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	 The compensation for tissue deformation is a significant concern in computer-assisted 
navigation for soft organ surgeries.  In brain surgeries, brain shift depends on surgical 
conditions, but might be almost non-negligible to realize precise navigation.  Since organ 
deformations can cause large navigation error, most applications are still in orthopedic 
surgeries.  Another problem in navigation is intuitive visualization of surgical plans.  A number 
of techniques such as augmented reality and projection mapping have been proposed for it.  
However, most systems do not support any compensation for organ deformation.  Therefore, 
we propose a method of PM surgical navigation that supports the compensation for brain-shift 
deformation.  The proposed system reduced error in brain deformation tracking to around one 
second and showed the feasibility of PM in brain surgeries.

1.	 Introduction

	 Surgical navigation systems became major systems used for guiding surgical geometries in 
the mid-1980s.  They have been applied to every part of the body such as the brain, abdomen, 
arms, and legs.  They are used to prepare surgical plans preoperatively, register the plans to 
the patient’s body geometrically through a registration process, track the motions of surgical 
tools and the patient’s body, and then visualize the plans with geometrical correspondence 
of the patient’s body.  Although one of the first surgical navigators, NeuroNavigator™, was 
developed for neurosurgeries, most of their applications are still in orthopedics because the 
bone retains its shape.  Tissue deformation such as brain shift sometimes leads to non-negligible 
geometrical errors between the surgical plan geometry and the patient’s organ especially in soft-
tissue surgeries.  Nauta first measured brain shift quantitatively and reported that the shift was 
around 5 mm during surgery.(1)  Later, a preliminary research carried out by Hill et al. in 1998 
showed brain shifts of 25.6 ± 28.0 mm in five patients.  They increased the patient population 
to 21 and noted that the mean amount of brain shift was 3 mm with a maximum of 8 mm.(2)  
The compensation for geometrical errors is a hurdle that should be overcome to apply surgical 
navigation systems to soft-tissue surgeries.
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	 Many tracking techniques for organ deformation have been proposed.  Registration seeks 
informational correspondence in geometry between pre- and postdeformation and provides 
organ motion and deformation.  The iterative closest point (ICP) algorithm(3) is the most 
commonly used method of registration.  It finds point correspondences by seeking the closest 
point pairs between two surfaces.  It works well in many cases of bone surgeries under 
the assumption that objects are rigid and do not deform.  However, the ICP algorithm does 
not support organ deformation and thus will not work well for surgical navigation for soft 
tissues.  A nonrigid ICP algorithm(4) focuses on this target but does not work well because it 
impairs sliding along the organ surface although most soft organ surfaces are smooth.  Some 
researchers addressed biomechanical modeling compensation.(5,6)  They, however, obtained 
significant errors because of the variation of brain mechanical profiles for each patient.  
Additional information on intraoperative measures is most likely needed to deal with such 
patient variations.  Mountney et al. compensated for 3D tissue deformation during laparoscopy 
or endoscopy.(7)  They employed a numerical model of nonrigid deformation to interpolate 
dimensional loss by 2D imaging, but the error and stability were slightly below the acceptable 
level for clinical applications.  Paul et al. found the correspondence of texture intensities 
between the two views of a binocular and reconstructed brain surface stereoscopically.(8)  
Their method was based on the intensity correspondence of texture.  Although there was no 
constraint for selecting features, the points of extracted features appeared mainly on the vessels.  
Ding et al. registered brain images at pre- and post-tumor resections with a range finder.(9)  
They extracted the vessel texture of the brain surface using a Frangi filter(10) and estimated 
the brain shape deformation by thin-plate spline (TPS) interpolation.  Their method, however, 
suffered from the serious constraint of deformation.
	 Another concern in surgical navigation is the intuitiveness of surgical information 
visualization.  Most navigation systems visualize surgical information with computer graphics 
drawn on a cross-sectional image of CT image volumes or a 2D X-ray image.  They require 
surgeons to understand the geometrical relationship between the computer visualization 
geometry and the real-world field.  Introducing XR techniques, such as virtual reality (VR), 
augmented reality (AR), mixed reality (MR), and projection mapping (PM), is one of the 
promising ways to intuitively visualize surgical information in surgical fields.  Systems 
employing the AR technique have been proposed since the 1990s(11,12) and tablet–PC AR 
visualization was proposed in the previous decade.(13)  Since AR and MR navigations require 
to insert a device into the signal field to display surgical information, PM might be preferred 
for convenience of clinical use.  However, previously proposed PM navigation systems did not 
support accurate nonrigid registration or the compensation for tissue deformation.  Therefore, 
we propose a PM visualization system with brain-shift compensation.

