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 The five-axis machining center and mill-turn lathe are some of the modern machining 
technologies widely used around the world.  The spindle of the mill-turn lathe is the power 
source for cutting and milling.  The spindle often spins at 2000 rpm or more for higher milling 
accuracy and efficiency.  However, as the rotation speed increases, so does the temperature and, 
thus, the accuracy deteriorates and the number of errors increases.  As a result, it is important to 
measure and predict the thermal deformation in the spindle of the mill-turn lathe.  For this study, 
temperature was measured at various points on the spindle.  The deformation was measured 
using a gantry-type main axis.  The temperature increase and deformation measurements were 
analyzed, and the results were used for the prediction using the backpropagation of an artificial 
neural network.  From this, the machining accuracy can be improved by refining the structure 
design or compensation.  The largest temperature increase was found to be 8 °C.  The maximum 
deformations were 0.026 mm for the X-axis, 0.004 mm for the Y-axis,	and	−0.069	mm	for	the	
Z-axis.

1. Introduction

 Multifunction machine tools (mill-turn lathes) are extensively employed in work piece 
machining in, for example, aeronautics and car wheels.  The increase in rotary table rpm to up 
to N = 2000–2500 rpm results in the increase in temperature and thermal deformation.  The 
prediction and suppression of the temperature increase and thermal deformation of the rotary 
table are technically insufficient.  A high-speed rotary table is used in mill-turn lathes for multi-
axis machining and milling/cutting integrated machining.  Current applications include the 
machining of aeronautic engine casing and aluminum alloy wheels in the automobile industry.  
The work pieces are mostly large, thin, and round or disclike.  Therefore, the mill-turn machine 
provides a solution for one-stop machining in terms of simplification in the work piece process.  
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However, the faster the spin of the rotary table, the more accurate the cutting surface.  The 
temperature of the spindle increases rapidly owing to the direct-drive motor, bearing, and 
rotational inertia.  Still, the resulting temperature increase leads to deformation as the machine 
spins at a high speed.  Therefore, maintaining the same accuracy while the machine spins at a 
high speed is the subject of this study.(1–3)  

 The study was intended to analyze and predict the thermal deformation in mill-turn 
machines.  The high-speed rotation of the spindle has become inevitable for the machining 
of large and thin work pieces.  When analyzing a B/C axis rotary table, the C-axis rotated 
at N = 2000 rpm.  For the analysis and prediction of thermal deformation in a spindle, the 
B/C axis rotary table was mounted on a gantry-type workstation.  A temperature sensor was 
attached to the spindle to measure the temperature rise of the spindle at a high rpm and the 
accuracy after the temperature rise.  The effect of the temperature rise on the accuracy of the 
spindle was investigated.  Then, the thermal deformation was predicted and analyzed using the 
backpropagation of an artificial neural network (BPN).

2. Theory and Principle of Temperature Rise

 The rotary table of a mill-turn machine was selected as the subject of this study.  As shown 
in the figure, the drive came from a direct-drive motor with the maximum rpm at N = 2000–
2500 rpm to match the movements of the bearing and spindle.  The increase in rotation speed 
will increase heat, and the more easily generated thermal deformation reduces the accuracy of 
the multi-axis machine tool application as shown in Fig. 1.
 The analysis and prediction were performed on the rotary table for this study.  The heat 
generation was proportional to rotation speed and moment.  The equation shows that the 
moment is related to loading and lubrication.  The change in temperature and the duration of 
the steady state were observed during the experimental analysis.  The BPN was introduced for 
the prediction and analysis.  In Eq. (1), the main explanation is that the heat generated by the 
bearing is proportional to the speed and frictional torque.  The following is the heat generated in 
the mechanical system:(4,5)

 Q = 1.047 × 10−4 nM, (1)

Fig. 1. (Color online) Workstation of a mill-turn machine.
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where Q is the heat generated by the bearing, n is the bearing rpm, and M is the friction moment 
(Nm).  In Eq. (1), M is the sum of the moment induced by the bearing loading (M1) and that 
induced by the bearing lubricant (M2).  Therefore, the friction moment is expressed as

