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	 Nickel-based materials are widely used in engines, housings, and compressor rotors.  They 
are also used in other industries, such as energy, petrochemicals, and tool and die making.  
Nickel-based alloys have a high tolerance to high temperatures and superior anti-corrosion 
characteristics while maintaining good mechanical properties.  Owing to the development of 
precision casting technology in the late 1950s, a series of highly intensive cast nickel-based 
superalloys with these properties have been developed.  With the rapid changes in the military 
and civil space industries in recent years, the use of nickel-based superalloys is increasing.  
In this study, we mainly use Waspaloy as a nickel-based material to study cutting; we use 
regression analysis to find the significant factors affecting cutting force and surface accuracy 
and then perform an optimization experiment.  A TiAlN-coated tool is mainly used in the 
study of cutting.  We conclude that the significant factors affecting the cutting force among the 
experimental conditions are the cutting depth and feed rate per tooth and that the significant 
factors affecting the surface accuracy are the feed rate per tooth and cutting speed.  When the 
cutting depth dp increases from 0.1 to 0.3 mm, the tool wear increases by 94.1%, and when the 
cutting speed Vc increases from 30 to 40 m/min, the tool wear decreases by 2.17%.

1.	 Introduction

	 Waspaloy has high tensile strength, fatigue durability, creep strength, and corrosion stability, 
as well as outstanding weldability and tenacity in high-temperature work environments, so it 
is often used in environments where high-temperature resistance and load are required.  This 
superalloy is a hard-to-cut material in machining for the following reasons.(1–6)

(1)	Work hardenability: boundary chipping and edge wear of the cutting clearance increase over 
time, the cuttings are tough and difficult to break off, and case hardening occurs.(7,8)

(2)	Low thermal conductivity: although general steel can generate cutting heat when being 
cut, most of the heat is carried away by the cuttings; however, as Waspaloy has low thermal 
conductivity, it readily accumulates the cutting heat of the tool and machined part; moreover, 
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it has high yielding point, tensile strength, and cutting resistance, making it easy for the 
cutting edge to induce high pressure and temperature, and plastic deformation of the tool.  

(3)	Affinity of the tool and superalloy: in discontinuous cutting, similarly to that observed 
in milling, the cutting edge and melt, and then the melt are embedded in the workpiece, 
generating a greater impact force and a cutting edge.(3,4)

2.	 Material Characteristics

	 At present, vacuum induction melting technology is applied to most nickel-based materials.  
After that, extrusion molding is conducted to obtain Inconel-718 and Waspaloy, and then 
annealing is performed to homogenize the material with the aim of eliminating the segregation 
or bands of the crystal structure in the material; the crystal structure of the superalloy is an 
austenitic high-temperature stable face-centered cubic (fcc) structure.  The phases of the crystal 
structure are shown in Table 1.
	 Waspaloy is a precipitation-hardening nickel-based superalloy, in which the main 
precipitation hardening of the γ' phase differs from that of Inconel-718, and Ti and Al bond to 
form the γ' phase.  In addition, Waspaloy contains carbon, boron, and zirconium, which are 
grain boundary strengthening elements.  In the γ' phase, the precipitates of Ni3Al or Ni3Ti can 
strengthen the bonding of elements; the main source of strengthening in Waspaloy is γ' and 
the coherent precipitation hardening of the γ'' phase, where γ'' is the main strengthening phase, 
occurs.(3,4)  Parameter control of the hot isostatic pressing process is used to distribute the γ'' 
phase evenly in large quantities, and the temperature rise in hot isostatic pressing is used to 
dissolve the δ phase so as to indirectly increase the number of precipitates in the strengthening 
phase and improve the mechanical strength of Waspaloy.(9,10)

	 As can be seen from the time−temperature−transformation (TTT) diagram of the nickel-
based superalloy in Fig. 1, the precipitation temperature in the δ phase is higher than that in the 
γ'' phase.  Moreover, according to the long-time temperature variation, the δ and γ' phases have 
smaller contents than the γ'' phase.  That is mainly because the γ' phase can develop the ability 
to resist creep deformation at high temperatures.  The quantities of precipitates in the γ' phase 
depend mainly on the chemical components and temperature, as shown in Fig. 2.  There are 
mainly an fcc lattice and randomly distributed solid solute atoms in the γ phase, and the original 
cubic lattice in the γ' phase, in which nickel atoms accumulate at the center and Al or Ti atoms 
are distributed in the corners, as shown in Fig. 3.(11–13)

Table 1
Phases of Waspaloy.

