
1245Sensors and Materials, Vol. 32, No. 4 (2020) 1245–1259
MYU Tokyo

S & M 2175

*Corresponding author: e-mail: lrf100@hit.edu.cn
**Corresponding author: e-mail: zhaolj@hit.edu.cn
https://doi.org/10.18494/SAM.2020.2549

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Image-similarity-based Convolutional Neural Network
for Robot Visual Relocalization

Li Wang,1 Ruifeng Li,1* Jingwen Sun,1 Hock Soon Seah,2

Chee Kwang Quah,3 Lijun Zhao,1** and Budianto Tandianus2

1State Key Laboratory of Robotics and System, Harbin Institute of Technology,
92 Xidazhi Street, Harbin 150006, China

2School of Computer Science and Engineering, Nanyang Technological University,
Nanyang Avenue 639798, Singapore

3ST Electronics (Training & Simulation Systems) Pte Ltd.,
24 Ang Mo Kio Street, 560353 Singapore

(Received July 31, 2019; accepted December 2, 2019)

Keywords:	 visual relocalization, CNN, image similarity

	 Convolutional neural network (CNN)-based methods, which train an end-to-end model to
regress a six degree of freedom (DoF) pose of a robot from a single red–green–blue (RGB)
image, have been developed to overcome the poor robustness of robot visual relocalization
recently. However, the pose precision becomes low when the test image is dissimilar to
training images. In this paper, we propose a novel method, named image-similarity-based
CNN, which considers the image similarity of an input image during the CNN training. The
higher the similarity of the input image, the higher precision we can achieve. Therefore, we
crop the input image into several small image blocks, and the similarity between each cropped
image block and training dataset images is measured by employing a feature vector in a fully
connected CNN layer. Finally, the most similar image is selected to regress the pose. A genetic
algorithm is utilized to determine the cropped position. Experiments on both open-source
dataset 7-Scenes and two actual indoor environments are conducted. The results show that
the proposed algorithm leads to better results and reduces large regression errors effectively
compared with existing solutions.

1.	 Introduction

	 Relocalization is a vital module for the long-term operations of a robot (such as planning
and navigation) in an environment.(1–3) A service robot running in several indoor rooms or
offices establishes an environment map as it moves around the environment. Usually, the robot
needs to move in the environment many times in order to build a complete indoor map. When
it restarts in a room where it has been before, it should obtain its 6D pose in the map global
coordinate system by using its relocalization module. The core problem of visual relocalization
is to estimate the robot’s pose through the images from a camera. Recently, visual sensors, such

1246	 Sensors and Materials, Vol. 32, No. 4 (2020)

as monocular and RGB-D cameras, are widely utilized in robots for environment mapping and
perception because these cameras are very affordable compared with laser sensors.
	 Owing to strong interest in relocalization, many algorithms have been proposed. One main
component of visual-based robot relocalization is visual pose estimation in a world coordinate
system as the camera is often fixed on a robot. It can be divided into three main methods:
keyframe-based, feature-based, and learning-based methods.
	 Keyframe-based methods select the most similar image in collected keyframes (with poses)
and estimate a relative pose.(4,5) The global pose can be obtained by transferring the pose to
the world coordinate system according to the pose of a selected keyframe. Some successful
algorithms have been proposed for such methods.
	 Feature-based methods store feature points extracted in images rather than in a large number
of keyframes.(6–9) Corresponding descriptors and positions (in the world coordinate system)
of the detected feature points in images are stored in a database. Then, when conducting
relocalization, the feature points are detected in the current image and matched with those in
the database. The pose will be estimated after optimization.
	 Most relocalization algorithms adopt these methods because of the availability of robust
feature detectors and descriptors to find matches. However, feature matching does not work
accurately and robustly enough in all scenarios. The disadvantage of these approaches is the
reliance on feature detection and matching. It leads to failure when fewer features are extracted
in the presence of motion blur, textureless images, occlusions, dimly lit scenes or similar
structures. Another problem is the deterioration of robustness and accuracy when the image
similarity between the query image and the collected keyframes is too low owing to the sparsity
of keyframes.
	 Learning-based methods have shown potentially efficient solutions to the pose estimation
problem in recent years. Shotton et al. proposed a scene coordinate regression forest (SCoRF),
which is successfully applied to camera pose estimation.(10,11) However, a depth map associated
with an input image is required during training. Therefore, the applicability of the approach is
restricted.
	 With their rapid development in recent years, neural networks have achieved great success
in image classification,(12,13) image retrieval,(14–16) semantic segmentation,(17–19) and various
applications.(20–23) Nowadays, convolutional neural networks (CNNs) have also been applied
to estimate camera pose from images. The pose relocalization is considered as a regression
problem as it is directly estimated by a CNN. Initially, Kendall and coworkers proposed an
algorithm named PoseNet to directly regress the camera pose using the CNN(24,25) method
(adopting the GoogLeNet(26) architecture). Another framework named Bayesian PoseNet
considers uncertainty in pose estimation by averaging Monte Carlo dropout samples from the
posterior distribution of the Bayesian CNN’s weights.(27) These two models have achieved good
performance in both indoor and outdoor datasets. Melekhov et al. utilized an hourglass network
with a symmetric encoder-decoder network structure, which had improved accuracy compared
with PoseNet.(28) Motivated by recurrent neural networks in text classification,(29,30) some
approaches are proposed. Clark et al. used a recurrent model for the 6-DoF pose estimation
of video clips, which exploited the temporal smoothness of a video stream in order to improve

