men)
Men is the most basic strike activity whereby the player strikes the opponent’s head with 
the shinai.  Basically, the player strikes the center of the head (Center-Men), but there is 
also a strike to the upper right (Right-Men) or upper left (Left-Men) of the head.

• Dō
Dō is the strike activity whereby the player strikes the opponent’s torso with the shinai.  
In principle, striking the right side of the torso is important in kendo, so we exclude the 
strike of the left side of the torso.

• Kote
Kote is the strike activity whereby the player strikes the opponent’s wrist with the shinai.  
In principle, striking the right wrist is important in kendo, so we exclude the strike of the 
left wrist.

 Tsuki is also one of the basic strike activities whereby the player thrusts the opponent’s throat 
with the shinai.  However, since an incorrectly performed Tsuki could cause serious injury to 
the opponent’s neck, Tsuki in practice and competitions is often restricted to senior graded 
kendo players.  Therefore, we exclude it in this study.  Figure 3 shows movements of the strike 
activities of Center-Men, Dō, and Kote.  The movements of Men and Kote have some similarity.

3.1.3 Sensor type and position

 The IMUs used in this study are MPU-9250, a popular IMU by InvenSense, embedded on 
SenStick.(25)  SenStick is a tiny multi-sensing board developed for recognizing human activities 

Fig. 1. Configuration of the kendo skill improvement support system.
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as shown Fig. 4, which has eight types of typical sensor (accelerometer, gyroscope, and 
magnetic, temperature, humidity, pressure, light, and UV devices).  Also, it can record all the 
sensing data to on-board memory at a sampling rate of up to 100 Hz.  Furthermore, it can send 
data to a smartphone or a PC via low-energy Bluetooth.  SenStick is used in various studies on 
activity recognition.(8,26,27)  We use the inertial sensor (three-axis accelerometer and gyroscope) 
data from the IMUs.  We set the sampling rate of the IMUs to 100 Hz to accurately measure the 

Fig. 2.  (Color online) Striking positions.

Fig. 3.  (Color online) Movements of the strike activities.  (a) Center-Men.  (b) Dō.  (c) Kote.

(a)

(b)

(c)
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activities because strike activities are very fast.  The position of an IMU is an important issue 
in this study because it must not affect the play and the position will affect the detection and 
recognition accuracy.  In this study, we selected four positions as shown in Fig. 5.  Two IMUs 
are attached to the body [(1) right wrist and (2) waist], and two IMUs are attached to the shinai [(3) 
shinai tsuba and (4) shinai saki-gawa].  The shinai tsuba is the sword guard of the shinai, and 
the shinai saki-gawa is the small leather tip at the end of the shinai.  Figure 6 shows an example 
of acceleration and a gyroscope waveform measured by SenStick attached to the right wrist.

3.2 Strike activity detection

 We detect sections of five types of strike activity from the acceleration time series data 
obtained from the IMUs attached to the participant based on the DTW distance.(28)  DTW is 
an algorithm for calculating the similarity (distance) between two time series data.  The DTW 
distance ( )1 2,D T T  of time series data ( )1 1 1

1 1 2, , , nT t t t= …  and ( )2 2 2
2 1 2, , , mT t t t= …  of lengths n and 

m is defined as

 ( ) ( )1 2, ,D T T d n m= ,  (1)

 ( )
( )
( )

( )
1 2

, 1
, min 1,

1, 1  
i j

d i j
d i j t t d i j

d i j

 −
= − + −
 − −

,  (2)

 ( ) ( ) ( )0,0 0,  ,0 0,d d i d j= = = ∞ ,  (3)

 ( )1, , ;  1, ,i n j m= … = … .

