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	 The fractional derivative has the advantages in terms of memory and globality, and it 
can overcome the shortcomings of the traditional integer differential algorithm.  Moreover, 
the absorption characteristics of available phosphorus in soil in visible near-infrared bands 
are unclear, and the prediction model has a low precision.  In this paper, we propose a novel 
method to improve the accuracy of the prediction model for available phosphorus content, 
which is based on the fractional derivative and stepwise multiple linear regression (SMLR).  
First, the relationship between the soil spectrum and the available phosphorus content under 
different fractional orders was studied.  Secondly, spectrum dimensionality reduction based 
on sensitive bands was performed.  Finally, the SMLR model was adopted to quantitatively 
predict the available phosphorus content, and the precision of different fractional order models 
was discussed.  Simulation results revealed that the fractional derivative can describe the small 
differences in spectral data and increase the correlation between the soil spectrum and the 
available phosphorus content.  The 1.4th-order model is the optimum fractional model.  Thus, 
these results indicate that the fractional derivative could improve the accuracy of the estimation 
model for available phosphorus content.

1.	 Introduction

	 In recent years, spectrometry has become an important method for the rapid and 
nondestructive diagnosis of soil nutrients.(1)  Soil spectral information is a comprehensive 
reflection of soil physical and chemical properties.  At present, researchers are developing 
spectral measurement technology for the study of available phosphorus content in soil.  In these 
studies, the prediction of available phosphorus content was based on the original or integer-
order derivative (1st or 2nd) preprocessed spectrum.  Wu et al. employed the first derivative to 
preprocess the original spectrum.  The back propagation (BP) neural network regression method 
was used in the prediction model, and the estimation accuracy of available phosphorus content 
increased by 28.64% when using the BP regression method compared with the case of using the 
global regression approach.(2)  Although the original or integer-order derivative preprocessed 
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spectrum can be used to predict the available phosphorus content in soil to a certain extent, 
the difference between spectral curves is large, some intermediate spectral information will be 
missed and lost, and high-frequency noise will be amplified, which in turn affects the prediction 
accuracy.  However, in the case of using the fractional derivative, one can just take advantage 
of its intermediate information and fully exploit and utilize spectral data.  The fractional 
derivative is a generalization of the integer derivative.  Compared with the integer derivative, it 
has advantages in terms of background noise removal and effective information extraction.  It 
has been widely used in image recognition and signal processing.  
	 Nowadays, the fractional derivative is widely used in spectral data processing.  Chen et al. 
proposed a new approach to predict the nitrogen content of a rubber tree using fractional 
calculus, which could better mine hidden details of original spectra than integer calculus.(3)  
Xia et al. presented a preprocessing method by fractional differential to analyze the correlation 
coefficient between raw spectral data and soil conductivity, which extensively excavated 
the potential information on the soil spectrum.(4)  Hong et al. introduced a new combination 
method based on the fractional order derivative (FOD) and variable selection to estimate the 
soil organic matter (SOM), and their results showed that this novel method could improve 
the estimation model performance of SOM and the optimal model located in the 1.5-order 
derivative of the genetic algorithm.(5)  Wang et al. employed the fractional derivative of the 0.1 
interval to preprocess raw spectral data in the laboratory: two different modeling approaches 
were used to establish the estimation model of soil salinity, and the results showed that the 
most effective model was located in the 1.5-order derivative of random forest.(6)  The above 
research shows that the fractional derivative can effectively extract potential information from 
spectral information and improve the accuracy of the prediction model.  However, research on 
the prediction of available phosphorus content in soil using the fractional derivative is relatively 
rare.  Available phosphorus is one of the important nutrients in the soil.(7)  Its main role is to 
promote the transport, transformation, and accumulation of nutrients in crops and improve 
the ability of crops to resist cold and drought.  Therefore, it is very important for crop field 
management, yield improvement, and farmland environmental protection.
	 Nevertheless, previous studies adopted the fractional differential method to analyze soil 
spectral characteristics, but soil spectra were determined in an ideal indoor environment: this 
method has not been used to study soil spectra in fields.  Therefore, using the spectral data 
obtained in fields and the available phosphorus content measured in the laboratory as the 
research object, we explored the possibility of estimating the available phosphorus content in 
soil using the Grünwald–Letnikov (G–L) fractional derivative and stepwise multiple linear 
regression (SMLR).  A spectrometer was used to determine field spectra from 9–23 May, 
2017, and we obtained spectral data of soil samples by visible near-infrared spectroscopy in 
the wavelength range of 350–2500 nm.  The bands that passed the 0.05 significance test were 
counted, and seven bands with a maximum absolute correlation coefficient greater than 0.5 
were selected as sensitivity bands, which reduces the dimension of hyperspectral data.  The 
SMLR model was used to estimate the available phosphorus content and we analyzed the 
accuracy index of different fractional models.  
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2.	 Materials and Methods

