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	 The detection and pose estimation of objects in human demonstrations remain challenging 
yet crucial tasks.  The increasing availability of red-green-blue and depth sensors makes it 
possible to synthetize local features of color and three-dimensional (3D) geometry, which are 
useful for processing a wider range of objects.  However, existing methods fail to combine the 
inherent advantages of these two features.  Moreover, pose refinement methods based on whole 
point clouds are often affected by occlusion and background noise.  In this paper, feature points 
of the speeded-up robust feature and the fast point feature histogram were transformed into the 
same 3D space.  After matching them separately, multimodal feature points were jointly used 
to estimate a coarse pose.  Subsequently, the coarse pose was refined by aligning point clouds 
composed of feature points’ neighboring patches.  During the iterative closest point process, we 
selected corresponding points in matched local patches.  In our first and second comparative 
experiments, F1 scores were respectively increased by 0.1349 and 0.1633, which verified the 
validity of our method.  Finally, the third qualitative experiment showed that the proposed 
method is applicable to manipulated-object detection and pose estimation.

1.	 Introduction

	 As robotic tasks become increasingly flexible and diverse, robots are required to learn new 
tasks more easily and quickly.  To learn manipulation tasks from observing the motion executed 
by human demonstrators, methods of learning from demonstration (LfD) have been widely 
used.(1–3)  Since manipulated objects are key components of daily tasks, object detection and 
pose estimation are hot issues in understanding human manipulation.
	 In recent years, methods based on convolutional neural networks (CNNs) have shown 
significant advantages in tasks of object detection and pose estimation, which benefit from their 
ability to automatically learn features from raw images.(4–6)  However, for new user-defined 
objects, hundreds of new samples together with their ground-truth poses are needed to retrain 
CNNs.  This is usually very inconvenient in practical application scenarios, where various and 
changing objects are commonly involved.
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	 Other methods of object detection and pose estimation are mainly based on global templates 
or local feature points.  In global-template-based methods, holistic templates of objects are 
sampled from many viewpoints and matched against each sliding window in the testing scene 
according to their global features.(7–9)  However, objects in manipulation scenes are usually 
occluded by other objects or hands, making it impossible to fully extract global information.  
Xie et al.(10) projected local features back onto a three-dimensional (3D) point cloud and 
estimated the object pose using the random sampling consensus (RANSAC)(11) algorithm.  This 
method is robust to occlusions since global information is not required.  Therefore, we focused 
on local-feature-based approaches in this study.
	 Depending on the modality of the information represented by features, color features can 
be extracted from color images and geometric features can be extracted from point clouds.  For 
instance, Collet et al.(12) detected multiple objects with scale-invariant feature transform (SIFT)(13) 
feature points extracted from RGB images, although this method is not suitable for objects with 
less texture.  Vidal et al.(14) presented an object detection method based on the variations in 
point pair features (PPFs), which are not suitable for symmetrical yet textured objects.  Since 
multimodal information can describe complementary properties of objects, it is natural to 
synthesize color and 3D features to deal with a wider range of objects.  Tsai and Tsai(15) used 
the color-signature of histogram of orientation (CSHOT)(16) feature for object detection and pose 
estimation.  This feature connects signatures of histograms in the spatial and color channels as a 
high-dimensional descriptor.  However, the feature points were the results of downsampling the 
input point cloud,(15) rather than keypoints with invariance and repeatability.  Another strategy 
is to determine the tangent plane of a local spatial surface and then extract color features.(17,18)  
These methods reduce the resolution of color images and leave 3D features unused.  Motivated 
by these issues, a new method of object detection and pose estimation by mapping multimodal 
feature points into the same 3D space was proposed in this study.
	 Pose estimation based on feature point matching usually has medium accuracy.  More 
importantly, the estimation method will fail when there are fewer than four pairs of matching 
points.  Traditional approaches introduced a pose refinement process, making use of two 
entire point clouds.(19,20)  However, it may contain many interference points belonging to 
the foreground occlusion and background regions.  To address this problem, in this study, 
neighboring patches of feature points were used for pose refinement.
	 In summary, our contribution consists of two aspects.  (1) We used multimodal features more 
effectively than before in tasks of object detection and pose estimation.  (2) An accurate pose 
refinement method using feature points’ neighboring patches was proposed.
	 The remaining part of this paper is organized as follows.  In Sect. 2, datasets of objects, 
which contain multimodal feature points and their neighboring patches, are constructed. Then, 
the methods of object detection and pose estimation adopted in this paper are described fully in 
Sect. 3.  Experiments are reported in Sect. 4, with conclusions given in Sect. 5.