 In our method, the DTW distances between the subsequences of the acceleration time series 
data including strike activities obtained from the IMUs and the presegmented training data of 

Fig. 4. (Color online) SenStick, an IMU device used in this study.
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the strike activity are calculated.  We detect the strike activity sections from the time series data 
based on the DTW distances.  In kendo, there are cases where the length and partial speed of the 
strike movement differ depending on the competitors, such as the number of years of experience 
and gender.  DTW can calculate the distance between two time series data in consideration of 
these cases.

Fig. 5.  (Color online) Positions of the IMUs attached to the body and shinai.

Fig. 6.  (Color online) Sample waveforms of three strike activities.  (a) Acceleration.  (b) Gyroscope.

(a)

(b)
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 We firstly calculate the composition of acceleration in three-axis time series data using Eq. (4).

 2 2 2Composite x y z= + +  (4)

The composite acceleration data are divided into subsequences with 75% overlaps and a 
1.28 s time window (128 samples) using a sliding window.  Next, DTW distances between all 
subsequences and the training data are calculated.  Here, the training data is a composite of 
acceleration in three axes during the strike activity, pre-segmented manually.  After the DTW 
distances are normalized, local minimum points with a distance less than or equal to ε are 
detected.  The subsequences corresponding to the DTW distances having a local minimum 
point are extracted, and the total 2.56 s time series data interpolated by 0.64 s before and after  
subsequences is detected as the strike activity sections.  Figure 7 shows a summary of the 
detection method and the waveform of the DTW distances between the composite acceleration 
data including nine strike activities of Center-Men and the training data of the same player’s 
Center-Men.  Figure 8 shows the composite acceleration data and the detection result.  The 
ranges in blue in Fig. 8 indicate the strike activity sections segmented manually, and those in 
red indicate the subsequences detected as the strike activity sections by the proposed method.

3.3 Strike activity recognition

 We recognized five types of activity using the inertial sensor data obtained from the IMUs 
attached to the participant: 1) Center-Men, 2) Right-Men, 3) Left-Men, 4) Dō, and 5) Kote.
 In the data preprocessing process, first, a median filter and a 20 Hz third-order Butterworth 
low-pass filter are applied to three-axis acceleration (Acc-XYZ) and gyroscope (Gyro-XYZ) 
signals to remove noise such as spike noise.  Since gravity and motion components are mixed in 
the denoised acceleration signal (Acc-XYZ), gravity component (GravityAcc-XYZ) and motion 

Fig. 7.  (Color online) Summary of our detection method and the waveform of the DTW distances between the 
composite acceleration time series data including nine strike activities.  
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component (BodyAcc-XYZ) signals are separated by using a 0.3 Hz Butterworth low-pass 
filter.  Furthermore, the magnitude signal (GravityAcc-Mag, BodyAcc-Mag, and BodyAccJerk-
Mag) and the jerk signal (BodyAccJerk-XYZ) are obtained by calculating the Euclidean 
distance of the three-axis signal and the time derivative of the motion component acceleration 
signal, respectively.  In addition to the angular velocity of the body movement component 
(BodyAngularSpeed-XYZ), the angular acceleration (BodyAngularAcc-XYZ) and magnitude 
signal (BodyAngularSpeedMag and BodyAngularAccMag) are generated via the same process.  
Furthermore, a  fast Fourier transform (FFT) is applied to seven waveforms (the 10 waveforms 
except for GravityAcc-XYZ, GravityAccMag, and BodyAngularSpeed-XYZ) to generate signals 
mapped in the frequency domain.  As a result, a total of 17 types of signal (10 time-domain and 
7 frequency-domain signals) shown in Table 1 are extracted.
 In the feature extraction process, the 17 signals obtained in the preprocessing process are 
divided into 25% overlaps with a 2.56 s time window (256 samples).  The time-domain and 
frequency-domain features shown in Table 2 are calculated from signals separated by a time 
window of 2.56 s.  As a result, 561 features are calculated from each window data.  These are 
extracted as all the kinds of features to the best of our knowledge, which can be generated using 
the acceleration and the gyroscope from the IMU, considering that the strike activity is fast and 
the IMU is also attached to the shinai.(29–31)

