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	 In the current precision industry, the rapid production of high-quality parts in bulk quantities 
has led to high competitiveness.  In this study, the Taguchi method and grey relational 
analysis (GRA) approach were used in a practical investigation of precision lathe processing.  
The purpose was to find optimal parameters for single-target and multitarget cutting.  The 
production of targets of the highest quality was the research focus, with the aim of strengthening 
the links between this study and the application to the processing industry.  Precision, surface 
roughness, and material removal rate were selected as targets for improvement.  The parameters 
commonly used for lathe processing were set as control factors, and cutting depth, spindle 
speed, feed rate, and material elongation were set as experimental factors.  The results showed 
that in the cutting of materials, cutting precision was mainly affected by the depth of cut and 
spindle speed, surface roughness by spindle speed, and the material removal rate by the cutting 
depth.  In a comparison of the quality loss for the same materials using previous parameters, 
the cutting precision has about 64 to 99% optimization, the surface roughness has 69 to 96% 
optimization, and the material removal rate has more than 90% optimization.  GRA was also 
employed to analyze the sequences of parameters from the Taguchi experiments to obtain the 
target relationships and to find the various combinations of factors for improvement.

1.	 Introduction

	 The machine tool industry occupies an indispensable position in the development of a 
country.  The precision of processing is continuously increasing in the pursuit of rapid mass 
production and the quality of products.  These aspects of production have become very 
important and many studies have been conducted to search for ways in which the efficiency 
and quality of production can be improved.  Controllable conditions that have an effect on the 
quality of the machine turning or milling process include the spindle speed, feed rate, cutting 
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fluid, cutting depth, shank angle, and the lathe tools or milling cutters used.  Many studies 
on all these aspects have been conducted,(1,2) particularly on cutting tool wear.(3–6)  Bharilya 
et al.(7) used a dynamometer and other devices to investigate the parameters that might reduce 
cutting force and increase cutting speed.  Pislaru et al.(8) used wavelet transformation to 
identify the resonance frequencies in machine tools and the machine status.  Rmili et al.(9) used 
an acceleration gauge to obtain wear vibration characteristics.  This was done to determine 
whether average power signal processing analysis can be used to develop an automatic detection 
system for the analysis of tool wear.  Cuka and Kim(10) used a dynamometer (a microphone 
and an accelerometer) to collect signals during cutting and fuzzy clustering to analyze the 
cutting tool status.  To establish the values of parameters in the above research, the costs of data 
collection and sensors were high, and the material cost of many repeated experiments was also 
a considerable burden.
	 The Taguchi method was used in this study to determine the required number of machine 
experiments and to collect data that can be used for effective analysis.  The desired quality 
characteristics and the experimental factors that may affect quality were selected as reference 
standards.  The standards for a specific item were set using the best combinations that 
could be found.  Pang et al.(11) used the Taguchi method to optimize processing parameters 
for specific materials.  Das et al.(12) used the grey fuzzy algorithm and Taguchi method to 
find the best parameters for cutting Al-4.5%Cu-TiC metal composite material on milling 
machines.  Das et al.(13) used fuzzy theory coupled with the Taguchi method to optimize 
material parameters.  Gupta et al.(14) also used the Taguchi and fuzzy methods to study 
parameter optimization using AISI P-20 steel.  Asiltürk et al.(15) used the Taguchi quality 
method and response surface methodology (RSM) to conduct research on surface roughness 
using the medical material Co28Cr6Mo.  Li et al.(16) also used parameter correlation, RSM, 
and multiobjective swarm optimization (MOPSO) in the Taguchi method to assist in a search 
for optimal production efficiency.  Ajith Arul Daniel et al.(17) used an artificial neural network 
(ANN) to carry out prediction and parameter optimization research on Taguchi quality and 
grey relational analysis (GRA) to examine milling machine performance.  Thankachan et al.(18) 
used the Taguchi method, GRA, and an ANN to predict and optimize the surface roughness of 
products made of aluminum alloys and the material removal rate.  Tamiloli et al.(19) performed 
GRA using Taguchi factorial experiments and developed an adaptive neuro-fuzzy inference 
system (ANFIS) model to optimize parameter selection.  This showed that GRA can use the 
signal-to-noise ratio (S/N) obtained from Taguchi experiments for relational analysis.  The 
primary use of the Taguchi method is to reduce the number of experiments, and grey relations 
produce good results for the analysis of data from short sequences.
	 However, all these previous studies involved the use of a single material or tool to find 
the best parameters.  Here, we look at the optimization parameters for different materials by 
examining different common materials processed by the same machine.  Workpiece precision, 
which was not previously a research priority, was a goal in this study and workpiece surface 
roughness and material removal rate (MRR) were focused on.  Ceramic tools, now commonly 
used in industry, were used in turning experiments with various metals.
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2.	 Methods