Waspaloy structure
Form Type 
Primary phase γ: fcc matrix of Ni
Secondary phases γ′: Ni3Al or Ni3Ti (fcc)

γ′′: Ni3Nb (body-centered tetragonal, bct)
δ: Ni3Nb (orthorhombic)

Carbides MC, M23C6, M6C, and M7C3
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	 Waspaloy is a superalloy that has been developed since 1946.  The key metallurgical features 
of the superalloys Inconel-718 and Waspaloy are listed below: (1) solution strengthening 
elements, such as W, Mo, Co, Cr, and V, produce local lattice strain in the Ni-Fe base to 
strengthen materials as the radii of these atoms are different from those of the atoms of the base 

Fig. 1.	 TTT diagram of the nickel-based superalloy.(11,12)

Fig. 2.	 (Color online) Flow and fracture behavior in the grain boundaries of Waspaloy.(14)

Fig. 3.	 Ni-Al-Ti ternary phase diagrams showing the γ and γ′ phase fields.(11)
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material; (2) precipitation hardening elements, such as Al, Ti, Nb, and Ta, can form coherent 
A3B intermetallic compounds, such as Ni3(Al,Ti) and other strengthening phases (γ'), to 
strengthen the alloy effectively and obtain high-temperature strength greater than that of iron-
based superalloys and cobalt-based alloys; (3) grain boundary strengthening elements, such as B, 
Zr, Mg, and rare-earth elements, can increase the high-temperature strength of the alloy.  Table 
2 shows the components of Waspaloy and Inconel-718, where the former is a standard nickel-
based material with typical properties such as precipitation hardening, high material affinity, 
and low heat transfer coefficient.(11,12)  

3.	 Research Principles and Methods

3.1	 Cutting principle

	 In addition to the computer numerical control (CNC) machine tool, tools, fixture, and jig, the 
surface finish and processing efficiency of milled parts also depend on the cutting conditions 
and parameters such as the cutting speed, feed rate, cutting depth, and cutting width.  Different 
cutting conditions produce different results, affecting the available lifetime of the tool as well 
as the processing quality.(20)  The cutting speed, feed rate, cutting depth, and cutting width are 
usually all set by CNC programming.  The cutting speed has the greatest effect on the surface 
finish and efficiency (Fig. 4).  

Table 2
Chemical compositions of Waspaloy and Inconel-718.

Cr Ni Co Mo W Ti Al Fe C Nb Other
Inconel-718 18 B 0 2.8 0 1 0.5 18 0.025 5.4 —
Waspaloy 19.4 B 13 4.3 0 3 1.5 2Max 0.035 0 —

Fig. 4.	 (Color online) Diagram of cutting parameters.
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	 The following equation gives the cutting speed Vc in terms of the tool diameter D and spindle 
rotation speed N.

	
1000c

D NV π × ×
= .	 (1)

	 The feed rate F refers to how fast a milling tool moves through the material being cut.  This 
is calculated using the feed per tooth Fz to give the distance in millimeters per minute that a 
milling bit can move through a particular material as follows: 

	 F = N × T × Ft,	 (2)

where N is the spindle rotation speed and T is the number of teeth.  Ideal surface roughness is a 
function of only the tool feed per tooth and geometry.  It represents the best possible finish that 
can be obtained for the given tool shape and feed per tooth.  It can be shown that the surface 
roughness of a workpiece is closely related to the feed and corner radius as follows, where Rmax 
is the height of the profile and R is the radius of the rounded corner of the cutting tool (Fig. 5):
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which simplifies to
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3.2	 Exponential smoothing principle

	 Exponential smoothing is a particular type of moving average technique applied to time 
series data, which are used to make forecasts.  When the trend of a time series is a linear 
curve, single exponential smoothing is used for analysis and forecasting, and when the trend is 

