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	 Convolutional neural network (CNN)-based methods, which train an end-to-end model to 
regress a six degree of freedom (DoF) pose of a robot from a single red–green–blue (RGB) 
image, have been developed to overcome the poor robustness of robot visual relocalization 
recently.  However, the pose precision becomes low when the test image is dissimilar to 
training images.  In this paper, we propose a novel method, named image-similarity-based 
CNN, which considers the image similarity of an input image during the CNN training.  The 
higher the similarity of the input image, the higher precision we can achieve.  Therefore, we 
crop the input image into several small image blocks, and the similarity between each cropped 
image block and training dataset images is measured by employing a feature vector in a fully 
connected CNN layer.  Finally, the most similar image is selected to regress the pose.  A genetic 
algorithm is utilized to determine the cropped position.  Experiments on both open-source 
dataset 7-Scenes and two actual indoor environments are conducted.  The results show that 
the proposed algorithm leads to better results and reduces large regression errors effectively 
compared with existing solutions.

1.	 Introduction

	 Relocalization is a vital module for the long-term operations of a robot (such as planning 
and navigation) in an environment.(1–3)  A service robot running in several indoor rooms or 
offices establishes an environment map as it moves around the environment.  Usually, the robot 
needs to move in the environment many times in order to build a complete indoor map.  When 
it restarts in a room where it has been before, it should obtain its 6D pose in the map global 
coordinate system by using its relocalization module.  The core problem of visual relocalization 
is to estimate the robot’s pose through the images from a camera.  Recently, visual sensors, such 
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as monocular and RGB-D cameras, are widely utilized in robots for environment mapping and 
perception because these cameras are very affordable compared with laser sensors.  
	 Owing to strong interest in relocalization, many algorithms have been proposed.  One main 
component of visual-based robot relocalization is visual pose estimation in a world coordinate 
system as the camera is often fixed on a robot.  It can be divided into three main methods: 
keyframe-based, feature-based, and learning-based methods.
	 Keyframe-based methods select the most similar image in collected keyframes (with poses) 
and estimate a relative pose.(4,5)  The global pose can be obtained by transferring the pose to 
the world coordinate system according to the pose of a selected keyframe.  Some successful 
algorithms have been proposed for such methods.  
	 Feature-based methods store feature points extracted in images rather than in a large number 
of keyframes.(6–9)  Corresponding descriptors and positions (in the world coordinate system) 
of the detected feature points in images are stored in a database.  Then, when conducting 
relocalization, the feature points are detected in the current image and matched with those in 
the database.  The pose will be estimated after optimization.  
	 Most relocalization algorithms adopt these methods because of the availability of robust 
feature detectors and descriptors to find matches.  However, feature matching does not work 
accurately and robustly enough in all scenarios.  The disadvantage of these approaches is the 
reliance on feature detection and matching.  It leads to failure when fewer features are extracted 
in the presence of motion blur, textureless images, occlusions, dimly lit scenes or similar 
structures.  Another problem is the deterioration of robustness and accuracy when the image 
similarity between the query image and the collected keyframes is too low owing to the sparsity 
of keyframes.
	 Learning-based methods have shown potentially efficient solutions to the pose estimation 
problem in recent years.  Shotton et al. proposed a scene coordinate regression forest (SCoRF), 
which is successfully applied to camera pose estimation.(10,11)  However, a depth map associated 
with an input image is required during training.  Therefore, the applicability of the approach is 
restricted.
	 With their  rapid development in recent years, neural networks have achieved great success 
in image classification,(12,13) image retrieval,(14–16) semantic segmentation,(17–19) and various 
applications.(20–23)  Nowadays, convolutional neural networks (CNNs) have also been applied 
to estimate camera pose from images.  The pose relocalization is considered as a regression 
problem as it is directly estimated by a CNN.  Initially, Kendall and coworkers proposed an 
algorithm named PoseNet to directly regress the camera pose using the CNN(24,25) method 
(adopting the GoogLeNet(26) architecture).  Another framework named Bayesian PoseNet 
considers uncertainty in pose estimation by averaging Monte Carlo dropout samples from the 
posterior distribution of the Bayesian CNN’s weights.(27)  These two models have achieved good 
performance in both indoor and outdoor datasets.  Melekhov et al. utilized an hourglass network 
with a symmetric encoder-decoder network structure, which had improved accuracy compared 
with PoseNet.(28)  Motivated by recurrent neural networks in text classification,(29,30) some 
approaches are proposed.  Clark et al. used a recurrent model for the 6-DoF pose estimation 
of video clips, which exploited the temporal smoothness of a video stream in order to improve 
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global accuracy.(31)  The major drawback of this method is that it requires a sequence of adjacent 
images as inputs.
	 Although learning-based algorithms can solve many disadvantages of feature-based 
methods, some issues remain unsolved.  For instance, pose error is large when there is a large 
dissimilarity between a test image and a training dataset.  The accuracy of these methods needs 
to be improved before they can be used in practical applications.  In this work, we explore the 
impact of an input image with a different image similarity on pose regression accuracy for robot 
relocalization, and we propose an image-similarity-based CNN.  The input image is cropped 
to several small image blocks, and then the similarity between each cropped image block and 
training dataset images is measured by using the feature vector in a fully connected CNN layer.  
Finally, the image with the highest similarity is selected for pose regression.
	 In summary, we make the following contributions:
(1)	We contribute a novel idea: a higher similarity of an input image can achieve a higher 