2.	 Dataset Construction

	 The key to detecting known objects is to build datasets in advance.  Our datasets were 
mainly composed of multimodal feature points and their neighboring patches.
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2.1	 Segmentation of object on desktop

	 A scene point cloud was captured by a Microsoft Kinect 2.0 sensor, which is a widely used 
red-green-blue and depth (RGB-D) camera.  The cuboid region near the desktop shown in Fig. 
1(a) was selected as the region of interest (ROI).
	 Using the RANSAC plane fitting method, the maximum plane in the ROI was extracted 
as the desktop within an allowable error of 0.005 m.  Points above the desktop were roughly 
extracted, as shown in Fig. 1(b).  Since there were noisy points around the target object, we 
clustered the resulting points and retained the largest cluster.
	 Furthermore, to remove noisy points from the remaining point cloud, the average distance 
to the four nearest neighbors was calculated for each remaining point.  A point was removed as 
an outlier when the average distance was greater than 0.005 m.  In this way, the number of 3D 
points was reduced significantly without losing too much information, which was conducive to 
efficient computation.  The denoised point cloud of the object is shown in Fig. 2(a).
	 Owing to the advantages of Kinect, it was convenient to project the object’s point cloud onto 
the RGB image.  Through a morphological close operation, the object’s RGB mask was obtained 
and is shown in Fig. 2(b).

Fig. 1.	 (Color online) Point clouds (a) within the ROI and (b) above the desktop.

(a) (b)

Fig. 2.	 (Color online) (a) Denoised point cloud and (b) RGB mask of the object.

(a) (b)
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2.2	 Extraction of multimodal features from single view

	 For objects with rich texture, the speeded-up robust feature (SURF)(21) is usually used for 
object detection and pose estimation owing to its stability and reliability.  On the basis of the 
object’s RGB mask, feature points and descriptors of SURF were respectively detected and 
calculated.  Using the parameters of Kinect, the 3D location of each SURF feature point was 
subsequently obtained.
	 From the object’s point cloud, the intrinsic shape signature 3D (ISS3D)(22) keypoints and the 
fast point feature histogram (FPFH)(23) were respectively detected and calculated.  The ISS3D 
keypoint has an intrinsic reference frame enabling view-invariant feature extraction and fast 
pose registration.  The FPFH is a robust spatial feature that describes the local geometry around 
the keypoint.
	 Keypoints of SURF (marked with blue asterisks) and ISS3D (marked with red asterisks) 
were simultaneously plotted within the object’s point cloud, as shown in Fig. 3(a).  For each 
keypoint, a local patch within the globular neighborhood was extracted and denoted as Ppatch.  
3D locations of points in Ppatch were measured in the reference frame of the current camera and 
denoted as Lpatch.  Local patches of SURF (colored in blue) and ISS3D (colored in red) were 
plotted within the object’s point cloud, as shown in Fig. 3(b).
	 For each view of the object, the whole point cloud was stored for reconstruction.  Together 
with the descriptor and 3D location of each feature point, the name of the associated object and 
Lpatch were stored.

2.3	 Registration of multiview information

	 To register different views reliably and conveniently, the ChArUco board(24) was adopted, 
as shown in Fig. 4(a).  Given the parameters of the camera and ChArUco board, the pose of the 
reference frame Sb fixed on the ChArUco board could be determined, even if the board was 
partly obscured.

Fig. 3.	 (Color online) (a) Multimodal feature points and (b) local patches of the object.