2.	 Method

	 Figure 1 shows the processing flow of our PM.  The device consisted of a laser-beam 
projector (SHOWWX, Microvision Inc., US) and a high-speed CCD camera (IDP Express 
R2000, Photron Inc., Japan).  They were fixed geometrically with a plastic frame made by 
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an additive manufacturing printer.  The offset and angle between them were 70 mm and 15°, 
respectively.  The overall size was 100 × 80 × 95 mm3.  The device was located around 400 mm 
above the surgical field.
	 In the procedure, textured surfaces of the brain are first acquired with the projector and the 
camera.  The projector projects sinusoidal patterns with a green laser beam and the high-speed 
camera captures them.  Stereographic geometry develops the patterns and forms 3D shapes of 
brain surfaces.  Then, graph-cut segmentation extracts the brain region from the entire area that 
the device captured.  After that, the system provides textured surfaces, as shown in the figure.  
The image processing, which will be described in detail below, highlights vessel structures of 
the brain surface from the original images captured by the device.  Then, registration among the 
textured surfaces provides the deformation of the brain.  The picture at the bottom center in Fig. 
1 shows the brain before and after deformation.  Finally, PM using the projector is carried out 
with the geometrical correction of surgical plans.

2.1	 Acquisition of textured surface of brain

	 The projector draws sinusoidal intensity patterns on the organ with time-sequential shifting 
of the curve phase.  Let Ibias and Ioscillation be the bias and amplitude of laser beam intensity, 

Fig. 1.	 (Color online) Processing flow of the method.
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respectively.  The intensity of the ith projecting image at pixel (xlaser, ylaser) is expressed with an 
arbitrary phase offset ϕoffset as

	  
2 ( 1)( , ) cos  ( , )

1laser i laser laser bias oscillation offset laser laser
iI x y I I x y

n
πφ − = + + − 

.	 (1)

	 Here, n is the sampling number in a wave cycle.  The camera then captures laser-beam 
light reflected at the organ surface.  The phase shift method gives ϕ, which indicates phases 
describing the projected pattern positions, at each point on the camera image for each projection 
with the equation
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where Ii(x, y) is the intensity at the point (x, y) and N is the number of projected images.  The 
procedures of pattern projection and image capturing are carried out for each of the vertical and 
horizontal patterns.  The point geometry (xestimated, yestimated) on the laser projection image is 
given with ϕ for both horizontal and vertical directions as
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where Lx and Ly are the wavelengths of the projected pattern.  Since Eq. (2) gives the point 
correspondence between the laser projection and the camera capturing, 3D surface points can 
be obtained by stereoscopic geometry calculation.  Using the phase-shift point correspondence 
eliminates the error caused by the variation of laser reflection coefficients at each brain surface 
point and results in the stability of correspondence computation.
	 After a surface shape is obtained, the camera captures the brain texture as a 2D image.  The 
graph-cut algorithm(14) extracts the surgical area in the captured image and eliminates the areas 
outside of the surgical field.  The corrected brain texture is then mapped onto the surface to 
provide a textured surface of the surgical area.  