precision when utilizing CNNs for visual relocalization.
(2)	We propose a whole pipeline to select the most similar image as an input to a CNN using 

only an RGB image.
(3)	An algorithm that clusters feature vectors of a training dataset can effectively reduce the 

computational complexity in the image similarity computation.
	 The rest of the paper is organized as follows.  In Sect. 2, we describe the proposed visual 
pose regression algorithm in detail.  Experiments on open-source datasets and two real 
environments are explained in Sect. 3.  Conclusions and some suggestions for future work are 
given in Sect. 4.

2.	 Design for Robot Visual Relocalization Algorithm

	 In this section, we introduce the image-similarity-based CNN for robot relocalization using 
a single RGB image.  The relocalization problem is considered as pose regression as it utilizes 
an end-to-end CNN method.

2.1	 System structure

	 Usually, visual pose regression algorithms based on deep learning require images and the 
corresponding poses to train network parameters.  Then, the pose regression is performed on 
the test dataset.  It can be observed that the accuracy of the pose regression is higher when 
the trajectory of the test dataset is closer to the training dataset.  Higher similarities between 
images on the test and training datasets can result in a higher accuracy for the estimated image 
pose.  Therefore, it is possible to improve the accuracy by obtaining an input image with high 
similarity to the training dataset.
	 The visual pose regression system structure is shown in Fig. 1.  In general, the main idea is 
to crop an input RGB image into several small image blocks and find some images with high 
similarity to the images in a training dataset, and the pose regression is carried out through 
the CNN.  Firstly, transfer learning is utilized to train a pose regression network based on the 
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PoseNet network structure that uses the GoogleNet Inception V1 network as the backbone.  
Secondly, to reduce the computational complexity of image similarity, images of the training 
dataset are clustered.  The trained regression model is used to extract a feature of the image, 
which will form a feature vector.  Then, the k-means clustering algorithm is adopted to cluster 
feature vectors.  Thirdly, the cropped position of the image, which is regarded as the optimal 
variable, is optimized by leveraging a genetic algorithm.  The similarity between the cropped 
image and training dataset images is treated as the fitness function.  Finally, the pose can be 
obtained by utilizing the trained model to calculate the selected cropped image with the highest 
similarity.