 M＝M1 + M2. (2)

In Eq. (2), the moment induced by the bearing loading is 

 M1 = μ0∙f0∙F∙dm/2, (3)

where μ0 is the friction coefficient, f0 is the direction coefficient of loading, F is the bearing 
loading (N), and dm is the nominal internal diameter of bearing (m).  The moment induced by 
the bearing lubricant is

 M2 = f1∙(v∙n)2/3dm3, (4)

where f1 is the factor associated with the types of bearing structure and lubricant, v is the 
viscosity of the lubricant (m2/s), dm is the nominal internal diameter of the bearing (m), and n is 
the bearing rotation speed (rpm).  
 From the above, it is clear that the higher the spindle rotation speed, the greater the heat 
generated by the bearing.  More heat is generated as the spindle bearing operates for a long 
time, leading to temperature rise, thermal deformation, and in turn, compromised accuracy.(6–8) 

 The accuracy of machining centers is affected by static and drive errors.  Bryan(9) suggested 
that the static error accounts for 35% of the effect on the machine accuracy.  The static error 
comprises thermal deformation and geometric errors.  Weck et al.(10) mentioned that 50% of the 
total error in a machine comes from those due to thermal expansion, indicating that heat has a 
considerable effect on machine accuracy.  
 When a machine is operating, the friction between parts, among other factors, generates 
heat.  However, this heat affects the machine indirectly, through thermal conduction, radiation, 
and convection.  The heat leads to a temperature rise in many parts of the machining center 
and, eventually, deformation due to thermal errors, as shown in Fig. 2.  The result is the 
compromised accuracy of the machining center.(3,8,11)

3.	 Artificial	Neural	Network	Analysis

3.1	 Introduction	to	artificial	neural	network

 The artificial neural network is essentially a computer system that mimics the human 
nerve system and is capable of learning, thinking, and problem solving.  The artificial neural 
network simulates thermal deformation with a large quantity of simple artificial neurons and 
produces results using a simple computation.  Therefore, its system or process can be described 
mathematically, as shown in Fig. 3.  In 1989, Lippmann(12) pointed out that the BPN requires 
only one or two hidden layers to solve a problem of any form.(12,13)
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3.2	 Algorithm	of	BPN

 The artificial neural network mimics the data processing system of a biological neural 
network, which is a network nerve system consisting of 1011 nerve cells or neurons.  Figure 4 
shows an artificial neuron or processing unit.  Every processing unit is capable of receiving one 
or more input signals and producing an output signal after a simple computation in the middle 
layer.  The relationship between inputs and outputs is generally expressed using the weighted 
product and function of inputs.(14,15)
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 Yj = f(netj), (6)

where netj is the aggregation function, which is the weighted product of inputs minus bias, Yj is 
the output signal, Xi is the input signal, θj is the threshold, f is the conversion coefficient, and Wij 
is the neuron intensity, i.e., the weight.
 The prediction was made using the BPN for this experiment.  The basic architecture of the 
network consisted of an input layer, a hidden layer, and an output layer, which were connected 
with neurons, as shown in Fig. 5.

3.3 Transfer function

 Also called the activation function, the transfer function is the most important processing 
tool in the artificial neuron network.  It is a function that figures out the thresholds of biological 
neurons and works as a reflective rule that transforms the inputs of neurons to outputs according 
to the sum of weights.  The use of different transfer functions makes the artificial neural 

Fig. 2. (Color online) Machine tool thermal defor-
mation diagram.

Fig.	3.	 Artificial	neural	network	theory.
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network model produce different changes.  Figure 6 shows the most commonly used functions: 
(1) log-sigmoid transfer function, (2) hyperbolic tangent sigmoid function, and (3) linear transfer 
function.  In this study, we use a hyperbolic tangent sigmoid function for analysis.(7)

3.4	 Building	BPN	model

 The BPN is extremely sensitive to the number of neurons in the hidden layer.  Too many or 
too few neurons will affect the output result.  It is necessary to determine how many neurons 
are required before making any prediction.  Equations (7)–(9) were used in the calculations to 
respectively produce 4, 8, and 16 neurons, and, therefore, the setup and learning were made 
between 4 and 16 neurons.  There were five input variables, namely, two bearing temperature 
points, two motor temperature points, and one at the cast piece of the spindle, in addition to 
time as the network input.  The network outputs were the changes in thermal deformation for 
the X-, Y-, and Z-axes.