 In the strike activity recognition model generation process, the 561 features are standardized 
and a feature selection method is applied to reduce the number of features and optimize the 

(a)

(b)

Fig. 8.  (Color online) Composite acceleration data and the detection result based on the DTW distances.  (a) Strike 
activity sections segmented manually.  (b) Detected strike activity sections using DTW distances. 
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Table 1
Time- and frequency-domain signals generated from accelerometer and gyroscope.
Signal name Type (T: time, F: freq.)
Body Acc T, F
Gravity Acc T
Body Acc Jerk T, F
Body Angular Speed T, F
Body Angular Acc T
Body Acc Mag T, F
Gravity Acc Mag T
Body Acc Jerk Mag T, F
Body Angular Speed Mag T, F
Body Angular Acc Mag T, F

Table 2
Function list for feature extraction.
Function Description Formula Type

mean(s) Arithmetic mean 1
1 N

iis s
N =

= ∑  T, F

std(s) Standard deviation ( )21
1 N

ii s s
N

σ
=

= −∑  T, F

mad(s) Median absolute deviation ( )( )i i j jmedian s median s−  T, F
max(s) Largest value in array ( )i imax s  T, F
min(s) Smallest value in array ( )i imin s  T, F

energy(s) Average sum of squares 2
1

1 N
ii s

N =∑  T, F

sma(s1, s2, s3) Signal magnitude area
3

,1 1
1
3

N
i ji j s

= =∑ ∑  T, F

entropy(s) Signal entropy ( )( ) 1 1log , /N N
i i i i ji jc c c s s

= =
=∑ ∑  T, F

iqr(s) Interquartile range ( ) ( )3 1Q s Q s−  T, F

autoregresion(s) 4th-order Burg autoregression coefficient ( ) 4, 4 , a arbur s a Rg= ∈  T

correlation(s1, s2) Pearson correlation coefficient ( )1,2 1,1 2,2 1 2/ , cov , C C C C s s= T

angle(s1, s2, s3, v) Angle between signal mean and vector ( )1
1 2 3 1 2 3tan || , , ||, , ,s s s v s s s v− × ⋅       T

range(s) Range between smallest and largest values ( ) ( )i i i imax s min s−  T

rms(s) Root mean square ( )2 2 2
1 2

1
Ns s s

N
+ + +  T

skewness(s) Frequency signal skewness
3s sE

σ

 −      
 F

kurtosis(s) Frequency signal kurtosis ( ) ( )
24 2/E s s E s s   − −      
 F

maxFreqInd(s) Largest frequency component ( )i iargmax s  F

meanFreq(s) Frequency signal weighted average 1 1( ) /N N
i ji jis s

= =∑ ∑  F

energyBand (s, a, b) Spectral energy of frequency band [a, b] 21
1

b
ii asa b =− + ∑  F

N: signal vector length, Q: quartile, T: time domain features, F: frequency domain features
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model performance.  Strike activity recognition models are generated on the basis of a machine 
learning algorithm using the features selected as input data.  In this process, Scikit-learn,(32) 
a machine learning library, was used for standardizing and selecting features and generating 
strike activity recognition models.

4. Experiment

 In this section, we describe the experiment conducted to collect the actual activity data 
from participants to evaluate the proposed method.  We recruited 14 participants (13 male and 
one female, age 18.9 ± 3.9), which include seven kendo-experienced and seven inexperienced 
persons.  There are four 1st dan and two 2nd dan grade holders in the group of experienced 
persons, where the dan grade implies that the basic skills have been mastered.  
 As target labels for strike activity detection and recognition, we selected the following five 
types of activity: 1) Center-Men, 2) Right-Men, 3) Left-Men, 4) Dō, and 5) Kote.

