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 With the wide application of mobile robots in unstructured environments, an obstacle 
avoidance system with good performance has become an important part of mobile robot 
systems.  We propose an obstacle avoidance method for a mobile robot based on multi-sensor 
information fusion technology and a fuzzy neural network control algorithm.  In view of 
complex working environments, a differential kinematics estimation model of a mobile robot 
is studied.  A multi-sensor information fusion method based on the extended Kalman filter  
and a mobile robot obstacle avoidance algorithm based on fuzzy neural network control are 
then proposed.  Finally, simulations and experiments are conducted, which demonstrate the 
effectiveness of the proposed method.

1. Introduction

 Mobile robots are suitable for accomplishing tasks that other robots cannot because they 
are suited to more complex and varied environments or terrains as a result of their locomotion.  
To date, mobile robots have been used in many missions such as surveillance in potentially 
hazardous zones or buildings, dangerous object inspection, searching for survivors in collapsed 
buildings, gas detection in coal mines, disaster rescue, on the battlefield, and for planetary 
exploration.  Obstacle avoidance ability is a basic need for all mobile robots, which helps them 
move without collision in unstructured environments.(1–3)

 During the past few years, obstacle avoidance technology for mobile robots has been 
investigated by many researchers.(4,5)  For example, Yang et al. designed a neural network  
enhanced telerobot control system and tested it on a Baxter robot.(6)  Many robot obstacle 
avoidance systems with various designs that consist of a collision detection system and sensing 
modules have been developed.  The location of an obstacle can be detected from sensing 
devices, such as infrared sensors and ultrasonic sensors, and a variety of modules, such as GPS 
integration and vision systems.(7–10)  The data collected from these sensors are the distances 
between the sensors and an object, which are adjusted and given directly to the control input.(11–13)  
Therefore, the locations of sonar sensors are very important.  
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 Multi-sensor information fusion technology means that information will be collected and 
fused by each sensor to be analyzed, and contradictions between merged information and 
redundancy will be eliminated to better describe the environment and improve the flexibility 
and reliability of the system.(14)  Since the 1980s, researchers worldwide have been committed 
to research based on multi-sensor fusion technology.  A single sensing device cannot obtain 
accurate environmental information, and thus mobile robots based on multi-sensor technology 
have been developed.  More detailed environmental information can be obtained via fused 
information collected from different types of sensors.  At present, there are many fusion 
methods that can be roughly divided into two categories: probability statistics methods and 
artificial intelligence methods.(15)

 Given the specific needs of different mobile robot applications, especially in navigation, the 
development of an autonomous robotic system that can avoid obstacles while following a path 
in real-time applications is crucial.  Consequently, an efficient collision avoidance and path- 
following technique is essential to ensure intelligent and effective autonomous mobile robot 
systems.(16,17)

 In view of previous research, here, we propose an obstacle avoidance method for a mobile 
robot.  In contrast with the traditional obstacle avoidance methods,(18–20) a fuzzy neural network 
control algorithm and a sensor detection system consisting of several sensors are proposed.  The 
proposed approach utilizes multi-sensor information fusion method to complete the task and 
involving a reasonable level of calculations, so that it can be easily used in mobile robot obstacle 
avoidance.  First, a differential kinematics estimation model for a mobile robot that considers 
complex working environments is presented.  Owing to the uncertainty of the mobile robot 
position, a multi-sensor information fusion method based on the extended Kalman filter (EKF) 
and a robot obstacle avoidance algorithm based on fuzzy neural network control are proposed.  
Finally, the effectiveness of the obstacle avoidance technology is verified by simulation and 
experiment.
 This paper is structured as follows: (a) to provide the differential kinematics estimation 
model of the mobile robot; (b) to develop a multi-sensor information fusion method based on 
EKF; and (c) to propose the robot obstacle avoidance algorithm based on fuzzy neural network 
control.  Our simulations and experiments demonstrate the effectiveness of the proposed 
method.

2.	 Differential	Kinematics	Model	of	Mobile	Robot

 As shown in Fig. 1, the differential kinematics estimation model of a mobile robot 
proposed in this paper adopts the traditional arc model.  Let [ ]T, ,k k kx y α  be the posture of 

the robot at time k; the posture of the robot at time k + 1 is therefore [ ]T1 1 1, ,k k kx y α+ + + , where 

[ ]T, ,k k kx y α∆ ∆ ∆  is the robot posture increment.  Let Δsl and Δsr be the moving distances of the 
left and right driving wheels of the robot, respectively; the moving distance of the robot during 
the time interval (0, Δt) can be expressed as

 
2

l r
k

s sd ∆ + ∆
∆ = . (1)
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 The rotation angle of the robot during the time interval (0, Δt) is

 l r
k

s s
B

α
∆ + ∆

∆ = ,  (2)

where B is the distance between the left and right track wheels of the robot.  The rotation radius 
of the robot is