2.2	 Registration among textured surfaces

	 Nonrigid registration is performed among the textured surfaces.  First, texture images of the 
captured surfaces are processed.  The vessel structure is highlighted on the brain texture using 
a Frangi 2D image filter.(9)  The filter is described by the following equation:
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where λ1 and λ2 are the eigenvalues of a local Hessian matrix.   RB = |λ2/λ1| is a blobness 

measure.  2 2
1 2S λ λ= +  is used with c to reduce the noise of the image background.  β and c 

are the parameters controlling RB and S, respectively.
	 Next, the vessel-highlighted images are processed in the registration procedure.  Let T be a 
set of 4 × 4 registration matrices Ti, i.e., 4 4{ | 0,1 ,  , 1}i i N×= ∈ = … −T T   .  The energy function 
for registration optimization is expressed as

	 ( ) ( ) ( ) ( )texture rigidity smoothnessE E E Eα β= + +T T T T ,	 (5)

where α and β are constraint weights, and
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pi and p′i are the 3D vectors of original and floating points on the brain surface, respectively.  
ai,j is the component vector at the jth column of the ith matrix Ti.  Tj is the registration matrix at 
the jth point and Tk is the registration matrices around the jth point (k ≠ j).  ||▪||F is the Frobenius 
norm.
	 The registration is optimized by minimizing the energy function as

	 argmin ( )registration E=T T ,	 (9)

where Tregistration is a set of 3D registration matrices.

2.3	 Laser-beam PM

	 The surgical plan is initially registered to the first captured brain surface with point pair 
registration.  First, feature point pairs are given manually on both the surgical plan and the first 
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captured brain surface.  Next, the ICP algorithm is conducted to compensate for the surface 
difference with the constraint of point-pair geometrical correspondence maintained.  Then, the 
surgical plan is deformed nonlinearly following Tregistration to correspond to the present brain 
surface as

	  deformed registration=p T p , 	 (10)

where p and pdeformed are the point sets of each surgical plan before and after deformity, 
respectively.  They are vectors in a homogeneous coordinate system.  After registration, the 
surgical plan is visualized onto the patient’s brain directly using the laser beam emitted from the 
projector by the following transformation.  A point geometry 1 1 1(  1 )t u v=u  in the homogeneous 
coordinate system of the projector is given by

	 1  
1   projector registrations

=u T T p ,  	 (11)
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is a 3 × 4 projection matrix by which pdeformed is projected into the projector coordinate system 
and s is a scale that is commonly equal to the point depth of TprojectorTregistrationp from the 
camera.   R and t denote rotational and translational components, respectively.  Then, u1 is 
transformed to 2 2 2(  1 )t u v=u  to compensate for nonlinear deformation caused by the projector 
lens as follows:
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where k1, k2, k3, k4, k5, and k6 are the coefficients of radial distortion, and p1 and p2 are the 

coefficients of tangential distortion.  2 2
1 1r u v= +  is the distance of u1 from the camera center 

point of the projector.  Finally, the point geometry (   1 )t u v=u  on the projector image is given 
as

	  u = Hu2,	  (15)
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is a homography matrix that projects points onto the projection image plane.  Because a surgical 
plan image is expressed using a 3D point cloud {p}, it can be transformed to {u} of projector 
image points and then rendered.

3.	 Experiments

3.1	 Accuracy test of brain deformation tracking

	 The system performance was tested on tissue deformation tracking and PM.  Five porcine 
brains were used for the experiments.  They were compressed and stretched using a custom-
built setup with stepping motors, as shown in Fig. 2.  Compression displacement of 5, 10, and 
15 mm was applied horizontally.  Stretching of 5, 10, 15, and 20 mm was applied by elevating 
a 20 × 20 mm2 stage behind the brain from the floor.  Fifteen feature points were selected at 
vessel bifurcations on each brain surface.  The bifurcation points were localized with an optical 

Fig. 2.	 (Color online) Experimental setup: (a) horizontal compression, (b) vertical extension, (c) localizing vessel 
bifurcations, and (d) localized bifurcations.