4.1 Experimental setup for data collection

 Four IMUs were attached to the participants’ right wrist, waist, shinai tsuba, and shinai 
saki-gawa, and inertial sensor (three-axis accelerometer and gyroscope) data was recorded 
at a sampling frequency of 100 Hz during the experiment.  When the participant was a 
kendo-inexperienced person, before carrying out the five types of strike activity, he received 
brief guidance from an experienced person.  All the participants performed 10 sets of each 
type of strike activity after taking a static state, that is, we collected five types of time series 
data including 10 sets of strike activities for each participant.  As a result, we created a data set 
comprising 700 sets of strike activities from the participants.  Besides tracking the participant’s 
sensor data, all strike activities were also captured on video and manually segmented for the 
training data based on the video.

4.2 Strike activity detection

 In this experiment, we considered two cases for the detection method of strike activity: 
1) comparison of similarity measurement methods and 2) comparison of detection of target 
activities.  The following subsections describe each case.

4.2.1 Comparison of similarity measurement methods

 In order to evaluate the performance of the proposed method, we compared the method 
using DTW with other similarity measurement methods.  We used Euclidean distance and 
cosine similarity in the other similarity measurement methods.  Given two time series data 

( )1 1 1
1 1 2, , , nT t t t= …  and ( )2 2 2

2 1 2, , , nT t t t= …  of length n, Euclidean distance and cosine similarity 

are defined as
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 ( ) ( )21 2
1 2

1
,

n

Euclidean i i
i

D T T t t
=

= −∑ , (5)

 ( ) 1 2 1 2
1 2

1 1 1
, /

n n n

cosine i i i i
i i i

Sim T T t t t t
= = =

=∑ ∑ ∑ . (6)

 We used acceleration time series data of five types of strike activity of each participant 
obtained from the IMU on their right wrist.  Each time series data includes the 10 sets of the 
same type of strike activity.  One set was extracted from the time series data as training data.  
The subsequences of the same participant’s time series data including the remaining nine sets 
were used as input data.  Each set was used as training data by cross-validation.  In the methods 
using Euclidean distance and cosine similarity, the two time series need to have the same 
length.  Therefore, the length of both the training data and the subsequences was set to 1.28 s (128 
samples).

4.2.2 Comparison of detection of target activities

 In order to confirm the versatility of the proposed method, we considered four types of 
evaluation method: A) detection of the same activity for the same participant, B) detection of 
a different activity for the same participant, C) detection of the same activity for a different 
participant, and D) detection of a different activity for a different participant.  The lengths of 
the training data and subsequences were respectively set to 3.01 s (301 samples) and 1.28 s (128 
samples) in each case.  A) to D) are explained as follows:

A) Detection of the same activity for the same participant
Here, the same type of strike activity of the same participant as the training data was used 
as the input data.  Out of the 10 sets of strike activities for each participant, one set was 
extracted as the training data from the time series data.  The subsequences of time series 
data including the remaining nine sets of the same participant were used as the input data.  
Each set was used as the training data by cross-validation.  Furthermore, we compared the 
dependence of the detection accuracy on the IMU attachment position.

B) Detection of a different activity for the same participant
Here, a different type of strike activity of the same participant from the training data was 
used as the input data.  Out of the 10 sets of strike activities, one set was extracted as the 
training data from the time series data.  The subsequences of time series data including 10 
sets of the different type of strike activity of the same participant from the training data were 
used as the input data.

C) Detection of the same activity for a different participant
Here, the same type of strike activity of a different participant from the training data 
was used as the input data.  Two base participants (one kendo-experienced and one 
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inexperienced) were chosen, and out of the 10 sets of strike activities, one set was extracted 
as the training data from the time series data.  The subsequences of time series data 
including 10 sets of the same type of strike activity of the different participant from the 
training data were used as the input data.