	 To implement the optimized parameters in lathe processing, the Taguchi method and GRA 
theory were both used, and the experimental flow is shown in Fig. 1.
	 To explain the framework of the experimental process in detail, experiment-related devices 
are introduced in Sect. 2.1, and the Taguchi theory and GRA are introduced in Sect. 2.2.

Fig. 1.	 (Color online) Flowchart of the experiment.
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2.1	 Specifications of experimental equipment

	 The machine used was a Mike Machine spherical digital computer numerical control (CNC) 
(Model MC4200BL), as shown in Fig. 2.  The machine had a POSA TAC-10-CY spindle and a 
SYNTEC 21-TA controller.
	 The cutting tools used in this study were ceramic and the materials used in the experiments 
were S45C medium-carbon, S20C low-carbon, SCM415 chromium alloy, 304 stainless, and 
SCM440 nickel steels, all commonly used in industry.  See Table 1 for detailed specifications.
	 CHAIN ETQNL-2020K16 cutting tools were used.  To measure the surface roughness of 
workpieces, a Mitutoyo SJ-210 surface roughness meter was used.  A Carl Zeiss Contura was 
also used for roughness measurements.  

2.2	 Taguchi theory and GRA

	 To reduce the number of experiments needed to find optimal parameters and to make it easy 
for machine operators to rapidly select them, the Taguchi method(20) is used.  Genichi Taguchi, 
in his original work, combined money and loss expressed by quality, not only taking cost 
into account, but also including consumer and social aspects to arrive at a “loss function”.  In 

Table 1
Workpiece composition in percentages.

Material Component
Medium-carbon steel Low-carbon steel Chromium alloy steel Stainless steel Nickel steel

C 0.460 0.160 0.13 0.059 0.38
P 0.013 0.015 0.03 0.032 0.03
Mn 0.790 0.410 0.60 1.82 0.60
S 0.007 0.007 0.03 0.0283 0.03
Si 0.220 0.220 0.15 0.46 0.15
Ni 0.020 0.010 0.25 0.54 0.25
Cr 0.140 0.020 0.90 8.10 0.90
Cu 0.010 Tr — 18.69 0.30
Mo — — 0.15 0.12 0.15

Fig. 2.	 (Color online) Spherical digital CNC.
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product manufacture, the target value is contained in the objective.  The purpose of quality is 
to achieve the target value, and to do this, product variation has to be reduced.  Furthermore, to 
achieve a stable product quality, it is necessary to find the design value parameters.  To change 
these parameters, one must start with the controllable factors involved in production and adjust 
them without incurring large costs.  In the Taguchi method, an orthogonal array is used to rank 
parameter factor levels.  Then, by the standard integration of the factors, the S/N ratios of the 
combinations can be computed.
	 The loss function of Taguchi quality is a function of both quality and money.  The loss 
function is expressed by a Tate series:(20,21)

