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	 Robotic assistance is promising for improving minimally invasive surgery (MIS).  This work 
presents asymmetric bimanual control of a dual-arm serial robot with two remote centers of 
motion (RCMs) constraints for MIS.  In our previous works, general null space controllers to 
guarantee the fixed RCM constraint have been proposed.  However, an incision on a patient’s 
abdominal wall is not fixed owing to the respiration of the patient, which generates an uncertain 
disturbance at the joints of robotic manipulators.  To improve accuracy, a radial basis function 
neural network is implemented to adapt to these disturbances and control the end-effector 
position.  Finally, the adaptive bimanual control strategy is validated through simulations based 
on clinical data.  The proposed control shows improved accuracy in the end effector position 
for all the designed surgical tasks.  In future works, the algorithm will be validated on an actual 
dual-arm serial robot making use of a body phantom.

1.	 Introduction

	 Laparoscopy requires a small incision in the abdominal wall to allow the insertion of a 
trocar and surgical tools.  Robotic implementation of such minimally invasive surgery (MIS) 
techniques is expected to improve the control and precision of the surgical tools used in 
interventions while reducing trauma to patients.(1–3)  However, specialized surgical robots are 
expensive, which limits their acquisition and use in hospitals.
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	 Industrial robots with redundancy have meanwhile been successfully adopted and further 
developed for precise automation processes in the last few decades.  Their lower cost than 
specialized surgical robots has increased interest in their application in the medical field, 
particularly in MIS.  Their redundancy, such as more DoFs than required for the executed 
task, provides benefits over nonredundant robots, including the facilitation of human-like 
behavior,(2,4) enhanced manipulability,(3) and obstacle avoidance.(5,6)

	 In robot-assisted MIS, the motion of the surgical tool is constrained to a point, referred to 
as the remote center of motion (RCM), where the surgical tool crosses the abdominal wall, 
allowing only translational movements around its axis.  Whereas a mechanical implementation 
is generally considered safer but requires bulky, expensive structures and calibration 
procedures, a programmable RCM whose movement is restricted by the control algorithm is 
cheaper and more flexible and is therefore the preferable option.(7,8)

	 In our previous work, we achieved RCM control with a null space controller for a redundant 
serial robot.(9,10)  In actual surgery, the RCM moves continuously owing to the respiration of 
the patient.  To ensure accuracy, the controller has to compensate robustly for these movements 
to prevent bending of the surgical tool by the resulting forces.(11,12)  Such deformation of the 
tool would not only directly distort its trajectory but also interfere with its readjustment since 
robotic systems generally obtain the position of the end effector (EE) from the positions of the 
manipulator’s joints.
	 In this work, we simulate a moving RCM using clinical respiratory data.(13)  Neural 
networks, particularly radial basis function neural networks (RBFNNs), have proven to be a 
powerful tool for robustly implementing model predictive control mechanisms, outperforming 
traditional controllers even for linear applications where proportional–integral–derivative (PID) 
controllers have been established as a benchmark.(14)  With a Gaussian activation function, 
an RBFNN(11) can smoothly approximate any continuous function.  Thus, it is suitable as an 
adaptive controller for compensating the uncertain disturbances caused by the respiratory 
motion, and therefore can be employed to improve the control of a surgical tool.
	 The aim of our research is to simulate a programmable RCM in a scenario close to the 
clinical scenario by implementing bimanual control(15,16) with two asymmetric KUKA LWR4+ 
robotic manipulators for MIS and utilizing an RBFNN to compensate for the disturbance from 
the respiratory movement.  An evaluation is performed on surgically relevant trajectories for 
intraoperative suturing and knot tying.  
	 The contributions of this paper are as follows.  An RBFNN method is used to compensate 
for the disturbance from the respiratory movement under a constrained RCM.  The experiment 
is verified on surgically relevant trajectories for intraoperative suturing and knot tying.
	 The paper is organized as follows.  Section 2 describes the fundamentals and control 
methodology.  In Sect. 3, the performance of the proposed control scheme is validated in a 
simulation with clinical data.  Conclusions are drawn in Sect. 4.