D) Detection of a different activity for a different participant
Here, a different type of strike activity of a different participant as the training data was used 
as the input data.  Two base participants (one kendo-experienced and one inexperienced) 
were chosen, and of the 10 sets of strike activities of them, one set was extracted as the 
training data from the time series data.  The subsequences of time series data including 10 
sets of the different type of strike activity of the different participant from the training data 
were used as the input data.

4.3 Strike activity recognition

 In this experiment, we considered three cases for the recognition method of strike activity: 1) 
comparison of three machine learning algorithms, 2) comparison of each combination of IMU 
positions, and 3) evaluation of the generalization performance of the models.
 We use machine learning for recognizing strike activities.  To compare the accuracy, we 
adopted three machine learning algorithms: random forest (RF), support vector machine (SVM), 
and neural network (NN).  Furthermore, we compared the dependence of the accuracy on 
the IMU attachment position.  Our final goal is to support kendo players with small numbers 
of IMUs attached to the wrist and/or shinai.  Therefore, we compared the accuracy of the 
combination of IMUs attached to the right wrist and shinai.  The data of one IMU has up to 
561 features, and a feature selection method was applied to optimize model performance.  In 
order to confirm the generalization performance, we verified two cases:  person-dependent 
(PD) and person-independent (PI) cases.  In the PD case, nine sets of data recorded with a 
particular participant were employed for training, and one set of data was used for the test.  
We used each set to be the test data once by cross-validation.  In the PI case, we performed 
leave-one-person-out cross-validation, where in each fold, 13 persons were used for training and 
the remaining one was used for the test.

5. Results and Discussion

5.1 Strike activity detection

 We discuss the detection results through 1) a comparison of similarity measurement methods 
and 2) a comparison of detection target activities.  For all detection results, we also compared 
the detection accuracy for participants with and without kendo experience.
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5.1.1 Comparison of similarity measurement methods

 Table 3 shows the results of the detection accuracy for each type of strike activity using 
DTW and other similarity measurement methods.  Figure 9 shows the detection accuracy for 
participants with and without kendo experience.  The horizontal axis shows average accuracy 
based on participants’ kendo experience.  Similarity measurement methods are differentiated 
by color.  DTW achieved the highest accuracy.  In contrast, Euclidean distance gave the lowest 
accuracy.  Therefore, we clarified that DTW is effective as a similarity measurement method for 
detecting strike activities accurately.

5.1.2 Comparison of detection target activities

 In the case of detecting the same activity for the same participant, the results of the detection 
accuracy are shown in Table 4.  We compared the detection accuracy of the IMU attachment 
position for participants with and without kendo experience.  First, reading the average of all 
participants, the highest detection accuracy was obtained when the IMU was attached to the 
right wrist, and our proposed method achieved 94.2% accuracy (F-measure).  When the IMU 
was attached to the waist, we achieved 93.0% accuracy.  The lowest detection accuracy was 
86.8% when the IMU was attached to the shinai tsuba and saki-gawa.
 The highest accuracy among the kendo-experienced participants was obtained when IMU 
was attached to the shinai saki-gawa, and we achieved 99.1% accuracy.  The accuracy decreased 
in the order, shinai tsuba, waist, and right wrist, and all the accuracies exceeded 95.0% 
(F-measure).  In the case of inexperienced participants, the highest accuracy was obtained when 

Table 3
Comparison of similarity measurement methods.
Type of training data DTW (%) Euclidean distance (%) Cosine similarity (%)
Center-Men 96.5% 56.6% 86.0%
Right-Men 94.4% 50.0% 86.1%
Left-Men 96.4% 55.4% 94.0%
Dō 90.7% 59.4% 81.1%
Kote 96.1% 58.3% 89.3%
Avg. 94.8% 55.9% 87.3%