	 2( ) ( ) ,L y K y m= × − 	 (1)

where m is the target value, y is the characteristic value, and K is the quality loss coefficient (the 
constant used in measurements).
	 The improvement targets have expected trends.  The status of Taguchi quality can be 
the larger the better (LTB), the smaller the better (STB), or nominal the best (NTB).  LTB is 
characterized by the largest actual expected value, STB is characterized by the smallest actual 
expected value, while NTB is between them and is characterized by “expecting the actual value 
to be close to the target value”.  In this study, LTB and STB were the experimental targets.  As 
far as cutting error and surface roughness were concerned, the smaller the error and Ra value, 
the better the processed workpiece.  For the material removal rate, the larger the value, the 
higher the cutting efficiency.
	 Owing to prior knowledge of the correlation between the processing control factors and 
goal achievement, GRA was employed to accomplish the relational analysis of the factors and 
goals.  GRA(22) is an important part of grey theory and is a measurement method for analyzing 
discrete sequences.  Compared with traditional statistical regression, GRA uses a small amount 
of data and multifactor data to analyze sequence relationships.  GRA involves sequence data 
normalization and can speed up analysis and enhance accuracy.  In this study, surface roughness 
and precision are STB and surface removal rates are LTB.  Normalized actions are expressed as 
follows:

STB:
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	 xi(k) is the largest or smallest in the same quality sequence and current data calculation 
results.  After normalization, the data undergoes sequential grey relational coefficient (GRC) 
computation.(19)  The GRC equation is
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Here, Δi is the difference between the absolute values of the standard sequence and the 
compared sequence in the same row Δmin, and Δmax is the difference between the maximum 
and minimum values of the two standards and compared sequences.  ζ is the distinguishing 
coefficient, the function of which is to compare the background object with the object to be 
tested.  Adjusting  ζ will only affect the numerical value, not the sequence.  Generally, ζ is 
adjusted to 0.5, but this can be changed to suit actual needs.
	 Finally, the GRCs are sorted to find the grey relational grade (GRG).  The GRG is calculated 
using the mean of the GRCs, as follows:

	
1
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n
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n

ϒ ξ
=

= ∑ 	 (5)

where n is the output volume in the same row.  The computed GRG value was used to rate the 
sizes of the grades and find the corresponding combination of factor parameters.
	 The S/N obtained through the Taguchi quality method was computed to obtain the optimal 
parameters of single targets.  The sequence analysis in GRA was then used to analyze Taguchi 
S/N data and perform relational analysis to obtain multiple targets while improving the 
parameters.

3.	 Experimental Results and Discussion

	 The cutting precision, surface roughness, and MRRS were the quality characteristics in 
these experiments.  Precision is a very important indicator of quality and CNC processing is 
a large, well-established industrial process.  The error reduction leads to a great improvement 
in product yield rate and reduced costs and is the main reason for this in-depth study of lathe 
precision.  Surface roughness is also a major product indicator and uneven surfaces will affect 
appearance as well as cause problems between moving contact surfaces.  A rough surface will 
also increase wear, also an integral factor examined in this study.  The MRR was calculated 
using the mass of the workpiece obtained before processing, as described by Shrivastava and 
Singh.(23)

	 To explain the experimental process framework in detail, the Taguchi experimental process 
is introduced in Sect. 3.1.  Section 3.2 covers the GRA.

3.1	 Experimentation using the Taguchi method

	 With reference to the literature,(1,8) we varied the cutting depth, spindle speed, feed rate, 
and material elongation to establish the orthogonal array experimentally.  Refer to Table 2 for a 
comparison of the control factor standards.
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	 The orthogonal array selected in this study was L9(34).  Nine experiments in total were 
performed and cutting was carried out in straight lines.  The total cutting depth for each 
experiment was 30 mm.
	 Table 3 shows the Taguchi orthogonal experimental data for medium-carbon and low-carbon 
steels.  Table 4 shows the Taguchi orthogonal experimental data for chromium alloy, stainless, 
and nickel steels.  The units of precision error, surface roughness, and MRR are mm, μm,  and g/s, 
respectively.
	 According to the data measured from the respective targets, LTB and STB S/N ratios are 
substituted.  The data of the materials obtained after computation are shown in Tables 5 and 6.
	 On the basis of the computed data above, the tables of the target factors of the materials were 
established.  Refer to Tables 7 and 8 for the cutting precision.

Table 2
Control factor standards.

Factor Standard
1 2 3

Cutting depth (mm) 0.1 0.6 1.1
Spindle speed (rpm) 2101 2334 2567
Feed rate (rev) 0.15 0.2 0.25
Elongation (mm) 40 60 80

Table 3
Experimental data–medium-carbon and low-carbon steel quality characteristics.