(a) (b)
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	 During the reconstruction process, the target object was fixed on the ChArUco board.  By 
rotating the ChArUco board, feature points and point clouds obtained in each viewpoint were 
registered according to the pose of Sb.  Figure 4(b) shows a sampling scene, in which the X, Y, 
and Z axes of Sb are marked with red, green, and blue short lines, respectively.
	 After the postprocessing of fusing and downsampling, the point cloud model of the object 
O was reconstructed and denoted as M.  Finally, a local reference frame S was specified for 
M, whose origin was located in the centroid, and the coordinate axes were set parallel to the 
principal axes of inertia.  S and M are shown in Fig. 5, where the origin is represented by SO, 
and the X, Y, and Z axes are respectively denoted as SX, SY, and SZ.  According to the registered 
pose of each viewpoint, the 3D location L of each feature point was transformed to LS, and 
Lpatch was transformed to S

patchL .
	 To ensure the efficiency of feature matching in the process of pose estimation, we 
constructed two K-dimension trees (K-D trees), O

SURFT  and O
FPFHT .  O

SURFT  and O
FPFHT  were 

respectively based on SURF and FPFH features of object O.  For each feature point in each K-D 
tree, the name of the associated object O, the descriptor f, the 3D location LS, and the positions 
of points in the local patch S

patchL  were stored together as infop ={ f, LS, O, S
patchL }.

	 For each object O, two K-D trees of feature points were stored as infoobj ={ O
SURFT , O

FPFHT }.  
Furthermore, to retrieve features more efficiently in the process of object detection, the O

SURFT  of 
each object was aggregated into one K-D tree denoted as all

SURFT .  all
FPFHT  was obtained in the same 

way.

3.	 Object Detection and Pose Estimation

	 In the testing phase, the process of feature extraction was similar to that in Sects. 2.1 and 
2.2.  The only difference was that we retained all reasonable clusters (containing more than 50 
points), rather than just the largest ones, because there were multiple objects in the testing scene.  
We repeatedly applied our approach of object detection and pose estimation for each cluster.  In 
this section, we take one cluster as an example to illustrate details of our method.

Fig. 4.	 (Color online) (a) ChArUco board and (b) sampling scene.

(a) (b)



1176	 Sensors and Materials, Vol. 32, No. 4 (2020)

3.1	 Voting-based object detection

	 Common object detection methods based on feature points match scene feature points among 
the object dataset and then determine the object’s name using a voting scheme.  We retrieved 
multiple entries from the dataset for each feature point to achieve a more robust voting result, as 
shown in Fig. 6.
	 Multimodal feature points and their descriptors were extracted and calculated from 
each cluster in the testing scene.  For each feature point x in the testing scene, the m nearest 
neighbors yi (i = 1, 2, …, m) were retrieved from the K-D tree all

SURFT  or all
FPFHT  according to its 

feature descriptor f(x).  The neighboring point yi cast a vote Oi, where Oi is the object’s name 
stored with yi.  Objects with more votes than a threshold δ were the detection results.

3.2	 Pose estimation based on multimodal feature points

	 According to the object detection result, we sequentially matched the feature dataset of each 
hypothetical object with the testing scene.  Once matching pairs were determined, we no longer 
distinguished between the feature points of SURF and FPFH.  These two types of feature points 
were used indiscriminately to estimate the object’s pose, as shown in Fig. 7.
	 Our pose estimation process was implemented in two steps: rough and fine alignment stages.  
In the rough alignment stage, as in the traditional method, we estimated the rigid transformation 
between matching feature points using the RANSAC algorithm.  Mismatched points were 
eliminated according to the consistency of the geometric transformation.  In the fine alignment 
stage, we refined the pose by aligning two sparse point clouds composed of feature points’ local 
neighbors using the iterative closest point (ICP) algorithm.
	 Moreover, we adjusted the mechanism used to find corresponding points in the ICP 
algorithm.  Considering the situation shown in Fig. 8, we assumed that the keypoint p matches 
q according to their feature descriptors.  The local patches P and Q are neighbors of p and q, 
respectively.  For each point in P, the traditional ICP algorithm selected the closest point as the 
corresponding point, as shown in Fig. 8(a), which was sometimes unreasonable.  According 
to the matching relationship between patches, the corresponding points of p’s neighbors were 

Fig. 5.	 (Color online) Point cloud model and local reference frame of the object.