 NH = (NI + NO)/2, (7)

 NH = NI + NO, (8)

 NH = (NI + NO) × 2, (9)

Fig.	4.	 (Color	online)	Artificial	neuron	model. Fig. 5. (Color online) Architecture of the BPN.

Fig. 6. Three transfer functions commonly used.
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where NH is the number of neurons in the hidden layer, NI is the number of neurons in the input 
layer, and NO is the number of neurons in the output layer.
 Equations (7)–(9) were used in the calculations for region 4–16 neurons, and then the 
correlation coefficient R was determined to optimize the input parameters after the training.  
The simulation distribution after the training is shown in Fig. 7.  Table 1 shows the comparison 
between different numbers of neurons.  The ratio of training values to verification values is 7:3, 
and the hyperbolic tangent sigmoid function is used in the transition.  It is clear that 16 neurons 
produced the best R and distribution.  The correlation coefficient R is given as
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where N is the number of data, Qt is the measured data, ˆ
tQ  is the estimated data, tQ  is the 

measured average data, and ˆ
tQ  is the estimated average data.

4. Experimental Setup and Equipment

4.1 Experimental setup

 This study consisted of two parts.  The first part consisted the measurement and analysis of 
thermal deformation.  For the purpose of the experiment, rpm was selected as the controllable 
factor, and the rotary table was set at the maximum rpm for testing.  Therefore, the controllable 
factor was fixed.  The measurement was focused on temperature.  Temperature sensors were 
attached to the spindle bearing and motor for measurement to determine the temperature 
rise of the bearing.  Secondly, for accuracy measurement, the test probe was mounted on the 
machining surface of the rotary table.  The probe had to be aligned with the spindle within 
0.002 mm.  A displacement sensor was used to measure the thermal deformation of the entire 
machining surface of the rotary table.  Figure 8 shows that the measurement equipment.

4.2 Experimental sequence and setup

 The rotation speed was considered as the controllable factor at N = 2000–2500 rpm.  As 
the temperature reached a steady state, the rotary table speed was decreased to N = 0 rpm 

Table 1
Correlation	coefficient	R	for	different	numbers	of	neurons.
No. of neurons R for training R for validation R for test All R

4 0.99984 0.99985 0.99985 0.99984
6 0.99984 0.99984 0.99983 0.99984
8 0.99988 0.99987 0.99988 0.99988

12 0.99991 0.99991 0.99989 0.99991
16 0.99992 0.99992 0.99991 0.99992
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(a) (b)

(c) (d)

(e)
Fig. 7. (Color online) Simulation distribution after training. (a) Four, (b) six, (c) eight, (d) 12, and (e) 16 neurons.
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to return to the initial temperature.  At this moment, the rotary table rpm was increased to 
N = 2000–2500 rpm.  Again, the changes in temperature rise up to the steady state were 
observed.  We determined whether the temperature rise and deformation were symmetric.  The 
experimental sequence is shown in Fig. 9.
 The temperature sensors were located at major hot spots, such as the bearing and motor, as 
shown in Fig. 10 and Table 2.  They were located symmetrically for measurement and analysis.  
Seven sensors were mounted, including one that measured room temperature.
 For the measurement of location accuracy, the test probe was fixed on the surface of the 
rotary table.  Upon testing, the rotary table spun at a high rotation speed, resulting in thermal 
deformation.  The displacement sensors were placed on each of the three axes (X, Y, and Z) of 
the gantry mill for measurement, as shown in Fig. 11.  The displacement sensors on the X-, Y-, 
and Z-axes were fixed references.  For this study, the thermal deformation measured from the 
rotary	 table	was	 defined	 as	 negative	 (−)	 if	 the	 rotary	 table	 deformation	 caused	 the	 sensor	 to	
move toward the test probe as it started rotating and positive (+) if away from the probe.
 An intelligent measurement module was used for temperature measurement in the 
experiment as shown in Fig. 10 in combination with IC-type temperature sensors.  For accuracy 
measurement, the combination of an intelligent module and an eddy current displacement meter 
was used and mounted on the fixture designed for this experiment.  