Medium-carbon steel 	 Low-carbon steel
Precision 

error 
Surface 

roughness MRR Precision 
error

Surface 
roughness MRR 

1 0.013617 1.8886667 0.090909091 0.0085172 1.9026667 0.136363636
2 0.0308 3.251667 0.125 0.00513 3.464 0.222222222
3 0.02955 4.947 0.071428571 0.00493 5.045333 0.214285714
4 0.03207 3.338 0.666666667 0.01036 3.568 0.777777778
5 0.0419 4.979333 0.8125 0.01834 5.105667 0.8125
6 0.01425 1.908 0.65 0.006532 1.915 0.7
7 0.00961 1.698333 1.375 0.00524 5.085333 1.5625
8 0.0053 1.951667 1.15 0.02352 2.031333 1.25
9 0.01391 3.409 1.277777778 0.005562 3.649667 1.333333333

Table 4
Experimental data–chromium alloy, stainless, and nickel steel quality characteristics.

Chromium alloy steel 	 Stainless steel Nickel steel
Precision 

error 
Surface 

roughness MRR Precision 
error 

Surface 
roughness MRR Precision 

error 
Surface 

roughness MRR 

1 0.0148022 1.9753333 0.090909091 0.012118 1.9286667 0.045454545 0.012118 1.9286667 0.045454545
2 0.003659 3.424333 0.166666667 0.0213 3.415333 0.055555556 0.0213 3.415333 0.055555556
3 0.012 4.978667 0.214285714 0.02271 4.875333 0.142857143 0.02271 4.875333 0.142857143
4 0.00375 3.499 0.777777778 0.02483 3.444667 0.722222222 0.02483 3.444667 0.722222222
5 0.01546 4.977 0.875 0.03494 4.936333 0.75 0.03494 4.936333 0.75
6 0.013611 1.912667 0.7 0.01187 1.925 0.65 0.01187 1.925 0.65
7 0.00567 5.099333 1.5625 0.03317 1.910333 1.4375 0.03317 1.910333 1.4375
8 0.032243 1.899 1.3 0.00238 4.910333 1.2 0.00238 4.910333 1.2
9 0.017998 3.347333 1.388888889 0.01503 3.308 1.277777778 0.01503 3.308 1.277777778
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Table 7  
Factor results–medium-carbon and low-carbon steel cutting errors.

Standard
Factor

Medium-carbon steel Low-carbon steel
A B C D A B C D

1 32.71239619 35.84698009 39.92014298 34.00259808 44.44655548 42.23448879 39.22162283 40.40672078
2 31.45331268 34.43315718 32.41344036 35.83333092 39.37322635 37.70120702 43.52881237 45.04041069
3 40.99793091 34.8835025 32.83005644 35.32771078 41.09554296 44.97962899 42.16488959 39.46819332
Difference 9.544618227 1.413822912 7.506702624 1.830732838 5.073329123 7.278421967 4.307189537 5.572217367

Table 8
Factor results–chromium alloy, stainless, and nickel steel cutting errors.

Standard
Factor

Chromium alloy steel Stainless steel
A B C D A B C D

1 41.24754948 43.3507099 34.58240139 35.90158282 34.87879543 33.3390262 43.10852281 34.64187024
2 40.68947635 38.25999752 44.0530511 43.66134808 33.24934134 38.34845045 33.99739007 33.84355002
3 36.55173333 36.87805174 39.85330667 38.92582825 39.50895968 35.9496198 30.53118358 39.15167619
Difference 4.695816146 6.472658155 9.470649712 7.759765263 6.259618343 5.009424247 12.57733923 5.30812617

Standard
Factor

Nickel steel
A B C D

1 29.34528276 28.20955455 25.47355687 29.28217831
2 30.37325964 29.08528207 28.71680565 27.85286244
3 25.7052719 28.12897768 31.23345179 28.28877356
Difference 4.667987743 0.95630439 5.759894916 1.429315868

Table 5
S/N ratio–medium-carbon and low-carbon steel quality characteristics.