Fig. 5.	 Main process parameters in milling.
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a quadratic curve, triple exponential smoothing is used.  The principle of double exponential 
smoothing is similar to that of triple exponential smoothing, where the formulas used in the 
latter are as follows:(17–20) 

	 (1)(1)
1(1 )t t tS Y Sα α −= + − ,	 (5)

	 (2)(2) (1)
1(1 )t t tS S Sα α −= + − ,	 (6)

	 (3)(3) (2)
1(1 )t t tS S Sα α −= + − .	 (7)

	 Trend forecasting by exponential smoothing is mainly performed by calculating the sum 
of forecast values and the trend correction value.  The forecasting model of triple exponential 
smoothing is
	 2

t T t t tRa a b T c T+ = + + ,	 (8)

where at , bt, and ct are undetermined coefficients and can be obtained as follows from the fitted 
curve:

	 (1) (2) (3)3( )t t t ta S S S= − + , 	 (9)

	 (1) (2) (3)
2 [(6 5 ) 2(5 4 ) (4 3 ) ]

2(1 )t t t tb S S Sα α α α
α

= − − − + −
−

,	 (10)

	 (1) (2) (3)
2 ( 2 )

2(1 )t t t tc S S Sα
α

= − +
−

.	 (11)

4.	 Experimental Equipment and Parameters 

	 Here, we study a machining center for milling, where the experimental equipment is shown 
in Table 3.  The main cutting parameters are cutting speed, feed rate, and cutting depth, as 
shown in Table 4.  The main purpose of varying the parameters is to optimize the data in the 
most economical and effective way with the existing equipment, and we then further analyze 
the optimized data through the use of statistics.  The experimental flow is shown in Fig. 6.  

5.	 Results and Discussion

	 In this study, we mainly analyze the relationship between the surface roughness and tool 
wear of Waspaloy; we find significant factors using regression analysis and perform modeling 
and optimization experiments.
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Table 3 
Experimental equipment.
Equipment name Specifications and model Image 

Machining center for milling X/Y/Z-axis stroke: 1020/520/505 mm
Maximum speed of spindle: 10000 rpm

Milling tool blade
(RCKT1204M-MM2040)

Blade diameter: 12 mm
Blade angle R: 6 mm

Milling tool shank
(R200-024A32-16M)

Tool diameter: 40 mm
Number of blades: 3 

Surface roughness gauge
Model: MarSurf PS1

Range: 0.25 to 2.5
Recorded value: Ra

Table 4 
Experimental parameters and levels.
Parameters Low level High level
Cutting depth (mm) 0.1 0.3
Cutting width (mm) 40 40
Cutting speed (m/min) 30 40
Feed per tooth (mm/tooth) 0.1 0.3

Fig. 6.	 (Color online) Experimental flow graph.

5.1	 Screening experiment

	 The methods that can be used to select significant factors are a full factorial experiment and 
a fractional factorial experiment.  The former is used in this study for the test and analysis.  
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	 We use the experimental form designed by a parametric programming matrix to obtain data 
from cutting experiments for analysis, where the variable factors are cutting depth, cutting 
speed, and feed per tooth and the objective function is the surface accuracy.  Figure 7 shows 
the tool wear.  The flank wear and rake face wear of the tool are observed at the same time; an 
increase in flank wear will increase the tool wear area and vice versa.  The feed per tooth and 
cutting depth are proportional to the tool wear, and the cutting speed is inversely proportional 
to the tool wear.  When the feed per tooth Ft increases from 0.1 to 0.3 mm/tooth, the tool wear 
increases by 17.8%, when the cutting depth dp increases from 0.1 to 0.3 mm, the tool wear 
increases by 94.1%, and when the cutting speed Vc increases from 30 to 40 m/min, the tool wear 
decreases by 2.17%.(15,16)