(a) (b)

(c) (d)



942	 Sensors and Materials, Vol. 32, No. 3 (2020)

sensor (Optotrak CertusTM, Northern Digital Inc., Canada) and a stylus before and after a given 
deformity.  The device was located 300–500 mm above the brain.

3.2	 Component analysis of the tracking error

	 We randomly obtained deformation patterns that combined brain deformities induced by 
compression and stretching, which were carried out 25 times.  The vessel bifurcations were 
localized by the same method as described above.  The errors were decomposed into parallel 
and perpendicular components of the brain surface.

3.3	 PM visualization

	 We tested errors in PM with plastic phantom and porcine brains.  Brain sulcus bifurcations 
were manually specified on the 2D captured images as feature points and then projected onto 
the surface of the phantom or porcine brain.  In the test using the phantom brain, geometrical 
errors caused in 3D surface measurement and projection were examined, but the test showed 
no nonrigid brain deformity.  In the porcine brain test, feature points were manually specified 
on the first captured brain surface to be treated as surgical plans.  The brain deformity was 
identified manually.  The porcine brain test evaluated total error including the error caused in 
tracking nonrigid deformity of the brain.  The projected points were localized with the stylus 
three-dimensionally.  The locations of real bifurcations were also localized with the stylus.  
The trials were performed five times for each brain and condition.  By comparing the real and 
projected points, we obtained the RMS error in the PM.

4.	 Results

4.1	 Accuracy of brain deformation tracking

	 Figure 3 shows the tracking error evaluated by comparing the proposed method with the 
rigid ICP and nonrigid ICP registration methods.  The errors in the rigid ICP registration 
method increased linearly from 0.9 to 1.1 mm for compression deformity and from 0.7 to 
1.9 mm for stretching.  The error in the nonrigid ICP registration method showed a dependence 
on deformity conditions and remained over 1 mm for the stretch deformation.  On the other 
hand, our proposed method produced smaller errors than the rigid ICP and nonrigid ICP 
registration methods.  The errors were less than 0.8 mm and the proposed method showed stable 
performance that was independent of deformity conditions.

4.2	 Component analysis of tracking error

	 Figure 4 shows parallel and perpendicular error components remaining on the brain surface.  
The displacement refers to the stage-induced displacement of the brain leading to its deformity.  
It is described in detail in Sect. 3.1.  The error in the proposed method increased with the 
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displacement but was moderate compared with that in the nonrigid ICP registration method.  
The largest difference between the two methods was in the parallel component, which slid on 
the brain surface.

4.3	 PM visualization

	 We tested the accuracy and feasibility of the PM visualization for brain surgeries.  Figures 
5(a) and 5(b) show pictures of brain shape acquisition and plan visualization, respectively.  The 
measurement and tracking computation were conducted in 1.7 and 1.5 s, respectively.  The error 
was 0.1 mm in the projection onto the rigid phantom.  The RMS of total errors was 1.2 mm in 
the porcine brain test.  The error was caused mainly in the deformation tracking.

Fig. 3.	 Accuracy of brain deformation tracking: (a) extension deformity and (b) compression deformity.

(a) (b)

Fig. 4.	 Error components of brain deformation tracking.
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5.	 Discussion

	 The proposed method showed its feasibility for compensating for brain-shift deformation 
in our experiments.  It compensated for the error perpendicular to brain surfaces with surface 
information and for surficial error with texture information.  It was stable against brain 
deformation compared with the registration methods of rigid ICP and nonrigid ICP, which are 
conventionally used in the present surgical navigation.
	 PM visualization worked well for projecting surgical plans intuitively onto the brain.  The 
time required for tracking data acquisition and computation was not short but was acceptable 
for clinical applications.  Handling the topological changes of the brain induced by, for example, 
tissue resection remains a problem to be solved.