Medium-carbon steel 	 Low-carbon steel
Precision error

S/N ratio
Surface roughness

S/N ratio
MRR

S/N ratio
Precision error

S/N ratio
Surface roughness

S/N ratio
MRR

S/N ratio
1 37.318478 −5.523106 −20.8278537 41.394063 −5.587254 −17.3060285
2 30.22868 −10.2421 −18.0617997 45.80166 −10.7916 −13.0642502
3 30.59003 −13.8868 −22.9225607 46.14394 −14.0578 −13.3801356
4 29.8778 −10.4697 −3.52182518 39.6894 −11.0485 −2.18288938
5 27.55548 −13.9434 −1.80353260 34.73072 −14.161 −1.80353260
6 36.92665 −5.61157 −3.74173286 43.69956 −5.64338 −3.0980392
7 40.34466 −4.60046 2.766053963 45.62001 −14.1264 3.87640052
8 45.5153 −5.80811 1.213956807 32.57124 −6.15562 1.93820026
9 37.13383 −10.6525 2.129106618 45.09538 −11.2451 2.498774732

Table 6
S/N ratio–chromium alloy, stainless, and nickel steel quality characteristics.

Chromium alloy steel 	 Stainless steel Nickel steel
Precision 

error
S/N ratio

Surface 
roughness
S/N ratio

MRR
S/N ratio

Precision 
error

S/N ratio

Surface 
roughness
S/N ratio

MRR
S/N ratio

Precision 
error

S/N ratio

Surface 
roughness
S/N ratio

MRR
S/N ratio

1 36.593484 −5.912808 −20.8278537 38.331118 −5.705143 −26.8484536 26.88675818 −6.16132330 −14.8072537
2 48.73319 −10.6915 −15.5630250 33.43109 −10.6687 −25.1054501 29.57641861 −11.5918615 −15.5630250
3 38.41598 −13.9423 −13.3801356 32.87418 −13.7601 −16.9019608 31.57267149 −14.2153184 −10.8813608
4 48.53031 −10.8789 −2.18288938 32.10034 −10.7429 −2.82658305 30.1645791 −11.2791093 −1.02305044
5 36.2156 −13.9394 −1.15983894 29.13375 −13.8681 −2.49877473 34.5503575 −14.3534100 −0.56057447
6 37.32252 −5.63279 −3.0980392 38.51394 −5.68861 −3.74173286 26.40484233 −6.13278882 −1.93820026
7 44.92834 −14.1503 3.87640052 29.58562 −5.62218 3.152157067 27.57732637 −14.3976694 4.54487563
8 29.8312 −5.5705 2.278867046 52.48051 −13.8222 1.583624921 23.1290701 −6.64472831 2.60667537
9 34.89566 −10.494 2.853350071 36.46074 −10.3913 2.129106618 26.40941923 −11.5467716 3.521825181
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Fig. 3.	 (Color online) Resonance diagrams of cutting errors: (a) medium-carbon, (b) low-carbon, (c) chromium 
alloy, (d) stainless, and (e) nickel steels.

(a) (b)

(c) (d)

(e)

Table 9
Factor results–medium-carbon and low-carbon steel surface roughnesses.

Standard
Factor

Medium-carbon steel Low-carbon steel
A B C D A B C D

1 −9.884021632 −6.864430543 −5.647595537 −10.03969011 −10.14553638 −10.25404654 −5.795417888 −10.33112246
2 −10.00823935 −9.997885761 −10.45479568 −6.81804882 −10.28430721 −10.36941024 −11.02837287 −10.18710725
3 −7.02037053 −10.05031521 −10.8102403 −10.05489258 −10.50902548 −10.31541229 −14.11507832 −10.42063937
Difference 2.987868824 3.18588467 5.162644759 3.236843763 0.363489094 0.115363703 8.319660427 0.233532122

	 The obtained factor values were imported into software and presented in resonance diagrams 
to identify the difference in S/N ratio between various factor standards.  Figure 3 shows cutting 
precision resonance diagrams.
	 Tables 9 and 10 are the tabulated factor results of surface roughness.  Figure 4 shows surface 
roughness resonance diagrams.
	 Tables 11 and 12 are the factor results of MRRs.  Figure 5 shows MRR resonance diagrams.