2.2	 Pose regression network based on transfer learning

	 The GoogLeNet Inception V1 network is adopted for transfer learning in the pose regression 
algorithm, which is trained on the ImageNet dataset.  Its output structure is modified as follows.  
Three fully connected layers named SoftMax are removed and each removed layer is replaced 
with a 7-dimensional vector that consists of a 3D position vector and a quaternion.  The network 
structure is shown in Fig. 2.  
	 During the training process, a Euclidean loss function is utilized and Stochastic Gradient 
Descent (SGD) is applied to train the network model.  The loss function L(I) is defined as
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where I is the input RGB image, Li(I) is a loss function of the i-th fully connected layer’s output, 
αi is the weight of the i-th loss function, and t and q are a 3D position vector and a quaternion 

Fig. 1.	 (Color online) Framework of visual pose relocalization system.
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vector representing the orientation, t̂  and q̂ are the position and orientation obtained by pose 
regression, respectively, and βi is a scale factor in the i-th loss function for balancing position 
and orientation errors.

2.3	 Feature vector clustering based on k-means

	 To select an image from cropped input images with the highest similarity to a training 
dataset, a similarity measurement between images needs to be defined.  In the field of image 
retrieval, a CNN has been widely applied and it achieves high accuracy.  The neural network 
can extract a feature vector from an image automatically and perform feature matching.  In the 
above network structure, the previous layer of the output pose is a fully connected layer with 
a 2048-dimensional vector.  Therefore, this fully connected layer can be utilized as a feature 
vector of the image to measure the image similarity.
	 The feature vector extraction diagram of training dataset images is shown in Fig. 3.  Let 
the number of images in a training dataset be m, and the set of feature vectors is defined as 

{ }1 2, , ,train m= U u u u .  The feature vector ui of the i-th image Ii extracted by a pose regression 
neural network is defined as

	 ( ) ( [1, ], )i CNN if I i m i N += ∈ ∈u ,	 (3)

where fCNN is the CNN for extracting feature vectors.
	 We use the same extraction method to extract feature vectors in the test dataset images.  
Then, vector distances are calculated for each feature vector of the test dataset image with 
all feature vectors in the training dataset, and the minimum distance gives the best image 
similarity.  Usually, there are too many images in the training dataset.  For example, each 
scene of Microsoft 7-Scenes datasets has thousands of images, and each feature vector is 
a 2048-dimensional vector.  Therefore, vector distance calculation will suffer from high 
computational cost.
	 To reduce the computational cost, the training dataset feature vectors are clustered to obtain 
several clustering centers.  Then, the distances between feature vectors of test images and 
clustering centers are compared as the measure of image similarity.  The k-means clustering 

Fig. 2.	 (Color online) Framework of pose regression CNNs.
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method is leveraged to cluster feature vectors of training dataset images.  Let the number of 
clustering centers be k and the set of vectors be { }1 2, , ,train k=C c c c , and the vector’s dimension 
of clustering centers will remain unchanged.  We need to perform data standardization before 
the clustering.  Let the mean value of training vectors be μ, standard deviation be σ, and vector’s 
dimension be s, and the j-th dimension of the i-th feature vector u′i( j) is
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where μ( j) and σ( j) are the mean and standard deviation of the j-th dimension in the feature 
vector, respectively.

2.4	 Input image crop based on genetic algorithm

	 The input image size of the pose regression network is generally smaller than those of the 
test images (for example, the image resolution of Microsoft’s 7-Scenes datasets is 640 × 480, 
whereas the network needs an input image with a resolution of 224 × 224).  Thus, we need to 
preprocess the input image.  Normally, the center cropping method is adopted.  However, the 
closer the cropped image to those in the training dataset, the higher the pose accuracy that 
can be regressed in the experiments.  Therefore,  to improve accuracy, an appropriate cropped 
image should be selected.  Let the input image resolution of the test dataset be w × h; we crop 
the image to the resolution of h × h first, then compress it to h' × h'.  The obtained upper left 
corner of the cropped image is in the range of [0, w − h].  Therefore, it needs to obtain a suitable 
cropped position so that the similarity between the image and the training dataset is the highest.
	 To determine the cropped position of the input image, the genetic algorithm is utilized for 
optimization.  The genetic algorithm is a type of meta-heuristic search algorithm based on 
biological evolution, which is to solve the optimization problem.  It can directly manipulate 
objects, and there is no limit to the continuity of the function.  The meta-heuristic optimization 