Sensors and Materials, Vol. 32, No. 4 (2020)	 1247

global accuracy.(31) The major drawback of this method is that it requires a sequence of adjacent
images as inputs.
	 Although learning-based algorithms can solve many disadvantages of feature-based
methods, some issues remain unsolved. For instance, pose error is large when there is a large
dissimilarity between a test image and a training dataset. The accuracy of these methods needs
to be improved before they can be used in practical applications. In this work, we explore the
impact of an input image with a different image similarity on pose regression accuracy for robot
relocalization, and we propose an image-similarity-based CNN. The input image is cropped
to several small image blocks, and then the similarity between each cropped image block and
training dataset images is measured by using the feature vector in a fully connected CNN layer.
Finally, the image with the highest similarity is selected for pose regression.
	 In summary, we make the following contributions:
(1)	We contribute a novel idea: a higher similarity of an input image can achieve a higher

precision when utilizing CNNs for visual relocalization.
(2)	We propose a whole pipeline to select the most similar image as an input to a CNN using

only an RGB image.
(3)	An algorithm that clusters feature vectors of a training dataset can effectively reduce the

computational complexity in the image similarity computation.
	 The rest of the paper is organized as follows. In Sect. 2, we describe the proposed visual
pose regression algorithm in detail. Experiments on open-source datasets and two real
environments are explained in Sect. 3. Conclusions and some suggestions for future work are
given in Sect. 4.

2.	 Design for Robot Visual Relocalization Algorithm

	 In this section, we introduce the image-similarity-based CNN for robot relocalization using
a single RGB image. The relocalization problem is considered as pose regression as it utilizes
an end-to-end CNN method.

2.1	 System structure

	 Usually, visual pose regression algorithms based on deep learning require images and the
corresponding poses to train network parameters. Then, the pose regression is performed on
the test dataset. It can be observed that the accuracy of the pose regression is higher when
the trajectory of the test dataset is closer to the training dataset. Higher similarities between
images on the test and training datasets can result in a higher accuracy for the estimated image
pose. Therefore, it is possible to improve the accuracy by obtaining an input image with high
similarity to the training dataset.
	 The visual pose regression system structure is shown in Fig. 1. In general, the main idea is
to crop an input RGB image into several small image blocks and find some images with high
similarity to the images in a training dataset, and the pose regression is carried out through
the CNN. Firstly, transfer learning is utilized to train a pose regression network based on the

1248	 Sensors and Materials, Vol. 32, No. 4 (2020)

PoseNet network structure that uses the GoogleNet Inception V1 network as the backbone.
Secondly, to reduce the computational complexity of image similarity, images of the training
dataset are clustered. The trained regression model is used to extract a feature of the image,
which will form a feature vector. Then, the k-means clustering algorithm is adopted to cluster
feature vectors. Thirdly, the cropped position of the image, which is regarded as the optimal
variable, is optimized by leveraging a genetic algorithm. The similarity between the cropped
image and training dataset images is treated as the fitness function. Finally, the pose can be
obtained by utilizing the trained model to calculate the selected cropped image with the highest
similarity.