	 The analysis of variance is used for the data analysis; furthermore, the test coefficient 
R2 is found to be 75% and the analysis of variance is used to analyze Vc, F, and dp.  Surface 
roughness was significantly contributed by the feed per tooth in the model (R2 = 76.6%); thus, 
the applicability of the test coefficient can be determined by R2.  We do not consider interactions 
between three or more variables, and we examine the normal plot of the standardized effects 
and the Pareto chart of the standardized effects as shown in Fig. 8.  There is a vertical broken 
line passing through 0.703 on the X-axis in Fig. 8(b), representing α (P value) ＝ 0.5.  According 
to the residual analysis graphs, the feed rate has the largest effect on the surface roughness and 
the cutting depth has the smallest effect.  
	 We write the principal factors A, B, and C, and the interactions between them AB, BC, 
and AC in an ANOVA table.  The significant factors or interactions with P < 0.5 are B (feed 
per tooth), C (cutting speed), and AB (cutting depth and feed per tooth).  From the main effect 
plot for Ra and the interaction plot for Ra in Fig. 8, the factor with the greatest effect on the 
surface accuracy is found to be the feed per tooth, followed by the cutting speed.  Regarding 

 Fig. 7.	 (Color online) Diagrams of tool wear in experiment. (a) Ft = 0.1 mm/tooth, dp = 0.3 mm, and Vc = 30 m/min, (b) 
Ft = 0.3 mm/tooth, dp = 0.3 mm, and Vc = 30 m/min, (c) Ft = 0.1 mm/tooth, dp = 0.1 mm, and Vc = 40 m/min, and (d) 
Ft = 0.1 mm/tooth, dp = 0.3 mm, and Vc = 40 m/min.

(a) (b) (c) (d)
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the interaction between factors, as the cutting depth is not a significant factor, the factors 
interacting with the cutting depth are not considered (Fig. 9), and the feed per tooth and surface 
accuracy are discussed.  

5.2	 Surface accuracy prediction 

	 The exponential smoothing method (ESM) is used to estimate the difference between the 
surface roughness of Waspaloy when being cut and the actual measurement; the ESMs mainly 
include the first exponential smoothing to the third exponential smoothing.  When the cutting 
speed V is 40 mm/min and the cutting depth dp is 0.3 mm, we observe that if the smoothing 
constant is α = 0.5, then the accuracy is not varying.  The result of the analysis is shown in Fig. 
10.  When the feed rate increases, the surface accuracy also increases.  This is mainly because 
the feed rate is an important factor that affects the surface accuracy, which can be found from Eq. (4); 
the ESM prediction curve has the same trend as the experimental values, but the errors are large 
when the smoothing constant is increased to α = 0.8 (Fig. 11).  Nevertheless, the ESM prediction 

Fig. 9.	 (Color online) Effect analysis graphs. (a) Main effect plot for Ra and (b) interaction plot for Ra.

 Fig. 8.	 (Color online) Residual analysis graphs: (a) Half normal plot of the standardized effects (response is Ra, 
α = 0.50) and (b) Pareto chart of the standardized effects (response is Ra, α = 0.50).

(a) (b)

(a) (b)
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curve has a similar trend to the experiment values.  The errors of the single ESM curve are 
smaller than those of the triple ESM curve, mainly because errors compound each other in the 
latter, resulting in larger errors.

5.3	 Modeling of exponential smoothing  

	 As the material characteristics of Waspaloy cause severe wear of the tool, the surface 
accuracy decreases, so it is important to predict the tool life and surface accuracy.  The 
regression analysis showed that the feed rate is a significant factor.  When establishing the 
exponential smoothing model, we first observe the mean absolute percentage error (MAPE), 
which is used as an indicator to evaluate the accuracy of the prediction model; when MAPE 
is less than 10%, the prediction is highly accurate.  Figure 12 shows that when the smoothing 
constant α is greater than 0.4, MAPE is less than 10%, indicating highly accurate prediction.(20)

	 Different exponential smoothing constants have different mean square errors (MSEs) and 
mean absolute errors (MAEs), as shown in Table 5.  If MSE and MAE are smaller, the accuracy 
is higher (Fig. 13).  When α ≥ 0.88, the curve converges, so α should be 0.88 when exponential 
smoothing is used for modeling.  Because the low thermal conductivity and thermosetting of 

Fig. 11.	 (Color online) Analysis chart of feed rate 
and surface accuracy (V = 40 m/min, α = 0.8).

Fig. 13.	 Variation of MSE for different α values.

Fig. 10.	 (Color online) Analysis chart of feed rate 
and surface accuracy (V = 40 m/min, α = 0.5).