4.3 Mean square error (MSE) of estimation

 For the prediction of the artificial neuron model and the BPN, how to select the proper 
number of neurons is very important.  In this study, we use different numbers of neurons and 

Fig. 8. (Color online) Measurement equipment and 
system for the thermal deformation of rotary table.

Fig.	9.	 Experimental	flow	and		setup.



Sensors and Materials, Vol. 32, No. 3 (2020) 867

training times to find the most appropriate parameters with the mean square error and reduce 
the prediction error.  The closer the MSE to 0, the smaller the error between the prediction value 
and the experimental value, as shown in Figs. 12(a)–12(c).

5. Results and Discussion

5.1	 Effect	of	rotation	speed	on	temperature	rise

 The temperature measurements taken during the experiment were collected and analyzed.  
As the spindle started to turn at the maximum rotation speed of N = 2500 rpm, the first 
experiment was conducted.  The temperature was measured up to a steady state and the 
rotary table was allowed to cool, then the second experiment was conducted as soon as the 
temperature was close to room temperature.  The two measurements were compared, as shown 
in Figs. 13 and 14 .  It took 1 h and 10 min for the temperature to rise to a steady state for the 
first experiment and 1.5 h for the second experiment.  Despite the difference in time to the 
steady state between the two experiments, the trends shown by the temperature rise curves were 
the same.  The highest temperature rise occurred at the bearing for both experiments.  For the 
first experiment, the temperature rise was as high as 8 °C, and for the second experiment, it was 
5 °C.  The motor, however, was water-cooled during the experiment.  Therefore, the temperature 

Fig. 10. (Color online) Locations of temperature 
sensors.

Table 2
Names and locations of temperature sensors.
Name Location
T0 Room temperature
T1 Gantry cast piece
T2 Right side of motor
T3 Right side of bearing
T4 Left side of motor
T5 Left side of bearing
T6 Platform cast piece (machine temperature)

Fig. 11. (Color online) Actual placement of displacement sensors.
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rise on the right side of the motor was 2.8 °C for the first experiment and that on the left side 
was 1.1 °C.  For the second experiment, the temperature rise was determined to be only 1.7 
°C on the right side of the motor and 1.1 °C on the left side.  On the temperature rise diagram, 
the temperature rise curves of the motor showed oscillation since the motor was cooled by the 
cooling machine.

(a) (b) (c)

Fig.12. (Color online) MSEs of (a) four, (b) eight, and (c) 16 neurons.

Fig. 13. (Color online) System temperature rise up to steady state in 1st experiment.

Fig. 14. (Color online) System temperature rise up to steady state in 2nd experiment.
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5.2	 Effect	of	temperature	rise	on	accuracy

 Displacement meters were used to measure the accuracy of the rotary table for the 
experiment.  As the spindle started to turn at the maximum rotation speed of N = 2500 rpm, 
the thermal deformation generated during the rotations reduced the machining accuracy.  The 
theory introduced above indicated that heat was generated as soon as the machining center 
started operating, and this heat caused the deformation of the rotary table and ultimately 
compromised the machining accuracy.  The maximum rpm was selected as the control 
parameter for the experiment.  When the spindle rotated, the temperature and displacement 
were measured simultaneously.  The displacement measurement stopped as soon as the 
rotary table temperature reached a steady state.  The second measurement of temperature rise 
and displacement started as the rotary table returned to its initial temperature.  Again, the 
measurement stopped when the temperature reached a steady state, as shown in Figs. 15 and 16.  
The two measurements were compared to learn that, in the first experiment, the deformations 
were 0.026 mm for the X-axis, 0.004 mm for the Y-axis,	and	−0.069	mm	for	 the	Z-axis.  The 
Y-axis deformation is relatively small as shown by the data, but the same cannot be said for 
the X- and Z-axes, which are the parts requiring improvement.  In the second experiment, 
the deformations were 0.019 mm for the X-axis,	−0.0046	mm	for	 the	Y-axis,	 and	−0.028	mm	
for the Z-axis, indicating similar trends as the first.  By comparing the deformation with the 
largest difference and the part with the largest temperature rise in the spindle, it was found that 
the bearing experienced a temperature rise of 8 °C in the first experiment and that of 5 °C in 
the second, indicating a difference of 3 °C.  For the deformation, the Z-axis deformation was 
2.5% greater in the first experiment than in the second, proving that the heat generated as the 
machining center operates has a profound effect on the deformation of the machining center, as 
shown in Table 3.  This is what needs to be improved.