2.2	 Pose regression network based on transfer learning

	 The GoogLeNet Inception V1 network is adopted for transfer learning in the pose regression
algorithm, which is trained on the ImageNet dataset. Its output structure is modified as follows.
Three fully connected layers named SoftMax are removed and each removed layer is replaced
with a 7-dimensional vector that consists of a 3D position vector and a quaternion. The network
structure is shown in Fig. 2.
	 During the training process, a Euclidean loss function is utilized and Stochastic Gradient
Descent (SGD) is applied to train the network model. The loss function L(I) is defined as

	
3

1
() ()i i

i
L I L Iα

=
=∑ ,	 (1)

	 ()2
2

ˆ ˆ() 1, 2, 3i i
qL I t t q i
q

β= − + − = ,	 (2)

where I is the input RGB image, Li(I) is a loss function of the i-th fully connected layer’s output,
αi is the weight of the i-th loss function, and t and q are a 3D position vector and a quaternion

Fig. 1.	 (Color online) Framework of visual pose relocalization system.

Sensors and Materials, Vol. 32, No. 4 (2020)	 1249

vector representing the orientation, t̂ and q̂ are the position and orientation obtained by pose
regression, respectively, and βi is a scale factor in the i-th loss function for balancing position
and orientation errors.

2.3	 Feature vector clustering based on k-means

	 To select an image from cropped input images with the highest similarity to a training
dataset, a similarity measurement between images needs to be defined. In the field of image
retrieval, a CNN has been widely applied and it achieves high accuracy. The neural network
can extract a feature vector from an image automatically and perform feature matching. In the
above network structure, the previous layer of the output pose is a fully connected layer with
a 2048-dimensional vector. Therefore, this fully connected layer can be utilized as a feature
vector of the image to measure the image similarity.
	 The feature vector extraction diagram of training dataset images is shown in Fig. 3. Let
the number of images in a training dataset be m, and the set of feature vectors is defined as

{ }1 2, , ,train m= U u u u . The feature vector ui of the i-th image Ii extracted by a pose regression
neural network is defined as

	 () ([1,],)i CNN if I i m i N += ∈ ∈u ,	 (3)

where fCNN is the CNN for extracting feature vectors.
	 We use the same extraction method to extract feature vectors in the test dataset images.
Then, vector distances are calculated for each feature vector of the test dataset image with
all feature vectors in the training dataset, and the minimum distance gives the best image
similarity. Usually, there are too many images in the training dataset. For example, each
scene of Microsoft 7-Scenes datasets has thousands of images, and each feature vector is
a 2048-dimensional vector. Therefore, vector distance calculation will suffer from high
computational cost.
	 To reduce the computational cost, the training dataset feature vectors are clustered to obtain
several clustering centers. Then, the distances between feature vectors of test images and
clustering centers are compared as the measure of image similarity. The k-means clustering

Fig. 2.	 (Color online) Framework of pose regression CNNs.

1250	 Sensors and Materials, Vol. 32, No. 4 (2020)

method is leveraged to cluster feature vectors of training dataset images. Let the number of
clustering centers be k and the set of vectors be { }1 2, , ,train k=C c c c , and the vector’s dimension
of clustering centers will remain unchanged. We need to perform data standardization before
the clustering. Let the mean value of training vectors be μ, standard deviation be σ, and vector’s
dimension be s, and the j-th dimension of the i-th feature vector u′i(j) is

	

() () , () 0
()()
0, () 0

([1,], [1,], ,)

i

i

j j j
jj

j

i m j s i j N

µ
σ

σ
σ

+

− ≠′ = 
 =

∈ ∈ ∈

u
u

,	 (4)

where μ(j) and σ(j) are the mean and standard deviation of the j-th dimension in the feature
vector, respectively.

2.4	 Input image crop based on genetic algorithm

	 The input image size of the pose regression network is generally smaller than those of the
test images (for example, the image resolution of Microsoft’s 7-Scenes datasets is 640 × 480,
whereas the network needs an input image with a resolution of 224 × 224). Thus, we need to
preprocess the input image. Normally, the center cropping method is adopted. However, the
closer the cropped image to those in the training dataset, the higher the pose accuracy that
can be regressed in the experiments. Therefore, to improve accuracy, an appropriate cropped
image should be selected. Let the input image resolution of the test dataset be w × h; we crop
the image to the resolution of h × h first, then compress it to h' × h'. The obtained upper left
corner of the cropped image is in the range of [0, w − h]. Therefore, it needs to obtain a suitable
cropped position so that the similarity between the image and the training dataset is the highest.
	 To determine the cropped position of the input image, the genetic algorithm is utilized for
optimization. The genetic algorithm is a type of meta-heuristic search algorithm based on
biological evolution, which is to solve the optimization problem. It can directly manipulate
objects, and there is no limit to the continuity of the function. The meta-heuristic optimization

Fig. 3.	 (Color online) Feature vector extraction of training dataset images.