Fig. 9. (Color online) Strike activity detection results obtained by F-measure for distance measurement methods.
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the IMU was attached to the right wrist, and we achieved an accuracy of 92.8%.  The accuracy 
decreased in the order waist, shinai tsuba, and shinai saki-gawa, which was the reverse 
order of the results of the experienced participants.  In shinai saki-gawa, there was a 24.5% 
difference in detection accuracy between the experienced and inexperienced participants in 
terms of F-measure.  Comparing Figs. 10(a) and 10(b), we confirmed that the nine peaks of the 
waveform are clear in the DTW distance waveform of the experienced participant, whereas the 
waveform of the inexperienced participant is distorted.  This result shows that the experienced 
participants can perform 10 sets of strike activities with almost constant movements, whereas 
the inexperienced participants perform different movements for each strike activity.  For the 
right wrist, the difference in detection accuracy between the experienced and inexperienced 
participants was the smallest, only 2.9%.  Therefore, we consider that the right wrist is the most 
suitable attachment position for detecting the strike activities in our system.  From these results, 
we evaluated the accuracy using data of the IMU attached to the right wrist in the following 
discussion.
 For the case of detecting a different activity for the same participant, the results of the 
detection accuracy are shown in Table 5.  For the results of all participants, the average detection 
accuracy was 89.9%, and it was confirmed that the accuracy decreased slightly when the data of 
the different type of strike activity was used as input data.
 For the case of detecting the same activity for a different participant, the results of the 
detection accuracy are shown in Table 6, where the data of the kendo-experienced and kendo-
inexperienced persons are used as training data.  It was confirmed that when the data of the 
experienced person was used as training data, high accuracy was obtained, but when the data of 
the inexperienced person was used as training data, the accuracy decreased considerably.

Table 4
Detection results of the same activity for the same participant.
Position right wrist waist
Strike activity ALL (%) Experienced (%) Inexperienced (%) ALL (%) Experienced (%) Inexperienced (%)
Center-Men 95.1 95.7 94.5 94.7 98.6 90.8
Right-Men 94.6 96.0 93.3 95.6 97.7 93.4
Left-Men 95.3 95.2 95.4 92.4 97.4 87.4
Dō 90.0 93.5 86.4 88.6 90.6 86.6
Kote 96.3 98.1 94.5 93.7 97.0 90.5
Avg. 94.2 95.7 92.8 93.0 96.2 89.8

Position shinai tsuba shinai saki-gawa
Strike Activity ALL (%) Experienced (%) Inexperienced (%) ALL (%) Experienced (%) Inexperienced (%)
Center-Men 86.7 99.4 74.0 86.0 99.2 72.7
Right-Men 89.0 97.7 80.2 84.2 99.2 69.2
Left-Men 89.3 97.3 81.3 89.3 99.3 79.3
Dō 82.2 96.6 67.7 85.4 97.8 73.0
Kote 86.7 99.8 73.6 89.3 99.9 78.6
Avg. 86.8 98.2 75.4 86.8 99.1 74.6
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Fig. 10.  (Color online) Detection results based on kendo experience.  (a) Result of kendo-experienced participant.  
(b) Result of kendo-inexperienced participant.

(a)

(b)

Table 5
Detection results of a different activity for the same participant.
Type of training data ALL (%) Experienced (%) Inexperienced (%)
Center-Men  91.9  92.5  91.2
Right-Men  88.7  90.1  87.3
Left-Men  90.2  89.4  91.1
Dō  86.8  89.4  84.3
Kote  92.1  91.9  92.3
Avg.  89.9  90.7  89.2

Table 6
Detection results of the same activity for a different participant.

