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 Taiwan is located in the subtropical zone where the summers are hot and humid.  The 
demand for comfort and quality of life in this zone is increasing.  Air conditioning equipment 
in Taiwan has transformed from a luxury item into a basic necessity, resulting in a growing 
demand for small, consumer air conditioning units.  Attractive, low-noise, small, and split-type 
air conditioning systems have become popular in the residential air conditioning equipment 
market.  In this study, we used a heat recovery system to recover heat from air to increase the 
system hot and cold side efficiency and reduce the carbon footprint of smart buildings.  The 
improved wall mounted evaporator combined with a central monitoring system is different from 
the typical AC unit evaporator that makes the system much more efficient.

1. Introduction

 The typical buildings in Taiwan urban areas are high rise.  The most common air 
conditioning system used for residential buildings is the split-type air conditioner where the 
condenser is placed outside because of the unobstructed air flow for optimum efficiency.  
The most distinctive feature of the split-type air conditioner is that the evaporator, controller, 
condenser, compressor, and expansion valve are arranged in separate bodies i.e., outdoor and 
indoor units.  The outdoor and indoor units are connected by a copper tube for the refrigerant to 
flow in a closed loop system.  The proposed system in this study will also follow the split-type 
air conditioner principle in which the condensing or heat rejection unit is located outside.(1)  The 
indoor unit or evaporator will be a wall-mounted type with modifications and improvements.  
A galvanized steel pipe will be used as the flowing medium for the hot and cold water.  This 
proposed low-carbon-emission system will be applied in the smart building system.  The main 
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smart building controller will also be connected to the outdoor and indoor air conditioning unit 
controller.(2,3)  The advantage of the split-type air conditioner is that the compressor is located 
outside, which reduces the noise in the air-controlled space.  Another advantage of the split-type 
system is that it can be installed within a relatively narrow space and has a variety of indoor 
and outdoor unit appearances that can be matched with the decor of the placement area.  The 
various indoor units include ceiling-concealed, wall-mounted, cassette-type, and standing-type 
indoor units that can be paired with any outdoor unit.(4–6)

2. Materials and Methods

 The system uses a shipping container as the main housing for the outdoor unit.  The shipping 
container was chosen because it has a global standard for its quality, is easy to use, and can 
be easily modified.  Utilizing shipping containers for temporary construction such as factory 
storage, temporary buildings, warehouses, shelters, or shop stalls is a common practice in 
Taiwan.  European countries, the United States, and Japan have already applied creativity in 
using containers as knock-off buildings to another level.  Containers have been used as housing, 
dormitories, hotels, offices, museums, and so forth.  In this study, we will focus on transforming 
a simple shipping container into a low-carbon-emission smart building that will utilize a heat 
recovery system to increase heat exchanger efficiency as shown in the diagram in Fig. 1.  Heat 
will also be saved and applied to another application such as water heating for general use.  A 
range of modular controls will be used to improve the system efficiency.  With the heat recovery 
system, many more options for the saved energy will open, thus increasing energy savings.(7,8)  
 The heat pump recovery working principle uses the heat pump condenser side to produce 
hot water as shown in the diagram in Fig. 2.  The hot water is stored in a water tank.  The heat 
pump evaporator side is used to produce cold water and store it in a low-temperature water tank.  
The cold water and hot water are used for cooling and heating, respectively.(9)  The refrigerant 
in the heat recovery system will flow to the heat exchanger connected to the condenser and 

Fig. 1. (Color online) Heat recovery system process.
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absorb the excess heat.  The heated refrigerant will be transferred to another heat exchanger 
where it will heat water inside the heat exchanger.  After that, the “cooled” refrigerant will flow 
to another heat exchanger where it will absorb heat from the water on the heat exchanger and 
decrease the water temperature, thus inducing the cooling effect.  That refrigerant will then be 
transferred to the condenser side and the cycle will start over again.  This loop is repeated again 
and the resulting hot water will be stored inside a hot or water tank with the cold water stored 
in a cold water tank.  The higher the ambient temperature, the higher the heat recovery system 
efficiency.(10,11)