Sensors and Materials, Vol. 32, No. 4 (2020)	 1251

of the genetic algorithm fits well to our problem as it can automatically guide the optimization
of search space and adaptively adjust the search direction. For these reasons, the genetic
algorithm is implemented to search for the optimal cropped position of the input image.
	 The framework of the input image crop based on the genetic algorithm is shown in Fig. 4.
The optimization variable represents the cropped position in the image, and the fitness function
is the similarity between a cropped image and a training dataset image. Usually, image
similarity adopts a feature-based method such as the bag-of-words model(32,33) for extracting
and searching feature points in an image. However, an effective image similarity measure
cannot be performed when the feature points are difficult to match if the images suffer from
motion blur and are taken at different viewpoints.
	 As the trained pose regression neural network contains nine perception modules (the
same ones as in the GoogleNet Inception V1 network) and convolutional, pooling, and other
layers, image information can be abstracted and extracted effectively. Therefore, the image
similarity is measured by using the feature vector of the fully connected CNN layer. We need
to determine the following criteria: (1) encoding and decoding methods of a feasible solution, (2)
fitness function design, and (3) genetic operations of the genetic algorithm for optimizing the
input image cropped location. These criteria are defined as follows:
(1) Encoding and decoding methods of feasible solution
	 The encoding of a feasible solution is for expressing solution space in a chromosome
representation in order to facilitate genetic operations, such as crossover and mutation. Owing
to the high stability of the binary code and the difficulty in falling into local optimum, it is used
to encode the cropped position of the image. The range of the upper left corner in the cropped
image is [0,]x w h∈ − . Because the cropped positions are all integers and the solution accuracy
can be set to one pixel, the solution space can be divided into w − h equal parts. The number of
bits, n, of the binary string can be determined as

Fig. 4.	 (Color online) Input image crop based on genetic algorithm.

1252	 Sensors and Materials, Vol. 32, No. 4 (2020)

	 2n−1 < w − h < 2n.	 (5)

	 Each binary string is represented as a chromosome, which is decoded after processing by
genetic operators. Let the chromosome string be X, then the decoded position is

	
() ()

2 1n
Decimal Xx Round w h = ⋅ − 

− 
,	 (6)

where Round(∙) is a rounding function and Decimal(∙) is a function to transfer the binary
representation to the integer representation.
(2) Fitness function design
	 Fitness function is an evaluation function that judges the fitness of each individual and
serves as a basis for future genetic operations. In general, the greater the function value, the
higher the quality of the feasible solution. The designed fitness function evaluates multiple
cropped images in order to select the optimal cropped position. By utilizing a trained pose
regression network to extract feature vectors, the image similarity is measured by calculating
feature vector distances between the image and the clustering centers.
	 The input image is cropped in a random manner to obtain w sheets of cropped images

([1,],)sI s w s N +∈ ∈ with the size of h × h. The feature vector μs is extracted by leveraging the
trained pose regression network according to Eq. (3).

	 () ([1,],)s CNN sf I s w s N += ∈ ∈µ ,	 (7)

where fCNN is the pose regression network.
	 The image similarity is measured by calculating distances between feature vectors. The
distance between the cropped image feature vector μs and the clustering center of each feature
vector ck of the training dataset is calculated and the minimum distance λs is taken as image
similarity:

	
()1 22 2 2, , ,min

([1,],)

s s s ks

s w s N

λ
+

− − −=

∈ ∈

µ µ µc c c .
	 (8)

	 In a genetic algorithm, the fitness function is utilized to calculate selection probabilities
and is generally designed to be in the form of maximum and non-negative function values.
Therefore, an exponential function is adopted to define the following fitness function ys:

	 () s
s sy f I e λ−= = .	 (9)

(3) Genetic operation
	 Genetic operations such as selection, crossover, and mutation are adopted to carry out
population evolution. The selection operation is to select the best individuals from the feasible
solution of the previous generation to generate the next-generation populations.