Type of 
training data

Experienced
to

ALL (%)

Experienced
to

experienced (%)

Experienced
to

inexperienced (%)

Inexperienced
to

ALL (%)

Inexperienced
to

experienced (%)

Inexperienced
to

inexperienced (%)
Center-Men 96.7  98.3  95.4 53.8  46.7  62.0
Right-Men 99.1  99.3  98.9 40.9  29.2  54.6
Left-Men 96.4  94.5  98.1 41.4  31.2  53.3
Dō 89.2  91.9  87.0 15.2  10.6  20.5
Kote 94.2  92.7  95.5 46.8  37.9  57.2
Avg. 95.2  95.3  95.0 39.6  31.1  49.5
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 For the case of detecting a different activity for a different participant, the results of the 
detection accuracy are shown in Table 7.  We confirmed that when using the kendo-experienced 
person data as training data, even different types of strike activity of different participants 
were detected with high accuracy.  It is considered that training data using the data of 
kendo-experienced persons has a high generalization performance in our proposed method.

5.2 Strike activity recognition
 We discuss recognition results through 1) a comparison of three machine learning algorithms, 2) 
a comparison of combinations of IMU positions, and 3) the evaluation of the generalization 
performance characteristics of the models.

5.2.1 Comparison of three machine learning algorithms

 We compared the performance characteristics of three machine learning algorithms: RF, 
SVM, and NN.  Figure 11 shows the average of 14 participants with the classification accuracy 
results (F-measure) of strike activities based on the PD case using RF, SVM, and NN.  The 
result indicates that RF achieved the highest accuracy.  In contrast, NN showed the lowest 
accuracy.  Therefore, in the PD case, we confirmed that RF is effective as a machine learning 
algorithm for recognizing strike activities accurately.

Fig. 11.  (Color online) Five-class strike activity recognition result by F-measure for each IMU position and machine 
learning algorithm based on individual-only data.

Table 7
Detection results of a different activity for a different participant.

Type of 
training data

Experienced
to

ALL (%)

Experienced
to

experienced (%)

Experienced
to

inexperienced (%)

Inexperienced
to

ALL (%)

Inexperienced
to

experienced (%)

Inexperienced
to

inexperienced (%)
Center-Men 95.7 96.4 95.0 39.9 35.8 44.7
Right-Men 96.5 95.9 97.0 37.2 26.9 49.2
Left-Men 96.1 95.2 96.9 33.5 25.0 43.4
Dō 90.3 92.0 88.8 41.4 27.6 57.4
Kote 96.6 97.4 95.9 36.7 30.1 44.5
Avg. 95.0 95.4 94.7 37.7 29.1 47.8
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5.2.2 Comparison of combinations of IMU positions

 Figure 11 shows that when only one IMU was attached, an accuracy of 89.5% (F-measure) 
was achieved with the right wrist (RW) and an accuracy of 82.3% was achieved with the shinai 
tsuba (ST).  Then, for the combination of two IMUs, the highest recognition accuracy of 91.8% 
was achieved with the combination of RW and ST.  In addition, for the combination of three or 
more IMUs, the recognition accuracy when the IMU was attached to all four positions: [RW, 
the waist (W), ST, and shinai saki-gawa (SS)] was the highest, achieving an accuracy of 93.1%.  
Therefore, in the PD case, when the player wears only one IMU, the wrist is optimal, and by 
combining sensor data from multiple positions, the recognition accuracy further improves.

5.2.3 Evaluation of generalization performance of the models

 We evaluated the recognition accuracy by leave-one-person-out cross-validation to confirm 
generalized performance.  Figure 12 shows the average of 14 participants with the classification 
accuracy results (F-measure) of strike activities based on leave-one-person-out cross-validation 
using the three different machine learning algorithms.  The horizontal axis shows combinations 
of IMU positions.  Machine learning algorithms are differentiated by color.  The accuracy of 
NN was often higher than those of the other algorithms.  When only one IMU was attached, an 
accuracy of 43.2% was achieved with the RW and an accuracy of 52.8% was achieved with the 
ST.  The combination of RW, ST, and SS achieved the highest accuracy of 54.9%.  
 Figures 13(a) and 13(b) respectively show the recognition accuracy corresponding to the 
number of features and the top five rankings of the importance of the features at each position.  
Figure 13(a) shows that the number of effective features depends on the position.  Furthermore, 
from Fig. 13(b), we confirmed that the features related to the gravity components in the X-axis 
direction are important as a whole.
 Moreover, when three types of classification were performed by unifying Center-Men, 
Right-Men, and Left-Men into Men as shown in Fig. 14, the combination of RW and SS 
increased to an accuracy of 69.3%.  Figure 15 shows both five-type and three-type confusion 
matrixes for the combination of RW and ST.  From these results, we confirmed that many false 
recognitions occurred in Men and Kote.  We believe that the reason for the decrease in accuracy 