Fig. 3.	 (Color online) Feature vector extraction of training dataset images.
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of the genetic algorithm fits well to our problem as it can automatically guide the optimization 
of search space and adaptively adjust the search direction.  For these reasons, the genetic 
algorithm is implemented to search for the optimal cropped position of the input image.
	 The framework of the input image crop based on the genetic algorithm is shown in Fig. 4.  
The optimization variable represents the cropped position in the image, and the fitness function 
is the similarity between a cropped image and a training dataset image.  Usually, image 
similarity adopts a feature-based method such as the bag-of-words model(32,33) for extracting 
and searching feature points in an image.  However, an effective image similarity measure 
cannot be performed when the feature points are difficult to match if the images suffer from 
motion blur and are taken at different viewpoints.
	 As the trained pose regression neural network contains nine perception modules (the 
same ones as in the GoogleNet Inception V1 network) and convolutional, pooling, and other 
layers, image information can be abstracted and extracted effectively.  Therefore, the image 
similarity is measured by using the feature vector of the fully connected CNN layer.  We need 
to determine the following criteria: (1) encoding and decoding methods of a feasible solution, (2) 
fitness function design, and (3) genetic operations of the genetic algorithm for optimizing the 
input image cropped location.  These criteria are defined as follows:
(1) Encoding and decoding methods of feasible solution
	 The encoding of a feasible solution is for expressing solution space in a chromosome 
representation in order to facilitate genetic operations, such as crossover and mutation.  Owing 
to the high stability of the binary code and the difficulty in falling into local optimum, it is used 
to encode the cropped position of the image.  The range of the upper left corner in the cropped 
image is [0, ]x w h∈ − .  Because the cropped positions are all integers and the solution accuracy 
can be set to one pixel, the solution space can be divided into w − h equal parts.  The number of 
bits, n, of the binary string can be determined as

Fig. 4.	 (Color online) Input image crop based on genetic algorithm.
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	 2n−1 < w − h < 2n.	 (5)

	 Each binary string is represented as a chromosome, which is decoded after processing by 
genetic operators.  Let the chromosome string be X, then the decoded position is

	
( ) ( )

2 1n
Decimal Xx Round w h = ⋅ − 

− 
,	 (6)

where Round(∙) is a rounding function and Decimal(∙) is a function to transfer the binary 
representation to the integer representation.
(2) Fitness function design
	 Fitness function is an evaluation function that judges the fitness of each individual and 
serves as a basis for future genetic operations.  In general, the greater the function value, the 
higher the quality of the feasible solution.  The designed fitness function evaluates multiple 
cropped images in order to select the optimal cropped position.  By utilizing a trained pose 
regression network to extract feature vectors, the image similarity is measured by calculating 
feature vector distances between the image and the clustering centers.
	 The input image is cropped in a random manner to obtain w sheets of cropped images 

( [1, ], )sI s w s N +∈ ∈  with the size of h × h.  The feature vector μs is extracted by leveraging the 
trained pose regression network according to Eq. (3).

	 ( ) ( [1, ], )s CNN sf I s w s N += ∈ ∈µ ,	 (7)

where fCNN is the pose regression network.
	 The image similarity is measured by calculating distances between feature vectors.  The 
distance between the cropped image feature vector μs and the clustering center of each feature 
vector ck of the training dataset is calculated and the minimum distance λs is taken as image 
similarity:

	
( )1 22 2 2, , ,min

( [1, ], )

s s s ks

s w s N

λ
+

− − −=

∈ ∈

µ µ µc c c .
	 (8)

	 In a genetic algorithm, the fitness function is utilized to calculate selection probabilities 
and is generally designed to be in the form of maximum and non-negative function values.  
Therefore, an exponential function is adopted to define the following fitness function ys:

	 ( ) s
s sy f I e λ−= = .	 (9)

(3) Genetic operation
	 Genetic operations such as selection, crossover, and mutation are adopted to carry out 
population evolution.  The selection operation is to select the best individuals from the feasible 
solution of the previous generation to generate the next-generation populations.
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	 A fitness function is applied to evaluate the fitness of each individual and rank it.  We adopt 
the Roulette selection method, which selects two individuals from the population as parents 
according to the probability (which is derived from their fitness) of each individual.  The 
probability of the cropped image Is to be selected is

	
1

( ) s
s w

rr

yp I
y

=

=
∑

.	 (10)

	 The selected parent chromosomes undergo crossing and mutation with a certain probability 
in order to generate offsprings.  This process is repeated until the number of offsprings reaches 
the predetermined population size.  Finally, the progress stops when the iteration is completed.

2.5	 Pose regression

	 According to the method, the cropped image with the highest similarity to the training 
dataset is obtained.  Then, this image is regarded as the input in the network to regress the pose 
as described in Sect. 2.2.  Finally, we can obtain the pose for each test image.

3.	 Experimental Evaluation

	 We conduct our experiments on both open-source datasets and actual indoor environments 
to validate the proposed approach.  The dataset is the 7-Scenes captured by Microsoft Research 
Institute with an RGB-D camera.  It has been widely used for visual tracking and relocalization 
validation.  The images are captured at a resolution of 640 × 480.  The dataset contains seven 
indoor scenes including images, 3D densely reconstructed maps, and camera trajectories.  Each 
scene is divided into a training dataset and a test dataset with the ground truth generated from 
a KinectFusion system.  In the experiments, our method is implemented in all seven scenes 
in order to evaluate the proposed method, and the same sequences are adopted in the original 
paper.(25)  This dataset consists of both RGB and depth images, but we mainly focus on only 
RGB pose regression in this paper.  Furthermore, we carry out two indoor experiments for robot 
relocalization to verify the adaptability of the algorithm in the real world.

3.1	 Training dataset feature vector clustering

	 Experiments are conducted on the 7-Scenes dataset, and feature vectors of the training 
dataset are extracted by utilizing the pose regression network.  The input image resolution is 
640 × 480.  By using the central crop method, the cropped image resolution is 480 × 480, and 
an image with a resolution of 224 × 224 can be obtained after compressing it into the required 
input size of the network.  After extracting feature vectors of the training dataset, k-means 
algorithm is used to perform clustering in order to reduce the complexity of vector calculation.  
We set the number of clustering centers according to the number of training images, as shown 
in Table 1.
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	 To analyze the clustering performance, the t-distributed stochastic neighbor embedding (t-SNE) 
algorithm is employed to reduce the dimension of the clustering centers from 2048 to 2 so that 
they can be displayed in a 2D diagram.  Figure 5 shows the 2D distributions of the clustering 
center vectors of “Heads” and “Stairs” datasets, which are evenly distributed, indicating that the 
clustering performs well.

3.2	 Training for pose regression network based on transfer learning

	 The transfer learning algorithm is carried out to train the pose regression network, and the 
output layer of the network is modified.  TensorFlow library of Google is utilized in the training 
process.  During training, the SGD is adopted with a base learning rate of 10−5.  Using an 
NVIDIA Tesla P100 GPU, it takes around 4 h for the batch size of 75 during the training process 
with the number of iterations being 30000.

Table 1
Experiments on all Microsoft’s 7-Scenes datasets.