Sensors and Materials, Vol. 32, No. 4 (2020)	 1253

	 A fitness function is applied to evaluate the fitness of each individual and rank it. We adopt
the Roulette selection method, which selects two individuals from the population as parents
according to the probability (which is derived from their fitness) of each individual. The
probability of the cropped image Is to be selected is

	
1

() s
s w

rr

yp I
y

=

=
∑

.	 (10)

	 The selected parent chromosomes undergo crossing and mutation with a certain probability
in order to generate offsprings. This process is repeated until the number of offsprings reaches
the predetermined population size. Finally, the progress stops when the iteration is completed.

2.5	 Pose regression

	 According to the method, the cropped image with the highest similarity to the training
dataset is obtained. Then, this image is regarded as the input in the network to regress the pose
as described in Sect. 2.2. Finally, we can obtain the pose for each test image.

3.	 Experimental Evaluation

	 We conduct our experiments on both open-source datasets and actual indoor environments
to validate the proposed approach. The dataset is the 7-Scenes captured by Microsoft Research
Institute with an RGB-D camera. It has been widely used for visual tracking and relocalization
validation. The images are captured at a resolution of 640 × 480. The dataset contains seven
indoor scenes including images, 3D densely reconstructed maps, and camera trajectories. Each
scene is divided into a training dataset and a test dataset with the ground truth generated from
a KinectFusion system. In the experiments, our method is implemented in all seven scenes
in order to evaluate the proposed method, and the same sequences are adopted in the original
paper.(25) This dataset consists of both RGB and depth images, but we mainly focus on only
RGB pose regression in this paper. Furthermore, we carry out two indoor experiments for robot
relocalization to verify the adaptability of the algorithm in the real world.

3.1	 Training dataset feature vector clustering

	 Experiments are conducted on the 7-Scenes dataset, and feature vectors of the training
dataset are extracted by utilizing the pose regression network. The input image resolution is
640 × 480. By using the central crop method, the cropped image resolution is 480 × 480, and
an image with a resolution of 224 × 224 can be obtained after compressing it into the required
input size of the network. After extracting feature vectors of the training dataset, k-means
algorithm is used to perform clustering in order to reduce the complexity of vector calculation.
We set the number of clustering centers according to the number of training images, as shown
in Table 1.

1254	 Sensors and Materials, Vol. 32, No. 4 (2020)

	 To analyze the clustering performance, the t-distributed stochastic neighbor embedding (t-SNE)
algorithm is employed to reduce the dimension of the clustering centers from 2048 to 2 so that
they can be displayed in a 2D diagram. Figure 5 shows the 2D distributions of the clustering
center vectors of “Heads” and “Stairs” datasets, which are evenly distributed, indicating that the
clustering performs well.

3.2	 Training for pose regression network based on transfer learning

	 The transfer learning algorithm is carried out to train the pose regression network, and the
output layer of the network is modified. TensorFlow library of Google is utilized in the training
process. During training, the SGD is adopted with a base learning rate of 10−5. Using an
NVIDIA Tesla P100 GPU, it takes around 4 h for the batch size of 75 during the training process
with the number of iterations being 30000.

Table 1
Experiments on all Microsoft’s 7-Scenes datasets.

No. Scene Train
frames

Test
frames

Clustering
centers

k

Position error (m) Orientation error (°)

PoseNet Bayesian
PoseNet

Our
method

Error
decrease

(%)
PoseNet Bayesian

PoseNet
Our

method

Error
decrease

(%)
1 Chess 4000 2000 40 0.32 0.37 0.21 −34.4 8.12 7.24 5.73 −29.4
2 Fire 2000 2000 20 0.47 0.43 0.40 −14.9 14.4 13.7 12.11 −15.9
3 Heads 1000 1000 10 0.29 0.31 0.25 −13.8 12.0 12.0 14.38 +19.8
4 Office 6000 4000 50 0.48 0.48 0.30 −37.5 7.68 8.04 7.58 −1.3
5 Pumpkin 4000 2000 40 0.47 0.61 0.37 −21.3 8.42 7.08 7.46 −11.4

6 Red
kitchen 7000 5000 50 0.59 0.58 0.42 −28.8 8.64 7.54 7.11 −17.7

7 Stairs 2000 1000 20 0.47 0.48 0.36 −23.4 13.8 13.1 11.82 −14.3
Average 0.44 0.47 0.33 −25.2 10.44 9.81 9.46 −9.4

(a) (b)

Fig. 5.	 (Color online) Visualization of cluster centers (after dimensional reduction). (a) Heads (k = 10) and (b)
stairs (k = 20) (k is the number of clustering centers).