2.	 Methodology

	 In this section, we present the clinical workspace and the essential mathematical concepts 
used.
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2.1	 Clinical aspects

	 During the MIS of the torso, the breathing mechanism generates shifts in the abdominal 
wall, as shown in Fig. 1, and modifies the RCM position, causing disturbances in the system, 
which in turn lead to possible harm at the trocar.  Furthermore, EE errors can result in 
insufficient accuracy of the suturing and knot-tying procedures.(12,17,18)

2.2	 Null space control
	
	 The defined workspace and the RCM, EE, and wrist are depicted in Fig. 1.  Our 
implementation is based on the programmable RCM introduced by Khatib(19) and controlled 
with two Jacobian matrices and an appropriate null matrix.(7,20)

	 The desired Cartesian velocity for the subsequent time step of the EE can be described as
 

	 des EE
EE

x xx
T
−

= ,	 (1)

where EEx  denotes the desired Cartesian velocity, xEE denotes the current EE position, and xdes

is the next time of the EE position.  T is the duration of one-time step.  Additionally, the desired 
velocity of the robot wrist wristx  can be defined as

	
)( des tool wrist

wrist
x v xx

T
− −

= ,	 (2)

subjected to

	 des RCM
tool

des RCM

x xv L
x x

−
=

−
,	 (3)

Fig. 1.	 (Color online) Workspace representation of MIS of torso.            
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where xwrist represents the current position of the wrist, vtool denotes the vector describing the 
surgical tool position, xRCM is the position of the RCM, and L is the length of the surgical tool.
	 To control the robotic manipulator, the desired joint velocities EEq  and wrist speed wristq  at 
the EE can be presented as

	 1
EE EE EEq J x−= ⋅ 

,	 (4)

	 1  wrist wrist wristq J x−= ⋅  ,	 (5)

where JEE and Jwrist are the corresponding 3 × 7 Jacobian matrices, respectively.
	 With the two matrices controlling the Cartesian positions of the EE and wrist, the rotational 
DoFs of the tool assume a configuration that makes the tool pass through the RCM.
	 The desired joint position desq  can be defined as

	  des EE wristq q N q= + ⋅   ,	 (6)

subjected to

	 7 wrist wristN I J J+= − ⋅ ,	 (7)

where I7 denotes the seven-dimensional identity matrix, and Jwrist denotes the pseudoinverse.(5) 
	 The desired overall joint velocity can be given by

	
0

 
t

des desq q dt= ∫  .	 (8)

	 All nonredundant components are removed from wristq  to maintain the precise trajectory of 
the EE.

2.2	 RBFNN

	 An RBFNN(21,22) is a type of feedforward neural network with an input layer, a hidden layer, 
and an output layer.  The neurons of the hidden layer have Gaussian radial basis activation 
functions with adaptable center and width; hence, there are no weights of the hidden layer.  The 
weights of the output layer are updated continuously with learning rate α.  In the output layer, 
the weighted radial basis functions are summed to obtain one smooth continuous function, 
allowing it to adapt, and thus robustly compensate for unknown dynamics, nonlinearities, and 
disturbances.(23,24)  The activation function hi of the ith neuron in the hidden layer is given by

	
T

, ,
2

( ) ( )
exp

2
ν ν− − −

= EE i EE i
i

i

x c x c
h

b
,	 (9)
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where xEE,v is the current Cartesian position of the EE, c is the vector containing the centers, 
and b is the vector of the widths of the Gaussian functions in the hidden layer. 
	 The update of the weights Δwij of the output layer is given by

	  ij j i ijw e h wα β δ∆ = ⋅ ⋅ + ⋅ ,	 (11)

where ej is the error between the desired and actual positions of the EE, α = 0.4 is the learning 
rate, and β = 0.02 is the weighting of the previous update δwij.  
	 The RBFNN control is implemented in the manner depicted in Fig. 2.  An external 
disturbance simulating the respiratory movement is introduced, where clinical data is used.  
The RBFNN ensures that the EE of the surgical tool does not deviate significantly from its 
trajectory.