No. Scene Train 
frames

Test 
frames

Clustering 
centers

k

Position error (m) Orientation error (°)

PoseNet Bayesian 
PoseNet

Our 
method

Error
decrease

(%)
PoseNet Bayesian 

PoseNet
Our 

method

Error
decrease

(%)
1 Chess 4000 2000 40 0.32 0.37 0.21 −34.4 8.12 7.24 5.73 −29.4
2 Fire 2000 2000 20 0.47 0.43 0.40 −14.9 14.4 13.7 12.11 −15.9
3 Heads 1000 1000 10 0.29 0.31 0.25 −13.8 12.0 12.0 14.38 +19.8
4 Office 6000 4000 50 0.48 0.48 0.30 −37.5 7.68 8.04 7.58 −1.3
5 Pumpkin 4000 2000 40 0.47 0.61 0.37 −21.3 8.42 7.08 7.46 −11.4

6 Red 
kitchen 7000 5000 50 0.59 0.58 0.42 −28.8 8.64 7.54 7.11 −17.7

7 Stairs 2000 1000 20 0.47 0.48 0.36 −23.4 13.8 13.1 11.82 −14.3
Average 0.44 0.47 0.33 −25.2 10.44 9.81 9.46 −9.4

(a) (b)

Fig. 5.	 (Color online) Visualization of cluster centers (after dimensional reduction).  (a) Heads (k = 10) and (b) 
stairs (k = 20) (k is the number of clustering centers).
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3.3	 Image crop of test dataset utilizing the genetic algorithm

	 Each image in the test dataset is cropped and compressed to a suitable size of the network.  
Each image in the 7-Scenes dataset has a resolution of 640 × 480.  After cropping, the image 
resolution is 480 × 480.  It is resized to 224 × 224 for the network.  Therefore, the range of the 
upper left corner in the cropped image is [0, 160].  As the cropped positions are all integers and 
the solution precision is set to one pixel, the solution space can be divided into 160 equal parts.  
The chromosome coding mode is adopted and requires 8-bit binary according to Eq. (5).
	 The operating parameters of the genetic algorithm to select the optimal cropped image 
are shown in Table 2.  According to the algorithm described above, the fitness function and 
genetic operators are used to solve the problem.  After the iteration, the image with the highest 
similarity is selected to calculate the corresponding pose through the trained network model.

3.4	 Experimental comparison and analysis

	 Experiments on all scenes of the 7-Scenes dataset are performed first to verify the 
effectiveness of the proposed algorithm.  Then, we compare it with the previous PoseNet and 
Bayesian PoseNet algorithms on the dataset.  The experimental results are shown in Table 1 (the 
percentage of error reduction in Table 1 is compared with the result of the PoseNet algorithm).  
Figure 6 shows the comparison of position and orientation errors of the three algorithms.
	 The experimental results show that the proposed algorithm can reduce position error in 
all the seven scenes and also orientation error for most scenes except for the increase on the 
“Heads” dataset.  Compared with PoseNet, the average position error is reduced by 25.2% and 
the average orientation error is reduced by 9.4%.  In summary, the effectiveness of the proposed 
algorithm is verified.

Table 2
Operating parameters of the genetic algorithm.
Parameters Values
Number of population M 10
Crossover probability Pc 0.8
Mutation probability Pm 0.1
Number of iterations N 3

Fig. 6.	 (Color online) Comparisons on the 7-Scenes dataset. (a) Position and (b) orientation errors.

(a) (b)
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Table 3
(Color online) Comparative experiments of the input image for CNN.

No. Test image
(640 × 480)

Input image of CNN
(224 × 224) Position error (m) Orientation error (°)