 /k kr d α= ∆ ∆ .  (3)

 The following geometric relationships can be obtained from Fig. 1:

 [ ]2 sin( / 2)cos( / 2) sin( ) sink
k k k k k k k

k

dx r α α α α α α
α
∆

∆ = ∆ + ∆ = + ∆ −
∆

, (4)

 [ ]2 sin( / 2)sin( / 2) cos cos( )k
k k k k k k k

k
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α
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∆ = ∆ + ∆ = − + ∆
∆

. (5)

 Therefore, the posture of the robot at time k + 1 can be expressed as

 

[ ]

[ ]

1

1

1

sin( ) sin

cos cos( )

k
k k k k k k k

k

k
k k k k k k k

k

k k k

dx x x x

dy y y y

α α α
α

α α α
α

α α α

+

+

+

∆ = + ∆ = + + ∆ − ∆ ∆ = + ∆ = + − + ∆ ∆


= + ∆ .

 （6）

 Let [ ]Tk k kU d α= ∆ ∆ .  The state equation of the robot can therefore be expressed as

Fig. 1. Differential kinematics model of robot movement.
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 When the robot moves in a straight line, Eq. (7) can be simplified to
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, （8）

where Wk is the noise vector expressed as

 [ ]T1 2 3k k k kW ω ω ω= . （9）

 Because the dead reckoning algorithm has large errors in the long-distance operation of the 
robot, it can only be applied to the short-distance positioning of the robot.  Therefore, in this 
paper, the dead reckoning algorithm is only used to predict the posture of the robot in the initial 
stage.

3．	Multi-sensor	Information	Fusion	Method	Based	on	EKF

3.1	 EKF	model

 Let the state equation of a general system at a certain moment be

 1 1 1( , )k k k kX F X U W− − −= + ,  (10)

where Xk is the state vector of the system and Wk is the noise vector.
 Its observation equation is

 k k kZ HX V= + , (11)

where Zk is the observation vector and Vk is the observed noise.
 The time renewal equation for the EFK is

 1 1 1
T

1

ˆ̂ ( , )k k k k

k k

X F X U W

P FP F Q

− +
− − −

− +
−
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= ∇ ∇ +
, (12)

where F∇  is the Jacobi matrix of the system.

ˆ
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 The state renewal equation for the EFK is
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, (13)

where H∇  is the Jacobi matrix of the system observation equation for its state variables.

3.2	 Information	fusion	process	of	EFK

 The process of estimation of optimal robot posture by using the EFK is as follows.  From the 
estimation of optimal robot posture at the previous moment and the state equation of the system, 
the current posture of the mobile robot can be estimated.  The optimal estimation of the mobile 
robot posture can be obtained by reasonable updates of the posture estimation.  The specific 
process is illustrated in Fig. 2.
(1) Prediction
 According to the posterior estimated pose 1kX +

−  of the robot at moment k − 1 and the derived 
state equation of the robot, the a priori estimated pose at moment k can be obtained from Eqs. (12) 
and (13).
 The priori posture estimation when the robot moves in a straight line can be expressed as
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Fig. 2. Process of robotic optimal EKF posture estimation.

ˆˆ
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 The priori posture estimation when the robot moves in a curved path can be expressed as
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 The covariance is

 T
1 1 1k k k kP F P F Q− +
− − −= ∇ ∇ + . (16)

 In the case of linear motion,
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 In the case of curved motion,
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(2) Observation prediction
 The system observations can be expressed as
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where Hk is the system observation matrix.
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(3) Observation
 The robot coordinates based on the observations of the ultrasonic sensors, infrared sensors, 
and electronic compasses are [ ]T, ,k k k kZ x y α= .
(4) Match
 The difference and covariance matrices between the observed value Zk and predicted value 
ˆ

kZ  can be obtained as

 ˆ
k k kR Z Z= −   (20)

 T T( )k k k k kS E R R H P H r−= = + . (21)

(5) Update
 The Kalman gain of the system can be obtained as

 T T 1( )k k k k k kK P H H P H r− − −= + .   (22)

 The robot posture is updated as 

 1ˆ̂̂ ( )k k k k kX X K Z Z+ − −= + −  (23)

 ( )k k k kP I K H P+ −= − .   (24)