Sensors and Materials, Vol. 32, No. 4 (2020)	 1177

mostly in Q.  Therefore, when searching for corresponding points for members of P, only 
points inside Q rather than the entire point cloud were considered, as shown in Fig. 8(b).  This 
approach effectively avoided most of the incorrectly corresponding pairs.
	 Finally, after eliminating the hypotheses whose ICP registration error was larger than a 
threshold τ, we obtained the identities and spatial poses of objects in the scene.

Fig. 6.	 (Color online) Illustration of our object detection method.

Fig. 7.	 (Color online) Illustration of our pose estimation method.

Fig. 8.	 (Color online) Mechanisms of selecting corresponding points by (a) ICP method and (b) our method.

(a) (b)



1178	 Sensors and Materials, Vol. 32, No. 4 (2020)

4.	 Experiments and Analysis

	 In this section, we verify the validity and applicability of our method by reporting three 
experiments.

4.1	 Experimental settings

	 We reconstructed six objects and established seven datasets (one for each object and one for 
all of them) containing feature points and their neighboring patches.  The resulting point clouds 
and labels of the six objects are shown in Fig. 9.
	 During the experiments, we estimated the poses of object A or B in 30 testing scenarios and 
removed unreasonable hypotheses based on the ICP registration errors.  Texture-rich object A (in 
the first 15 scenarios) and texture-less object B (in the last 15 scenarios) were chosen as target 
objects.  To test the robustness of our method to occlusion and background noise, we randomly 
placed irrelevant objects in scenes, which caused varying degrees of occlusion of object A or 
B.  In each testing scene shown in Fig. 10(a), we removed other objects and used the ChArUco 
board to determine the ground-truth pose of object A or B, as shown in Fig. 10(b).

Fig. 9.	 (Color online) Objects in our dataset.

Fig. 10.	 (Color online) (a) Testing scene and (b) ground-truth pose determination scene.

(a) (b)
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	 Considering the random deviation of the object’s local reference frame, we kept object A or 
B fixed on the ChArUco board throughout the process of reconstruction and experiments.  We 
set the number m of retrieval neighbors to 10, the threshold δ of object detection to 100, and the 
error threshold τ of pose estimation to 0.1 m.

4.2	 Experiment 1

	 This comparative experiment was aimed at demonstrating the advantage of using multimodal 
features.  On the basis of the proposed fine alignment method, we used three schemes of feature 
combinations for comparison.  The precision, recall, and F1 scores of object detection in 30 
testing scenes were calculated, as shown in Table 1.
	 By using multimodal features, our F1 score was at least 0.1349 higher than that of methods 
using a single feature in the 30 testing scenes.  In the first 15 scenes (with a texture-rich object), 
the addition of FPFH feature points resulted in our method obtaining a 0.0339 higher F1 score 
than did the method only using the SURF feature.  In the last 15 scenes (with a texture-less 
object), the addition of SURF feature points resulted in our method obtaining a 0.0551 higher F1 
score than did the method only using the FPFH feature.
	 We transformed all points of the target object according to the estimated pose Test and 
ground-truth pose Tgt.  The average distance of all associated point pairs was obtained and 
denoted as err.  A smaller err means a higher pose estimation accuracy.  The err values were 
calculated in each scene, as shown in Fig. 11.  It can be seen that our method achieved the 
highest estimation accuracy.
	 The superior performance in both object detection and pose estimation can be explained 
from the following three aspects.  Firstly, the use of multimodal features extended the 
application scope of our method and introduced more feature points, both of which increased 
the reliability of object detection and the accuracy of pose estimation.  Secondly, all feature 
points were obtained by the corresponding feature extraction methods, which maintained their 
inherent invariance and repeatability.  Lastly, color features were extracted directly from the 
original color image, which guaranteed the feature quality.