852	 Sensors and Materials, Vol. 32, No. 3 (2020)

Standard
Factor

Nickel steel
A B C D

1 −10.65616776 −10.61270069 −6.312946812 −10.68716834
2 −10.58843606 −10.86333329 −11.47258082 −10.70743993
3 −10.86305648 −10.63162631 −14.32213267 −10.71305203
Difference 0.274620415 0.250632598 8.009185854 0.025883689

(a) (b)

(c) (d)

(e)

Fig. 4.	 (Color online) Resonance diagrams of surface roughness: (a) medium-carbon, (b) low-carbon, (c) 
chromium alloy, (d) stainless, and (e) nickel steels.

Table 10
Factor results–chromium alloy, stainless, and nickel steel surface roughnesses.

Standard
Factor

Chromium alloy steel Stainless steel
A B C D A B C D

1 −10.18219651 −10.31398491 −5.705364309 −10.11537997 −10.04463057 −7.356756872 −8.405325888 −9.988181026
2 −10.15033915 −10.06712426 −10.68812625 −10.1581915 −10.09988276 −12.78632367 −10.600972 −7.326486563
3 −10.07158219 −10.02300868 −14.01062729 −10.13054638 −9.945237529 −9.946670327 −11.08345298 −12.77508328
Difference 0.110614314 0.290976234 8.305262977 0.042811526 0.154645236 5.429566795 2.678127089 5.448596715
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Table 11
Factor results–medium−carbon and low−carbon steel MRRs.

Standard
Factor

Medium-carbon steel Low-carbon steel
A B C D A B C D

1 −20.60407139 −7.19454164 −7.785209921 −6.834093231 −14.58347147 −5.204172463 −6.155289154 −5.536928799
2 −3.022363552 −6.21712518 −6.484839434 −6.345826215 −2.361487065 −4.309860874 −4.249454977 −4.095296318
3 2.036372463 −8.178395654 −7.320013119 −8.410143029 2.771125171 −4.659800029 −3.769089235 −4.541608249
Difference 22.64044385 1.961270474 1.300370487 2.064316815 17.35459664 0.894311589 2.386199919 1.441632481

Table 12
Factor results–chromium alloy, stainless, and nickel steel MRRs.

Standard
Factor

Chromium alloy steel Stainless steel
A B C D A B C D

1 −16.59033811 −6.37811419 −7.215675286 −6.37811419 −22.95195484 −8.840959868 −9.668853854 −9.072707243
2 −2.146922509 −4.814665634 −4.964188108 −4.928221229 −3.022363552 −8.673533304 −8.600975513 −8.565008634
3 3.002872546 −4.541608249 −3.554524679 −4.428052654 2.288296202 −6.171529016 −5.416192822 −6.048306312
Difference 19.59321066 1.836505941 3.661150606 1.950061537 25.24025104 2.669430852 4.252661032 3.024400932

Factor

Standard Nickel steel
A B C D

1 −13.75054656 −3.761809536 −4.712926227 −3.948667694
2 −1.173941727 −4.50564137 −4.354750092 −4.318783213
3 3.55779206 −3.099245322 −2.29901991 −3.099245322
Difference 17.30833862 1.406396048 2.413906317 1.219537891

(a) (b)

Fig. 5.	 (Color online) Resonance diagrams of MRRs: (a) medium-carbon, (b) low-carbon, (c) chromium alloy, and 
(d) stainless steels.

(c) (d)
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Table 13
Best configuration combinations of material factors.

Medium-carbon 
steel

Low-carbon
 steel

Chromium alloy
 steel

Stainless
 steel

Nickel 
steel

Cutting precision A3B1
C1D2

A1B3
C2D2

A1B1
C2D2

A3B2
C1D3

A2B2
C3D1

Surface roughness A3B1
C1D2

A1B1
C1D2

A3B3
C1D1

A3B1
C1D2

A2B1
C1D1

Material removal rate A3B2
C2D2

A3B2
C3D2

A3B3
C3D3

A3B3
C3D3

A3B3
C3D3

Table 14
Reduction percentages of quality loss for different material combinations.