2.1	 Soil sample collection and field spectrum measurement

	 We took the desert soil in Xinjiang as the research object.  Thirty soil sampling points were 
identified in the study area in May 2017, and the coordinates of each sampling point were 
located using the global positioning system (GPS), as shown in Fig. 1.  In this study zone, 
human interference activities are high and the soil is reclaimed as a nursery forest.  We collected 
topsoil soil samples (0–10 cm) and recorded the surrounding vegetation and conditions of the 
environment from which each sample was collected.  The collected soil samples were brought 
to the laboratory and subjected to a series of pretreatments, including air drying, grinding, and 
sieving in a 1 mm mesh, and then sent to the Xinjiang Institute of Ecology and Geography for 
soil chemical analysis to measure the available phosphorus content.  Moreover, the spectra of 
the soil samples from the field were measured using the Field Spec® 3Hi-Res spectrometer 
manufactured by American Analytical Spectral Devices.  Field measurements required that the 
spectral reflectance of the soil samples should be determined on a clear and cloudless day.  

2.2	 Definition of fractional derivative and SMLR

	 The definition of the G–L fractional derivative is derived from the derivative of the nth- 
order continuous function,(8,9) which is obtained by extending the order n to any real order a. 
Let the function f(x) be a continuous function, and there is a continuous derivative of order n, so 
the integer derivative of the 1st and 2nd orders can be defined as

Fig. 1.  (Color online) Soil sampling point locations.
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	 We extended the integer-order differential derivative of Eq. (3) to an arbitrary order, that is, 
we generalized the integer order n to the fractional order a and replaced the binomial coefficient 
with the Γ function.  Therefore, the G–L fractional derivative can be defined as
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coefficient, and Γ(∙) represents a gamma function.
	 SMLR is an important method in multivariate statistical analysis, which is widely used 
in technology, society, economy, and natural science research.  It is an algorithmic technique 
derived from multiple linear regression and automatically selects variables that are important for 
establishing regression equations from a large number of alternative variables.  It is a process 
of establishing a regression equation based on the optimal combination of multiple independent 
variables.  Its equation can be described as

	 0 1 1 ,j j n nY x x xβ β β β ε= + + + + + +  	 (5)

where Y is the available phosphorus content in soil, n is the number of independent variables 
used for modeling, xi is the soil spectral reflectance of the ith waveband, ε is the random error 
of the regression equation, and βi is the regression variance coefficient of the ith independent 
variable.