Table 1
Object detection performance of methods using different features.
Scene number Feature used Precision Recall F1 score

1–15
SURF 0.7778 0.9333 0.8485
FPFH 0.2000 0.0667 0.1000

SURF & FPFH 0.7895 1.0000 0.8824

16–30
SURF 0.7143 0.6667 0.6897
FPFH 0.7895 1.0000 0.8824

SURF & FPFH 0.8824 1.0000 0.9375

1–30
SURF 0.7500 0.8000 0.7742
FPFH 0.6667 0.5333 0.5926

SURF & FPFH 0.8333 1.0000 0.9091
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4.3	 Experiment 2

	 We designed this comparative experiment to show the advantage of our pose refinement 
strategy.  On the basis of multimodal features, we used four pose refinement strategies for 
comparison.  The precision, recall, and F1 scores of object detection in 30 testing scenes were 
computed, as shown in Table 2.  “Key points” refers to a pose estimation method without the 
refinement process.  “Whole points” refers to the strategy of using all the points of the object 
and testing scene for pose refinement.  “Patches (mix)” refers to the strategy of using feature 
points’ neighboring patches.  “Ours” refers to our strategy.
	 Taking “Key points” as a benchmark, we determined the increase in F1 score for each pose 
refinement strategy.  “Whole points” had worse performance than the benchmark.  “Patches (mix)” 
was 0.0667 higher than the benchmark.  “Ours” was 0.1633 higher than the benchmark and had 
the top F1 score.
	 Similarly to Experiment 1, according to the ground-truth poses, we obtained the err value for 
the resulting pose in each testing scene.  The experimental results in Fig. 12 show that, taking 
“Key points” as a benchmark, “Ours” achieved the largest improvement in the accuracy of pose 
estimation.
	 For “Whole points”, invisible points in the object model often biased the resulting pose to the 
object’s interior.  In addition, occlusion and a noisy background also introduced many irrelevant 
points.  These problems resulted in the worst performance of “Whole points”.  In “Patches (mix)”, 
only points near matching keypoints were involved.  Points in the unseen views and occluded 
regions of the object and testing scene were eliminated adaptively while maintaining a sufficient 
number of points for accurate ICP alignment.  On this basis, our method avoided incorrectly 
corresponding points among the mismatched patches and thus obtained the highest matching 
accuracy.  These advantages resulted in greater improvement in the F1 score of object detection 
and the accuracy of pose estimation.

Fig. 11.	 (Color online) err values of different feature combination schemes.
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4.4	 Experiment 3

	 This experiment served as a qualitative demonstration.  We dealt with objects in a human 
demonstration based on the proposed method.  In this scenario, the demonstrator poured food 
from object F into object D and finally placed object F back on the table.  We drew the local 
coordinate system of each detected object in the same point cloud, as shown in Fig. 13.  This 
experiment showed that the accuracy of our proposed method can basically meet requirements 
of demonstration learning.

5.	 Conclusions

	 We proposed a new method of manipulated-object detection and pose estimation.  By 
using multimodal features, the number of matching features was increased for texture-less 
as well as texture-rich objects.  A 0.1349 higher F1 score than that in methods using a single 
feature was demonstrated in Experiment 1.  Our pose refinement strategy eliminated most 
of the scene interference and incorrectly corresponding points in the ICP process.  This was 
proved by Experiment 2, in which our F1 score was 0.1633 higher than that of the benchmark.  
Furthermore, Experiment 3 qualitatively showed that our method can be used for manipulated-
object detection and pose estimation.

Fig. 12.	 (Color online) err values of different pose 
refinement strategies.

Table 2
Object detection performance of methods using different pose refinement strategies.
Align strategy Precision Recall F1 score
Whole points 0.6667 0.4000 0.5000
Key points 0.7586 0.7333 0.7458
Patches (mix) 0.7647 0.8667 0.8125
Ours 0.8333 1.0000 0.9091

Fig. 13.	 (Color online) Experiment on our method in 
a human demonstration.
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