Fig. 15. (Color online) Deformation of the system in 
1st experiment.

Fig. 16. (Color online) Deformation of the system in 
2nd experiment.

Table 3
Highest temperature rise in spindle vs greatest deformation in each direction.
Deformation 
temp. rise

Bearing	temp.	rise	of	8	℃	
in 1st experiment (mm)

Bearing	temp.	rise	of	5.3	℃
 in 2nd experiment (mm)

X   0.026   0.019
Y 		−0.0046 		−0.0046
Z −0.069 −0.028
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5.3	 Prediction	of	thermal	deformation	using	BPN

 When a rotary table starts to turn at a high rotation speed of N = 2000 rpm, the maximum 
application operating rotation speed is 80% of the designed maximum rotation speed, and it 
is easy to generate thermal deformation.  On the other hand, the focus of this study was to 
determine whether the thermal deformation was symmetric and excessively large and, therefore, 
the BPN was employed for the prediction and analysis.  The 16 neurons produced the best R 
and distribution, so 16 neurons were used for the prediction.  With the artificial neural network 
optimized, the thermal deformation was predicted on the basis of the temperature rise and the 
time to steady state as the spindle rotated at the maximum rotation speed.  The prediction result 
was the most accurate with 16 neurons, and in this study, we used the experimental template of 
the variation rate for the BPN prediction.  The error ratios of the X-, Y-, and Z-directions are 9.6, 
35, and 5.4%, respectively, as shown in Fig. 17.
 The prediction and verification results use the mean absolute percentage error (MAPE) 
for analysis, the error ratios of the x-, y-, and z-directions are 0.0257, 0.0371, and 0.0183%, 
respectively.  The error between the verification experiment and the prediction is very small, as 
shown in Fig. 18.

Fig.	17.	 (Color	online)	Prediction	of	 thermal	deformation	at	max.	rotation	speed	of	spindle	with	artificial	neural	
network.

Fig.	18.	 (Color	online)	Verification	experiment	and	BPN	prediction	diagram.
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6. Conclusion

1. The rotary table is one of the many components of a machining center but plays a crucial 
role.  From this experiment, we learned that the temperature rise of the rotary table itself has 
a significant effect on the deformation.  To improve the machining accuracy, the temperature 
rise of the spindle is a factor to be considered.  

2. The temperature rise diagrams show oscillation in the motor temperature.  This is because 
the cooling machine used for the spindle was a traditional fixed-frequency ON/OFF cooling 
machine that operates to cool the spindle when the temperature is high.  Such a method 
of cooling keeps the motor temperature fluctuating within a ±1 °C range as shown in the 
figures.  That is why oscillation was found in the motor temperature rise, and this affects 
the accuracy.  Also, in the deformation diagrams, there were some oscillations in the X- 
and Z-axis curves.  This probably indicates the need to replace the cooling machine with 
one with a thermostat, as it will keep the spindle within the temperature range defined by 
the user and thus eliminate the oscillations in temperature and deformation and ultimately 
correct the deformation issue.  

3. The room temperature was higher for the second experiment than for the first.  However, the 
temperature after the steady state was lower than that after the first.  A possible theory for 
this is that some of the parts on the spindle might become loose after a high rotation speed 
for a long period of time, which resulted in the lower temperature.
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