Fig. 12.  (Color online) Five-class strike activity recognition result by F-measure for each IMU position and 
machine learning algorithm based on leave-one-person-out cross-validation.
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compared with the PD case is that the movements of Men and Kote were similar and there 

Fig. 13.  (Color online) Feature selection results.  (a) Recognition accuracy corresponding to the number of features.  
(b) Top five rankings of the importance of the features.

Fig. 14.  (Color online) Three-class strike activity recognition result by F-measure for each IMU position and 
machine learning algorithm based on leave-one-person-out cross-validation.

(a)

(b)
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were individual differences in the strike activities of the participants.  In the future, we plan to 
improve the proposed method to improve accuracy.

6. Conclusion

 In this paper, we focused on kendo, a martial art in Japan, and proposed strike activity 
detection and recognition methods using IMUs towards a kendo skill improvement support 
system.  To confirm the effectiveness of the proposed method, we collected inertial sensor data 
of strike activities from participants including kendo-experienced and inexperienced people 
with four IMUs attached to right wrist, waist, shinai tsuba, and shinai saki-gawa.  
 First, we detected five strike activities based on the DTW distance from the acceleration 
time series data.  When we used the training data of the same participant, the strike activities 
were detected with an accuracy of 89.9% (F-measure).  When we used the training data of a 
participant with a lot of kendo experience, the strike activities were detected with an accuracy 
of 95.0% even from the input data of other participants.  However, the conventional DTW 
requires a large amount of calculation, and it is difficult to detect in real time with the proposed 
method.  Therefore, it is necessary to speed up the calculation process of the method without 
lowering the accuracy.
 Next, we recognized five types (Center-Men, Right-Men, Left-Men, Dō, and Kote) and three 
types (Men, Dō, and Kote) of strike activity .  In the PD case, we achieved an accuracy of 89.5% 
with five types when training and testing the same participant’s data of only right wrist.  We 
achieved an accuracy of 91.8% when the IMU was attached to the right wrist and shinai tsuba.  
We clarified that the classification accuracy was further improved by combining sensor data of 

Fig. 15.  (Color online) Confusion matrixes of leave-one-person-out cross-validation for the combination of RW and 
ST.  (a) Five-type classification.  (b) Three-type classification.

(a) (b)
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multiple positions.  As a result of leave-one-person-out cross-validation from 14 participants to 
confirm generalized performance, we achieved an accuracy of 54.9% using three IMUs (right 
wrist, shinai tsuba, and shinai saki-gawa).  In the three types of recognition, the accuracy of the 
combination of right wrist and shinai saki-gawa increased to 69.3%.  As a result, on the basis of 
only personal data, we can recognize the strike activities with high accuracy.  However, owing 
to individual differences in activity, the accuracy of leave-one-person-out cross-validation 
decreases.
 The attached IMU is expected to have little effect on the swing movement of the bamboo 
sword owing to its small mass.  Since smartwatches have already become widespread, we 
consider that a kendo improvement support system can be realized if high detection and 
recognition accuracies can be obtained only with the IMU on the wrist.
 As part of future research, we aim to detect strike activities in real time and improve the 
accuracy of recognition in the PI cases by improving the proposed method.  Furthermore, we 
aim to realize the kendo skill improvement support system by implementing the evaluation 
function of the strike activity and feedback mechanism.
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