3.	 Experimental Validation

	 To evaluate the performance of the proposed control approach, simulations were conducted 
with the dual-arm robot shown in Fig. 3.  The robot arms were set to autonomously follow 
surgical trajectories with five different shapes, a straight line, an angle, a sine curve, a 
semicircle, and a helix, to demonstrate and evaluate its versatility.(25,26)  These shapes 
are directly related to the usual trajectory performed in MIS suturing and knot-tying 
techniques,(27–29) as shown in Fig. 4.  The length or diameter of the trajectory, depending on the 
shape, was set to 5 mm.(30)

	 The respiratory movements were based on clinical data recorded by Shafiq and Veluvolu.(13)  
The registered movements of two markers in the abdominal region were picked as moving 
RCMs.  Because of the low sampling frequency, spline interpolation was used to obtain the 
missing values.(31–33)

	 The control and robustness of the proposed system were evaluated considering the Euclidean 
norm tracking error of the EE,

	 EE des EEE x x= − ,	 (11)

subjected to the Euclidean distance between the EE position xEE and its desired trajectory xdes at 

Fig. 2.	 Block diagram of RBFNN control.
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each time step.  Then, the RCM error ERCM can be represented as

	
( )tool EE RCM

RCM
tool

v x x
E

v

× −
= ,	 (12)

which measures the Euclidean distance between the optimal RCM position xRCM at the incision 
and the surgical tool, where vtool is the vector describing the surgical tool position.  
	 From the EE error, depicted for the angle trajectory in Fig. 5(a), it was concluded that the 
RBFNN considerably improves the accuracy of the following trajectory, and at the same time, 
the RCM constraint by a small amount.  The boxplots in Fig. 6 confirmed that the neural 
network control reduced the EE error for the other trajectories, decreasing the median of the 
error and shortening the whiskers.  For more complex and nonlinear trajectories such as the 
helix, the errors of the implementations both without and with the RBFNN are larger than those 
for the simpler ones.  However, the RCM error for the helix also decreased, suggesting that the 
proposed controller will enhance accuracy by compensating disturbances.

Fig. 4.	 (Color online) MIS trajectories used for suturing and knot tying with corresponding simulated shapes.(5)

Fig. 3.	 (Color online) Bimanual control of the dual-arm serial robot for MIS. Both robotic manipulators can 
perform independent tasks. The transparent red plane models the abdominal wall.
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Fig. 6.	 (Color online) Boxplots of (a) EE error and (b) RCM error. The errors without RBFNN are depicted with 
blue boxes while those with RBFNN control are black.

Fig. 5.	 (Color online) Tracking performance of (a) EE in position error and (b) RCM error.

(a) (b)

(a) (b)

4.	 Conclusions 

	 This article mainly centers on the asymmetric bimanual control of a dual-arm serial 
robot with two RCM constraints for MIS.  To evaluate the developed control scheme, some 
simulations are carried out, indicating that the proposed method can achieve advantageous 
performance for the accurate control mechanism of dual-arm serial robots.  Even for a moving 
RCM, the RBFNN can robustly keep the EE error sufficiently small to meet the precision 
requirements of medical surgery with 1 mm at the EE.  However, further improvements are 
required.  Since our simulations did not consider physical effects such as inertia or force 
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feedback,(34) the next step should be to validate the performance of our implemented algorithm 
on actual KUKA LWR4+ robots and a phantom with force feedback.  Furthermore, human–
robot physical interaction in the surgical environment will be implemented to assist the motion 
of the surgeon.(35)
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