2.3	 Model predictive ability evaluation

	 The indexes of coefficient determination (R2), root mean square error (RMSE),(10) and ratio 
of performance to deviation (RPD) are used to evaluate the accuracy of the model’s estimation 
ability.(11)  RPD is divided into four types of estimation effect.  When the RPD is less than 
1.4, the estimation ability of the model is poor.  When the RPD is between 1.4 and 1.8, the 
estimation ability of the model is average.  When the RPD is between 1.8 and 2, the estimation 
ability of the model is good.  When the RPD is greater than 2, the estimation ability of the 
model is very good.  
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3.	 Simulation Results

3.1	 Effect of fractional derivative on correlation 

	 Feature wavebands are the key to building the hyperspectral data model, and when the 
correlation between the spectral reflectance and the available phosphorus content is higher, 
the spectral response of the corresponding waveband is more sensitive, and the waveband is 
more likely to be chosen as the sensitive waveband.  Therefore, before the quantitative analysis 
of available phosphorus content in soil under different fractional derivatives, we should first 
study the correlation between the soil spectral reflectance and the available phosphorus content 
to identify the sensitive wavebands for improving the estimation model accuracy.  In this 
study, there were a total of 30 soil samples in the research area, and the 0.05 significance test 
was performed, so the significance level was ±0.361.  Moreover, we programmed to achieve 
the fractional derivative between the 0.0th order and the 2.0th order under 0.2 steps in the 
MatlabR2015a software environment, as shown in Fig. 2.  It can be seen that there are no 

Fig. 2.	 (Color online) Correlation coefficient of different fractional derivatives: (a) 0th–0.4th, (b) 0.6th–1st, (c) 
1.2nd–1.4th, and (d) 1.6th–2nd. 

(a) (b)

(c) (d)
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Table 1
Maximum correlation coefficient and waveband.
Different fractional 
derivative order

Correlation 
coefficient Waveband Different fractional 

derivative order
Correlation 
coefficient Waveband

0.0 0.24368 530 1.2 0.72862 610
0.2 0.25463 524 1.4 0.68987 579
0.4 0.26964 524 1.6 0.69511 531
0.6 0.40394 2306 1.8 0.68717 685
0.8 0.53582 2206 2.0 0.66004 684
1.0 0.62727 400

wavebands that passed the significance test between the 0.0th order and the 0.4th order, while 
the wavebands passed the significance test between the 0.6th order and the 2.0th order.  In 
addition, the simulation results showed that the fractional derivative refines the change trend of 
the spectral curve and reduces the loss of differential information.

3.2	 Choice of sensitive wavebands
 
	 The choice of sensitive bands plays an important role in building a reliable regression 
model.  The maximum absolute correlation coefficient and waveband between the spectral 
reflectance and the available phosphorus content under different fractional derivatives is shown 
in Table 1.  It can be concluded that the maximum correlation coefficient is 0.72862 for the 610 
nm waveband located in the 1.2nd order, which is not located in the integer order of 1st or 2nd.  
Also, the maximum correlation coefficient is smaller than 0.5 between the 0th order and the 0.6th 
order, which means that the correlation between the soil spectrum and the available phosphorus 
content is very poor for the 0.0th, 0.2nd, and 0.4th orders.  Moreover, the sensitive wavebands 
greater than 0.5 in Table 1 are selected to build the SMLR regression model, which are 400, 531, 
579, 610, 684, 685, and 2206 nm.

3.3	 Optimal fractional estimation model for available phosphorus content
 
	 A total of 30 soil samples were collected from the research area: 18 soil samples were 
chosen to build the SMLR model under different fractional derivatives, while 12 soil samples 
were selected to validate the established model.  The regression equation of the SMLR model 
is shown in Table 2.  Since the independent variables from the 0.0th order to the 0.4th order do 
not satisfy the conditions established by the regression model, there is no regression equation 
of the SMLR model from the 0.0th order to the 0.4th order.  In Table 2, Y denotes the available 
phosphorus content, and R400, R531, R579, R610, R684, R685, and R2206  denote the spectral data in 
the wavebands of 400, 531, 579, 610, 684, 685, and 2206 nm, respectively.  In the calibration set, 
R2 is 0.547 in the 1st-order integer, while it is 0.415 in the 2nd-order integer.  After conducting 
the fractional derivative process in the 1.2nd, 1.4th, and 1.6th orders, R2 increases: the largest R2 
is 0.714 located in the 1.6th order, while the smallest RMSE is 2.35 located in the 1.6th order.  