Fig. 12.	 Variation of MAPE for different α values.
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Waspaloy make it difficult to process, and it can be seen from the thermal diffusivity formula 
that the thermal conductivity is proportional to the thermal diffusion, the exponential smoothing 
model should be divided into the heating and thermal diffusion stages.  Here, we mainly predict 
the temperature changes at the location with the maximum temperature; equations predicting 
the temperature during the machining process and the prediction models are provided in Table 6.  
These temperature changes are predicted mainly from the instantaneous heating time.  

6.	 Conclusions

	 In the machining of nickel-based materials, the main factor that affects the surface accuracy 
is the feed rate, which can be obtained from the regression analysis method, while the cutting 
speed and depth have very small effects on the surface accuracy.  In addition, a very high 
cutting temperature causes precipitation hardening, and the affinity between the material and 
the tool causes rapid cracking of the tool.  
	 A tool is rapidly worn when cutting Waspaloy.  The feed per tooth and cutting depth are 
proportional to the tool wear; when the cutting depth dp was increased from 0.1 to 0.3 mm, 
the tool wear increased by 94.1%, and when the cutting speed Vc was increased from 30 to 
40 m/min, the tool wear decreased by 2.17%.  
	 When an exponential smoothing model was used for prediction, the errors of the single 
exponential smoothing curve were found to be smaller than those of the triple exponential 
smoothing curve, mainly because errors were compounded in the triple exponential smoothing 
curve.  
	 When exponential smoothing is used for modeling, the smoothing constants can affect the 
model accuracy, so MAPE was used to observe the accuracy.  When the smoothing constant 
α was greater than 0.4, MAPE was less than 10%, indicating highly accurate prediction.  The 
smoothing constant α should be 0.88 when exponential smoothing is used for modeling because 
MSE approaches the convergence value.

Table 5 
MSE/MAE/MAPE values of different smoothing constants.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.85 0.88 0.9 0.95
MSE 0.0150 0.0080 0.0043 0.0024 0.0013 0.0007 0.0003 0.0001 7.03E-05 4.41E-05 3.05E-05 7.52E-06
MAE 0.0909 0.0674 0.0500 0.0369 0.0269 0.0190 0.0128 0.0079 0.0057 0.0045 0.0038 0.0019
MAPE 21.86 16.46 12.39 9.27 6.83 4.89 3.31 2.09 1.53 1.22 1.02 0.52

Table 6 
Prediction models of exponential smoothing. 
Feed rate Prediction equation Feed rate Prediction equation
Ft = 0.12 mm/tooth Ra0.12 = 0.223 + 0.018T + 0.0031T2 Ft = 0.22 mm/tooth Ra0.22 = 0.318 + 0.032T + 0.002T2

Ft = 0.14 mm/tooth Ra0.14 = 0.209 − 0.0196T − 0.0067T2 Ft = 0.24 mm/tooth Ra0.24 = 0.436 + 0.145T + 0.031T2

Ft = 0.16 mm/tooth Ra0.16 = 0.269 + 0.079T + 0.023T2 Ft = 0.26 mm/tooth Ra0.26 = 0.420 − 0.043T − 0.035T2

Ft = 0.18 mm/tooth Ra0.18 = 0.252 − 0.030T − 0.0178T2 Ft = 0.28 mm/tooth Ra0.28 = 0.531 + 0.133T + 0.030T2

Ft = 0.20 mm/tooth Ra0.20 = 0.289 + 0.044T + 0.011T2 Ft = 0.30 mm/tooth Ra0.30 = 0.539 − 0.009T − 0.023T2

1. Tool form: R200-024A32-16M.
2. Machining parameters: cutting speed Vc = 40 mm/min; cutting depth  dp = 0.3 mm.
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Nomenclature

Vc = Cutting speed (m/min)
N = Spindle speed (rev/min)
D ＝ Tool diameter (mm)
F = Feed rate (mm/min)
Z = Insert number 
dp = Cutting depth (mm)
Ft ＝ Feed per tooth (mm/tooth)
St = Exponential smoothing value at time t.
Yt = Actual value at time t.
St−1 = Exponential smoothing value at time t − 1.
α = Smoothing constant in [0, 1].
St

(3) = Cubic exponential smoothing value at time t.
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