Sensors and Materials, Vol. 32, No. 4 (2020)	 1255

3.3	 Image crop of test dataset utilizing the genetic algorithm

	 Each image in the test dataset is cropped and compressed to a suitable size of the network.
Each image in the 7-Scenes dataset has a resolution of 640 × 480. After cropping, the image
resolution is 480 × 480. It is resized to 224 × 224 for the network. Therefore, the range of the
upper left corner in the cropped image is [0, 160]. As the cropped positions are all integers and
the solution precision is set to one pixel, the solution space can be divided into 160 equal parts.
The chromosome coding mode is adopted and requires 8-bit binary according to Eq. (5).
	 The operating parameters of the genetic algorithm to select the optimal cropped image
are shown in Table 2. According to the algorithm described above, the fitness function and
genetic operators are used to solve the problem. After the iteration, the image with the highest
similarity is selected to calculate the corresponding pose through the trained network model.

3.4	 Experimental comparison and analysis

	 Experiments on all scenes of the 7-Scenes dataset are performed first to verify the
effectiveness of the proposed algorithm. Then, we compare it with the previous PoseNet and
Bayesian PoseNet algorithms on the dataset. The experimental results are shown in Table 1 (the
percentage of error reduction in Table 1 is compared with the result of the PoseNet algorithm).
Figure 6 shows the comparison of position and orientation errors of the three algorithms.
	 The experimental results show that the proposed algorithm can reduce position error in
all the seven scenes and also orientation error for most scenes except for the increase on the
“Heads” dataset. Compared with PoseNet, the average position error is reduced by 25.2% and
the average orientation error is reduced by 9.4%. In summary, the effectiveness of the proposed
algorithm is verified.

Table 2
Operating parameters of the genetic algorithm.
Parameters Values
Number of population M 10
Crossover probability Pc 0.8
Mutation probability Pm 0.1
Number of iterations N 3

Fig. 6.	 (Color online) Comparisons on the 7-Scenes dataset. (a) Position and (b) orientation errors.

(a) (b)

1256	 Sensors and Materials, Vol. 32, No. 4 (2020)

Table 3
(Color online) Comparative experiments of the input image for CNN.

No. Test image
(640 × 480)

Input image of CNN
(224 × 224) Position error (m) Orientation error (°)

PoseNet Our
method PoseNet Our

method PoseNet Our
method

1 0.42 0.22 23.2 17.4

2 0.64 0.40 22.9 16.3

	 To prove the effectiveness of the proposed algorithm in detail, we use the “Stairs” dataset
as an example. We present a comparative analysis of the proposed method with the PoseNet
algorithm. We conduct comparative experiments to verify the effectiveness of image cropping
in the proposed method. Two test images from the “Stairs” dataset are randomly selected (the
200th and 700th images) to present details, as shown in Table 3. The resolution of the test
image is 640 × 480, while the resolution of the CNN is 224 × 224. In Table 3, we show the
input images for PoseNet and our method. For PoseNet, the center cropping method is used;
however, the image similarity is utilized in our method to crop the input image. Therefore, the
input images of the CNN are slightly different. The regression poses are also given in the table.
It can be observed that our method improves accuracy significantly.
	 We carry out the comparative experiments in all the test images of “Stairs”, which has 1000
images. Pose regression is performed for each image by utilizing the above algorithms, and
the position and orientation errors are calculated. Figure 7 shows two histograms of the error
distribution on the test “Stairs” dataset. In the pose regression of 1000 images, for the proposed
algorithm, the ratio of position error less than 0.5 m is 73.2%, and the ratio of orientation error
less than 15° is 70.0%, while they are 42.3 and 42.9% for PoseNet, respectively. In terms of

(a) (b)

Fig. 7.	 (Color online) Error histograms of the proposed and PoseNet algorithms on the “Stairs” dataset. (a)
Position and (b) orientation errors.