PoseNet Our 
method PoseNet Our 

method PoseNet Our 
method

1 0.42 0.22 23.2 17.4

2 0.64 0.40 22.9 16.3

	 To prove the effectiveness of the proposed algorithm in detail, we use the “Stairs” dataset 
as an example.  We present a comparative analysis of the proposed method with the PoseNet 
algorithm.  We conduct comparative experiments to verify the effectiveness of image cropping 
in the proposed method.  Two test images from the “Stairs” dataset are randomly selected (the 
200th and 700th images) to present details, as shown in Table 3.  The resolution of the test 
image is 640 × 480, while the resolution of the CNN is 224 × 224.  In Table 3, we show the 
input images for PoseNet and our method.  For PoseNet, the center cropping method is used; 
however, the image similarity is utilized in our method to crop the input image.  Therefore, the 
input images of the CNN are slightly different.  The regression poses are also given in the table.  
It can be observed that our method improves accuracy significantly.  
	 We carry out the comparative experiments in all the test images of “Stairs”, which has 1000 
images.  Pose regression is performed for each image by utilizing the above algorithms, and 
the position and orientation errors are calculated.  Figure 7 shows two histograms of the error 
distribution on the test “Stairs” dataset.  In the pose regression of 1000 images, for the proposed 
algorithm, the ratio of position error less than 0.5 m is 73.2%, and the ratio of orientation error 
less than 15° is 70.0%, while they are 42.3 and 42.9% for PoseNet, respectively.  In terms of 

(a) (b)

Fig. 7.	 (Color online) Error histograms of the proposed and PoseNet algorithms on the “Stairs” dataset. (a) 
Position and (b) orientation errors.
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larger error magnitude, the proposed algorithm has 3.5% position error greater than 1.0 m and 
14.3% orientation error greater than 20°, while they are 10.4 and 25.1% for PoseNet, respectively.  
Thus, the position and orientation errors of the proposed algorithm are concentrated in the range 
of smaller errors, and the number of large errors is significantly reduced.  To observe the details 
clearly, all the results are shown in Figs. 8(a) and 8(b), which present the contrast in position and 
orientation errors, respectively.  It can be observed that the proposed algorithm achieves lower 
errors in the pose estimation for most images and its error fluctuation is gentle.  Moreover, the 
maximum error is significantly reduced.
	 In addition, we carry out two actual experiments using an indoor mobile robot.  Two indoor 
environments, a floor and a room are selected.  We control the robot attached with a Kinect 
sensor to move around a floor and a room separately.  RGB images are recorded and ORB-
SLAM2(34) is implemented to obtain the pose of each image.  The 3D reconstruction and 
trajectories are shown in Fig. 9.  We consider two laps as training data and one lap as test data.  

(a)

(b)

Fig. 8.	 (Color online) Comparison of the proposed and PoseNet algorithms on the “Stairs” dataset. (a) Position and (b) 
orientation errors.

(a) (b)

Fig. 9.	 (Color online) Two actual relocalization experiments in a floor and a room, respectively. The training 
trajectory is drawn in blue and the test trajectory is drawn in red. Experiments in (a) a floor and (b) a room.
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Table 4
Comparative experiments with PoseNet in actual environments.

No. Scenes Train 
frames

Test 
frames

Position error (m) Orientation error (°)

PoseNet Our 
method

Error
decrease(%) PoseNet Our 

method
Error

decrease(%)
1 Room 3395 1548 0.42 0.21 -50.0 8.26 2.34 −71.7
2 Floor 5450 2655 1.65 0.57 -65.5 7.87 1.20 −84.8

Average 1.04 0.39 -57.7 8.07 1.77 −78.2

It can be clearly seen that the trajectories are not coincident.  The same parameters are utilized 
to train the model with the dataset.  The PoseNet method is also trained for comparison.  The 
results are shown in Table 4.  The average position error is reduced by 57.7% and the average 
orientation error is reduced by 78.2%, which verifies the significant advantage of our proposed 
algorithm.

4.	 Conclusions

	 In this study, we investigated the visual relocalization problem for a robot based on a CNN.  
We proposed a novel image-similarity-based CNN algorithm in this paper.  In addition, a 
pipeline to select the most similar image for pose regression was presented.  The effectiveness of 
the algorithm was verified by experiments on both datasets and real environments.  Compared 
with PoseNet, the average position error was reduced by 25.2% and the average orientation error 
was reduced by 9.4% on the datasets.  The average errors were reduced by 57.7 and 78.2% in 
real environments, respectively.  As the pose regression does not consider the temporal change 
of the robot pose, it suffers from temporal incoherence.  In future work, continuous pose taking 
into account temporal element will be regressed to improve accuracy.
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