6.	 Conclusion

	 We tested the performance of our proposed method in tissue-deformation tracking and 
PM for brain surgical navigation.  Our method showed its feasibility in guiding surgical tools 
intuitively with acceptable accuracy of brain deformity compensation.

Acknowledgments

	 This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry 
of Education, Culture, Sports, Science and Technology of Japan (JSPS 16H03191).

Fig. 5.	 (Color online) PM for surgical plan visualization: (a) shape acquisition and (b) plan visualization.

(a) (b)



Sensors and Materials, Vol. 32, No. 3 (2020)	 945

References

	 1	 H. J. Nauta: Comput. Med. Imaging Graphics 18 (1994) 279.
	 2	 D. L. Hill, C. R. Maurer Jr., R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick, and M. Y. Wang: Neurosurgery 

43 (1998) 514.
	 3	 P. J. Besl and N. D. McKay: IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992) 239.
	 4	 B. Amberg, S. Romdhani, and T. Vetter: IEEE Conf. Comput. Vision and Pattern Recognition (CVPR, 2007) 1.
	 5	 O. Skrinjar, A. Nabavi, and J. Duncan: Med. Image Anal. 6 (2002) 361.
	 6	 I. Chen, A. M. Coffey, S. Ding, P. Dumpuri, B. M. Dawant, R. C. Thompson, and M. I. Miga: IEEE Trans. 

Biomed. Eng. 58 (2010) 499.
	 7	 P. Mountney, D. Stoyanov, and G. Z. Yang: IEEE Signal Proc. Mag. 27 (2010) 14.
	 8	 P. Paul, X. Morandi, and P. Jannin: IEEE Trans. Inf. Technol. Biomed. 13 (2009) 976.
	 9	 S. Ding, M. I. Miga, J. H. Noble, A. Cao, P. Dumpuri, R. C. Thompson, and B. M. Dawant: IEEE Trans. 

Biomed. Eng. 56 (2009) 770.
	10	 A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever: Proc. Medical Image Computing and 

Computer-Assisted Intervention (MICCAI) (1998) 130.
	11	 J. W. Berger, M. E. Leventon, N. Hata, W. Wells, and R. Kikinis: Proc. First Joint Conference on Computer 

Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery 
(CVRMed-MRCAS) (1997) 399.

	12	 Y. Nakajima, H. Oyama, A. Sawada, and K. Muroi: Proc. Medicine Meets Virtual Reality (MMVR, 2000) 
230.

	13	 D. T. S. Chang and K. Yao: J. Mobile Technol. Med. 2 (2013) 15.
	14	 D. M. Greig, B. T. Porteous, and A. H. Seheult: J. R. Stat. Soc. B 51 (1989) 271.

About the Authors

Yoshikazu Nakajima received his Ph.D. degree from Osaka University, Japan, in 1997.  He 
worked for the head office and Information Technology R&D Center of Mitsubishi Electric 
Corporation from 1997 to 2000. He worked for the Division of Functional Diagnostic Imaging, 
Graduate School of Medicine, Osaka University, and was an assistant professor from 2001 to 
2005. He was then an associate professor of the Department of Bioengineering and Intelligent 
Modeling Laboratory of the University of Tokyo from 2005 to 2017. Currently, he is a professor 
of the Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU). 
(nakajima.bmi@tmd.ac.jp)

Yoshio Sohma received his B.S. degree from Chiba University, Japan, in 2013 and his M.S. 
degree from the University of Tokyo, Japan, in 2015.  He presently works for Sony Corporation. 
(yoshio.sohma@nakajimalab.org)

Jue Jiang received his Ph.D. degree from the University of Tokyo, Japan, in 2016.  He is 
presently a researcher at Memorial Sloan Kettering Cancer Center, USA. 
(jue.jiang@nakajimalab.org)