Medium-carbon 
steel (%)

Low-carbon 
steel (%)

Chromium alloy 
steel (%)

Stainless 
steel (%) Nickel steel (%)

Cutting precision 98.61 65.59 96.22 99.13 64.52
Surface roughness 96.10 71.41 69.04 82.40 70.12
Material removal rate 99.69 98.91 99.49 99.92 99.04

(e)

Fig. 5.	 (Color online) (Continued) Resonance diagrams of MRRs: (e) nickel steel.

	 The Taguchi quality calculation shows the impact of the factor standards of the materials 
from which the factor standard combinations most suitable for the targets were selected.  We 
computed the quality loss of the originally set factor combinations and the improved best 
combinations to determine the amount of loss reduction.  The previous experimental parameters 
and materials were set as A1B3C2D1, and the improved factor configuration is shown in Table 
13.
	 The results of the computed quality loss are shown in Table 14.  This table shows that 
the best combinations can reduce the quality loss of many preset combinations.  The best 
parameters can be obtained to carry out parameter optimization on single targets.

3.2	 GRA

	 Taguchi quality involves the computation of S/N to determine which experimental 
combination of factors is optimal for single targets.  Here, the sequence data under the Taguchi 
orthogonal experiment was used to perform GRA.  The target quality underwent multitarget 
optimization.  Tables 15 and 16 show the normalized S/N ratios and respective target sequences 
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Table 15
 Normalized S/N data–medium-carbon and low-carbon steel data.

Medium-carbon steel Low-carbon steel
Precision 

error
Surface 

roughness MRR Precision 
error

Surface 
roughness MRR

1 0.543602 0.901247 0.081542 0.650042 1 0
2 0.148843 0.39616 0.189218 0.974782 0.39299 0.20025
3 0.168963 0.006058 0 1 0.012037 0.185337
4 0.129306 0.371799 0.755227 0.524447 0.363027 0.713947
5 0 0 0.822116 0.159105 0 0.731856
6 0.521785 0.891778 0.746666 0.819905 0.993454 0.670744
7 0.7121 1 1 0.961398 0.004036 1
8 1 0.870742 0.93958 0 0.933709 0.9085
9 0.533321 0.352234 0.975205 0.922745 0.340096 0.934964

Table 16
Normalized S/N data–chromium alloy, stainless, and nickel steel data.

Chromium alloy steel Stainless steel Nickel steel
Precision 

error
Surface 

roughness MRR Precision 
error

Surface 
roughness MRR Precision 

error
Surface 

roughness MRR

1 0.357755 0.960103 0 0.393946 0.989939 0 0.329007 0.996548 0.037586
2 1 0.403133 0.213114 0.184066 0.387998 0.058099 0.564503 0.339486 0
3 0.454173 0.024243 0.301475 0.160212 0.013097 0.331543 0.739286 0.022063 0.232827
4 0.989267 0.381291 0.754727 0.127066 0.379 0.800713 0.616 0.377327 0.723098
5 0.337763 0.024581 0.796139 0 0 0.811639 1 0.005355 0.746097
6 0.396324 0.99274 0.717683 0.401777 0.991944 0.770208 0.286813 1 0.677586
7 0.798706 0 1 0.019355 1 1 0.389471 0 1
8 0 1 0.935334 1 0.005566 0.947717 0 0.938058 0.90361
9 0.267933 0.426152 0.958588 0.313833 0.421639 0.965899 0.287214 0.344941 0.949122

Table 17
GRG–medium-carbon and low-carbon steels.