3. Experimental Rig and Control and Monitoring System

 In this study, we used R-507 refrigerant as the working fluid for the system because it is a 
suitable refrigerant for medium- to low-temperature applications.  The purpose of the proposed 
device is to create low-temperature water required for air conditioning and then use a frequency 
drive controller to control the low-temperature water flow to obtain similar energy savings as an 
inverter air conditioning system.  The heat pump heat recovery system (hot water side) will use 
the heat obtained from the ambient air to increase the temperature of the water and then store 
the hot water in a tank to be used in hot water applications.  Each respective tank will deliver 
water at a specific temperature according to the control system.  During the peak load time, 
low-temperature water will be used to decrease the room temperature by sending that water to 
the evaporator.(12–15)

 By heat recovery with a heat pump, heating water and cooling water can be produced 
and stored simultaneously.  The system has two sets of wall-mounted evaporators.  The first 

Fig. 2. (Color online) Heat recovery system working diagram.
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evaporator set is 4.2 kW and the second evaporator set is 6.3 kW.  Both evaporator sets are 
water-cooled types, not the traditional refrigerant cooled evaporator as shown in Figs. 3 and 
4.  The main unit will handle two evaporators.  The setup for the heat pump and heat recovery 
system is shown in Fig. 5, while setup conditions are shown in Table 1.  The control board for 
the system is shown in Fig. 6.

Fig. 3. (Color online) Indoor evaporator unit. Fig. 4. (Color online) Indoor evaporator unit water 
distributor pipe.

Fig. 5. (Color online) Heat pump and heat recovery 
system.

Fig. 6. (Color online) Control panel.

Table 1
Test conditions.

Set conditions Operation mode
Air-conditioning mode (℃) Heating mode (℃)

Ice water temperature (outlet) 10 —
Hot water temperature (outlet) — 45
Indoor evaporator temperature 16 40
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 A programmable logic controller (PLC)-based controller is used as the system controller.  
The control mode is divided into two modes, namely, the cooling and heating modes.  Various 
other features such as rapid cooling, rapid heating, dehumidification, and ventilation are also 
provided by the control system.  The sensors used in the system are an indoor air quality 
sensor (temperature, humidity, carbon dioxide, three in-one), a water pressure sensor, a water 
temperature sensor, and a water level sensor as shown in Fig. 7.  The specifications of the 
sensors and controller are shown in Table 2.

Table 2
Sensor and controller specifications.

Parameters Characteristics
Measurement range Accuracy Tolerance range

Indoor air quality
Temperature (℃)
Humidity (%)
CO2 (ppm)

0−80
0−95

0−6000 

0.3
3
50 

±0.1
±1
±10

Water pressure sensor 0−6 Bar 0.5 Bar ±0.5 %
Water temperature sensor −40−133 ℃ 1 ℃ ±0.1 ℃

Water level sensor −10−70 ℃
(used range)

100 MΩ
(insulation resistance) 0

Card controller Microprocessor 32-bit
Instruction speed: 0.065 µs

Application instruction speed: 
0.642 µs

Operation speed: 
34 ns

Fig. 7. (Color online) Control diagram.
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 The indoor evaporator has only four functions, namely, turn-on, turn-off, cooling, and 
heating.  An air quality sensor is placed next to the evaporator.  The sensor signal rating is 
0−4 mA and 0−10 V.  The controller will read the input from the sensor and send an output 
signal for the heat pump to produce hot water and cold water.  The hot or cold water is then 
stored in their respective tanks.  The temperature sensor inside the water tank will transmit 
a signal to the controller to determine whether the system should be turned off or the hot/
cold water flow should be bypassed.  A water level sensor is also placed inside the tank to 
transmit a signal to the controller.  When the water level is below the set point, the controller 
will automatically send a signal to the water pump to refill the water tank.  A water pressure 
transducer is installed inside the system pipeline.  The signal from the transducer will be 
used by the controller to determine the water flow volume inside the pipe.  The controller 
will control the pump speed using a frequency driver.  By integrating all of these control 
modes with the main software system, additional features such as rapid heating, rapid cooling, 
dehumidification, and ventilation are made available.