Sensors and Materials, Vol. 32, No. 3 (2020)	 839

Table 2
Precision evaluation of calibration and verification sets.

Order Regression equation Calibration set Verification set
R2 RMSE R2 RMSE RPD

0.6 Y = 18.496 − 1233.622 × R2206 0.243 3.8321 0.0021 4.4520 0.4070
0.8 Y = 11.523 − 4899.070 × R2206 0.531 3.0168 0.0429 4.6976 0.7509

1.0 Y = 14.717 − 4782.015 × R2206 −
12337.541 × R610

0.547 2.9660 0.3388 3.2970 0.8217

1.2 Y = 11.842 − 63724.560 × R610 +
26967.301 × R685

0.588 2.8274 0.6961 2.3459 1.7718

1.4 Y = 9.724 − 33071.386 × R579 +
47488.149 × R685 − 57543.268 × R610

0.663 2.5572 0.6963 2.6488 1.8653

1.6 Y = 13.332 − 65963.260 × R531 +
48663.968 × R685 − 62514.959 × R579

0.714 2.3548 0.6238 3.1517 1.6942

1.8 Y = 10.678 + 96021.784 × R685 0.452 3.2621 0.4338 3.0178 0.9333
2.0 Y = 10.915 + 108459.889 × R684 0.415 3.3685 0.3904 3.1252 0.8312

(a) (b)

Fig. 3.	 (Color online) Measured and predicted values for verification set data: (a) 0.6th order and (b) 0.8th order.

	 The estimated model verification indexes are RMSE, R2, and RPD, and it is common 
to mainly consider the RPD to evaluate the model prediction performance.  The precision 
evaluation of the SMLR estimation model under different fractional orders is also shown in 
Table 2.  The fractional derivative has a higher RPD and a lower RMSE in the 1.2nd, 1.4th, and 
1.6th orders; it shows that the prediction effects of these three types of fractional derivative are 
better than those of the others.  Moreover, the best estimation model is located in the 1.4th order, 
which has a maximum RPD of 1.8653.  As shown in Sect. 2.3, when the RPD is between 1.8 and 
2, the estimation ability of the model is good.  Therefore, this fractional estimation model can 
be adopted to predict the available phosphorus content in soil.  In addition, the measured and 
predicted values for the verification set data from the 0.6th order to the 2.0th order are shown in 
Fig. 3.



840	 Sensors and Materials, Vol. 32, No. 3 (2020)

Fig. 3.	 (Color online) (Continued) Measured and predicted values for verification set data: (c) 1st order, (d) 1.2nd 
order, (e) 1.4th order, (f) 1.6th order, (g) 1.8th order, and (h) 2nd order.

(e) (f)

(g) (h)

(c) (d)
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4.	 Conclusions

	 The spectra of desert soils in Xinjiang were determined in the field environment, and the 
spectral data were preprocessed by the fractional differential method to improve the correlation 
between the soil spectral reflectance and the available phosphorus content.  The maximum 
absolute correlation coefficient and its corresponding band information were determined, and 
the bands with a maximum absolute correlation coefficient greater than 0.5 were selected as 
sensitivity bands, which plays a significant role in reducing the dimension of hyperspectral 
data.  Taking the available phosphorus content in soil as a dependent variable, we used the 
spectral reflectances of seven sensitive bands as independent variables to establish the SMLR 
model under different fractional orders.  The seven sensitive bands for estimating the available 
phosphorus content in soil are 400, 531, 579, 610, 684, 685, and 2206 nm.  Simulations showed 
that the best estimation model of available phosphorus content in soil is located in the 1.4th 

fractional order, and the estimation model can be defined as Y = 9.724 − 33071.386 × R579 + 
47488.149 × R685 − 57543.268 × R610.  The R2, RMSE, and RPD of the verification set were 0.6963, 
2.6488, and 1.8653, respectively, indicating that this model has good estimation accuracy for 
available phosphorus content.  
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