Medium-carbon steel Low-carbon steel
GRC

GRG Rank
GRC

GRG RankCutting 
precision Ra MRR Cutting 

precision Ra MRR

1 0.522795 0.835068 0.352496 0.57012 5 0.588264 1 0.333333 0.640533 5
2 0.370053 0.452964 0.381452 0.40149 8 0.951985 0.451667 0.384689 0.596114 6
3 0.375647 0.334685 0.333333 0.347888 9 1 0.33603 0.380326 0.572118 7
4 0.364779 0.443184 0.671346 0.493103 6 0.51253 0.439764 0.63609 0.529461 8
5 0.333333 0.333333 0.73759 0.468085 7 0.372885 0.333333 0.65092 0.452379 9
6 0.511135 0.822068 0.663717 0.66564 3 0.735191 0.987077 0.60295 0.775073 1
7 0.634598 1 1 0.878199 2 0.92833 0.334233 1 0.754187 2
8 1 0.794587 0.892189 0.895592 1 0.333333 0.882938 0.845308 0.687193 4
9 0.517235 0.435629 0.952753 0.635206 4 0.866168 0.43107 0.884899 0.727379 3

obtained after GRC and GRG analyses.  The material analysis results are shown in Tables 17 
and 18.
	 Observations of the material grade show that a higher GRG produces a higher overall 
impact.  It was found that the eighth combination is the best for medium-carbon steel, the sixth 
combination is best for low-carbon steel, the eighth combination is best for chromium alloy 
steel, the seventh combination is best for stainless steel, and the eighth combination is best for 
nickel steel.  Thus, the eighth combination produces beneficial results for the optimization of 
various materials.



856	 Sensors and Materials, Vol. 32, No. 3 (2020)

	 The Taguchi quality experimental method was used to find a single optimization target 
combination relative to the previous combination.  Thus, with the assistance of GRA, the 
machine users can select a “single target” or search for “optimal parameters for multiple 
optimizations”.

4.	 Conclusion

	 We presented the results of an investigation of optimal parameters for the lathe machining of 
several different materials using the Taguchi method and GRA.  The experimental results show 
the impacts of the cutting precision targets of various materials, with cutting depth and spindle 
speed having the greatest impacts.  Spindle speed affected surface roughness, and cutting depth 
affected the material removal rate.  These factors can be used by machine operators to adjust 
and improve target selection.  The optimal parameter combinations found in this study reduced 
quality loss more significantly than previous combinations.  This achieved the purpose of the 
search for optimized parameters.  In the future, other directions, such as the analysis of variance 
(ANOVA) to derive more specific selections and enhance parameter optimization, could be 
investigated.

Table 18
GRG–chromium alloy, stainless, and nickel steels.

Chromium alloy steel  Stainless steel
GRC

GRG Rank
GRC

GRG RankCutting 
precision Ra MRR Cutting 

precision Ra MRR

1 0.437735 0.926103 0.333333 0.565723 7 0.452058 0.980275 0.333333 0.588555 5
2 1 0.455844 0.388535 0.614793 5 0.379958 0.449639 0.346764 0.392121 8
3 0.478091 0.338809 0.417179 0.41136 9 0.373193 0.33627 0.427915 0.379126 9
4 0.978985 0.446944 0.670895 0.698941 2 0.364184 0.44603 0.715014 0.508409 6
5 0.430205 0.338887 0.710367 0.493153 8 0.333333 0.333333 0.726364 0.464343 7
6 0.453032 0.985688 0.639127 0.692615 3 0.455281 0.984143 0.685127 0.708184 3
7 0.712968 0.333333 1 0.6821 4 0.337691 1 1 0.77923 1
8 0.333333 1 0.885479 0.739604 1 1 0.334575 0.905332 0.746636 2
9 0.405822 0.465615 0.923511 0.598316 6 0.421526 0.463667 0.936153 0.607115 4

Nickel steel
GRC

GRG RankCutting 
precision Ra MRR

1 0.426988 0.993142 0.3419 0.587344 5
2 0.534475 0.430843 0.333333 0.432884 9
3 0.657278 0.338309 0.394579 0.463389 8
4 0.565611 0.445366 0.643581 0.551519 7
5 1 0.334528 0.663216 0.665914 3
6 0.412138 1 0.607966 0.673368 2
7 0.450236 0.333333 1 0.594523 4
8 0.333333 0.889772 0.838378 0.687161 1
9 0.412274 0.432878 0.907642 0.584265 6
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