4. Results and Discussion

 During these experiments, the pump flow was determined using a signal from the water 
pressure transducer.  The difference between the set point and the actual transducer reading 
determines the pump frequency.  The initial pipeline pressure is 4.63 Bar.  The controller sets 
the pressure to 3.51 Bar.  The controller reduces the pump frequency from 59.1 to 44.3 Hz.  The 
decrease in frequency is equal to the proportion of the water pressure, which is 44.3/59.1 = 3.51/4.63 
= 0.75; thus, the energy saving rate is 1 − 0.75 = 0.25 (25%), as shown in Fig. 8.

Fig. 8. (Color online) Water pressure–pump frequency difference.
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 During the second set of experiments, the heating mode was chosen.  The water outlet 
temperature was set to 45 °C.  The indoor evaporator temperature was set to 40 °C.  The 
temperature in the storage tank then increased from 33.3 to 53.5 °C to achieve the desired set-
point temperature, as shown in Fig. 9.
 During the third set of experiments, the cooling mode was chosen.  The outlet water 
temperature was set to 10 °C.  The indoor evaporator temperature was set to 16 °C.  The water 
temperature in the storage tank then decreased from 22.4 to 8.2 °C to maintain the desired set 
point temperature, as shown in Fig. 10.
 The heat recovery system can save 4404.06 kcal/degree (860 × 5.69 × 0.9) and use 30 L of 
water for the heating mode.  The total heat recovered is 75591.9 kcal, 75591.9 kcal/4404.06 kcal 
= 17.16 degrees/day × 3 NTD/degree × 365 days = 18790.2 NTD/year.
 These experiments showed that when the evaporator cooling mode is 10.51 kW, the energy 
consumed is 2.24 kW.  In the heating mode, the evaporator heating capacity is 12.75 kW and the 
energy consumed is 2.24 kW.
 The compressor used in this system is a 3 HP hermetic compressor.  The heat recovery 
system manages two evaporators simultaneously.  The logic controller is added to optimize 
the control efficiency.  The coefficient of performance (COP) for this system is calculated as 
10.51/2.24 = 4.45 for the cooling mode and 12.75/2.24 = 5.45 for the heating mode [coefficient of 
performance for heating (COPH)].  In the summer, the cooling seasonal performance factor (CSPF) 
is 12.93/2.21 = 5.85 and the CSPF is 13.15/2.21 = 5.95 in the winter.

Fig. 9. (Color online) Hot water storage tank temperature.

Fig. 10. (Color online) Cold water storage tank temperature.
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5. Conclusions

 This system uses heat pump heat recovery technology to absorb heat from ambient air and 
use it to produce hot water and cold water.  After the cold or hot water is put into their respective 
storage thanks, the system can deliver on-site load demand, either heating or cooling, and the 
water-pump-controlled frequency reduces the system energy usage.  The variable water flow is 
proven to be effective in delivering the required on-site load heating or cooling function.
 The typical wall-mounted evaporator uses a direct-expansion refrigerant, while the 
evaporator developed in this study uses water as its working fluid.  This approach is innovative 
because it is not available in the general market.  We hope that the proposed water-cooled 
evaporator will become more common in the future.
 Since the scale of these experiments was small, the control logic algorithm is written to 
satisfy a small variable control system.  The code used in these experiments is not suitable for 
more complex or larger scale applications.  Owing to the nature of the PLC card controller used 
in this system, rewriting or modifying the current logic and algorithm is possible.  By writing it 
on a different card or using a different controller, this method is open for improvement for later 
optimization.  This also makes it possible for the system to be developed for larger scale or more 
complex logic applications.  
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