4.	 Verification	of	Fuzzy	Neural	Network	Obstacle	Avoidance	Algorithm

4.1	 Determination	of	input	variables	and	membership	functions

 In view of the characteristics of strong robustness and independence for an accurate 
mathematical model, the fuzzy neural network control algorithm is used in robot obstacle 
avoidance.  On the basis of the control requirements of the mobile robot obstacle avoidance 
system, the number of fuzzy divisions of the distance information input is determined to be 
1.5.  When the distance measured by the sensor is greater than or equal to 1.5 m, the distance 
information is marked as 1.5 m and the system input is “far”.  At this time, the robot continues 
to move forward without obstacle avoidance processing.  When the measured distance of the 
sensor is less than 1.5 m, the system input is “near”.  At this time, the robot turns left or right 
according to the distance information of the obstacles measured on the left and right sides to 
smoothly avoid the obstacle.
 The fuzzy segmentation number of the target angle input of the obstacle avoidance system 
controller is determined as 3, i.e., the system fuzzy variable is [N, Z, P] = [the target position is 
located on the left side of the central axis of the robot body and its angle is negative; the target 

ˆ ˆ
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position is on the central axis of the robot body and its angle is zero; the target position is on the 
right side of the central axis of the robot body and its angle is positive].  The system outputs the 
velocity membership function of the left and right driving wheels with a value in the range of [0, 1], 
indicating that the velocity range is 0–1 m/s.
 As shown in Fig. 3, which illustrates the system membership functions designed in this 
paper, 100 cm is defined as the demarcation between near and far points regarding the distance 
between the robot body and the obstacle.  When the angle between the robot body and the target 
position is within ±30°, it is 0, when it is less than 30°, it is negative, and when it is greater than 
30°, it is positive; 0.5 m/s is defined as the demarcation point between fast and slow for the 
left and right driving wheels of the robot.  The membership functions in Fig. 3 are only used 
as the initial membership function of the system.  After training, they can become the actual 
membership functions of the fuzzy neural network.

4.2	 Simulation	analysis

 The “+” on the left side in Fig. 4 is the starting point of the robot running, the diamond on 
the right side is the target position of the robot, the circles represent multiple obstacles in the 
working environment of the robot, and the path composed of “*” symbols represents the track 
of the robot body.  It can be seen from the simulation diagram in Fig. 4(a) that the robot body 
always keeps a certain distance from the obstacles during the running process and successfully 

Fig. 3. (Color online) Membership functions of the (a) distance, (b) angle, and (c) velocity.

(a) (b) (c)

Fig. 4. (Color online) Schematic diagram of simulations of robot avoidance obstacles. (a) Robot avoidance of 
obstacles and (b) increasing the number of obstacles.

(a) (b)
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reaches the target position.  Figure 4(b) presents the simulation results for the obstacle avoidance 
of the robot after increasing the number of obstacles in the working environment of the robot 
and changing their positions.  
 It can be seen from Fig. 4(b) that the robot body still maintains a certain distance from the 
obstacle during the operation and successfully reaches the target position.  It can be concluded 
that the fuzzy neural network obstacle avoidance control algorithm has high precision and good 
obstacle avoidance performance.

5.	 Robotic	Obstacle	Avoidance	Experiments

 To verify the robot obstacle avoidance technology based on the multi-sensor information 
fusion method and the fuzzy neural network control algorithm proposed in the previous section, 
we designed robot obstacle avoidance experiments with a jointed double-track mobile robot 
platform.  The results of obstacle avoidance experiments under two road conditions with the 
complex robot platform are analyzed and discussed to verify the correctness and feasibility of 
the theoretical analysis methods proposed in the previous section.
 To meet the application requirements of robot obstacle avoidance and a changeable field 
environment, the multi-sensor detection module adopts a combination of an ultrasonic distance 
measuring sensor and an infrared sensor.  The locations where the sensors are installed are 
depicted in Fig. 5.  The obstacle avoidance system includes a total of 12 sensors, including eight 
ultrasonic distance measuring sensors and four infrared sensors.  The 12 sensors were divided 
into four groups and installed around the robot body.  Each group contained two ultrasonic 
distance measuring sensors and one infrared sensor.  The infrared sensor was installed between 
two ultrasonic sensors.  
 From Fig. 6, it is evident that the mobile robot can avoid obstacles smoothly under 
complicated road conditions and has a good obstacle avoidance function.  The correctness 
of the multi-sensor information fusion method and fuzzy neural network control algorithm 
proposed in the previous section is verified by the results and analysis of the obstacle avoidance 
experiments.  In addition, the rationality and feasibility of the robot obstacle avoidance method 
are also clearly illustrated.

Fig. 5. (Color online) Installation of sensors.
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6.	 Conclusions

 An obstacle avoidance method for a mobile robot based on multi-sensor information fusion 
technology and a fuzzy neural network control algorithm was proposed in this paper.  Using 
the traditional arc model, a differential kinematics estimation model of the mobile robot was 
proposed.  The multi-sensor information fusion method based on the EKF and the obstacle 
avoidance algorithm based on fuzzy neural network control were then applied to mobile robot 
obstacle avoidance.  Simulations and experiments clearly demonstrated the effectiveness of the 
mobile robot obstacle avoidance method.  In future research, the applications of the proposed 
obstacle avoidance method in multi-robot systems will be studied.
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