Sensors and Materials, Vol. 32, No. 4 (2020)	 1257

larger error magnitude, the proposed algorithm has 3.5% position error greater than 1.0 m and
14.3% orientation error greater than 20°, while they are 10.4 and 25.1% for PoseNet, respectively.
Thus, the position and orientation errors of the proposed algorithm are concentrated in the range
of smaller errors, and the number of large errors is significantly reduced. To observe the details
clearly, all the results are shown in Figs. 8(a) and 8(b), which present the contrast in position and
orientation errors, respectively. It can be observed that the proposed algorithm achieves lower
errors in the pose estimation for most images and its error fluctuation is gentle. Moreover, the
maximum error is significantly reduced.
	 In addition, we carry out two actual experiments using an indoor mobile robot. Two indoor
environments, a floor and a room are selected. We control the robot attached with a Kinect
sensor to move around a floor and a room separately. RGB images are recorded and ORB-
SLAM2(34) is implemented to obtain the pose of each image. The 3D reconstruction and
trajectories are shown in Fig. 9. We consider two laps as training data and one lap as test data.

(a)

(b)

Fig. 8.	 (Color online) Comparison of the proposed and PoseNet algorithms on the “Stairs” dataset. (a) Position and (b)
orientation errors.

(a) (b)

Fig. 9.	 (Color online) Two actual relocalization experiments in a floor and a room, respectively. The training
trajectory is drawn in blue and the test trajectory is drawn in red. Experiments in (a) a floor and (b) a room.

1258	 Sensors and Materials, Vol. 32, No. 4 (2020)

Table 4
Comparative experiments with PoseNet in actual environments.

No. Scenes Train
frames

Test
frames

Position error (m) Orientation error (°)

PoseNet Our
method

Error
decrease(%) PoseNet Our

method
Error

decrease(%)
1 Room 3395 1548 0.42 0.21 -50.0 8.26 2.34 −71.7
2 Floor 5450 2655 1.65 0.57 -65.5 7.87 1.20 −84.8

Average 1.04 0.39 -57.7 8.07 1.77 −78.2

It can be clearly seen that the trajectories are not coincident. The same parameters are utilized
to train the model with the dataset. The PoseNet method is also trained for comparison. The
results are shown in Table 4. The average position error is reduced by 57.7% and the average
orientation error is reduced by 78.2%, which verifies the significant advantage of our proposed
algorithm.

4.	 Conclusions

	 In this study, we investigated the visual relocalization problem for a robot based on a CNN.
We proposed a novel image-similarity-based CNN algorithm in this paper. In addition, a
pipeline to select the most similar image for pose regression was presented. The effectiveness of
the algorithm was verified by experiments on both datasets and real environments. Compared
with PoseNet, the average position error was reduced by 25.2% and the average orientation error
was reduced by 9.4% on the datasets. The average errors were reduced by 57.7 and 78.2% in
real environments, respectively. As the pose regression does not consider the temporal change
of the robot pose, it suffers from temporal incoherence. In future work, continuous pose taking
into account temporal element will be regressed to improve accuracy.

Acknowledgments

	 This work was supported by the National Key Research and Development Program “Intelligent
Robot” Key Special Project (2018YFB1308900), the National Natural Science Foundation of
China (61673136), the Self-Planned Task of State Key Laboratory of Robotics and System (HIT)
(Nos. SKLRS201906B and SKLRS201715A), the Foundation for Innovative Research Groups
of the National Natural Science Foundation of China (No. 51521003), ST Engineering-NTU
Corporate Lab through the NRF corporate lab@university scheme, and the China Scholarship
Council (No. 201706120137).

References

	 1	 B. Glocker, J. Shotton, A. Criminisi, and S. Izadi: IEEE Trans. Visual Comput. Graphics 21 (2015) 571. https://
doi.org/10.1109/TVCG.2014.2360403

	 2	 R. Mur-Artal and J. D. Tardós: Int. Conf. Robotics and Automation (IEEE, 2014) 846. https://doi.org/10.1109/
ICRA.2014.6906953

	 3	 C. Yang, Y. Jiang, J. Na, Z. Li, L. Cheng, and C.-Y. Su: IEEE Trans. Fuzzy Syst. 27 (2019) 574. https://doi.
org/10.1109/TFUZZ.2018.2864940

	 4	 A. P. Gee and W. Mayol-Cuevas: Cuevas, 2012, pp. 1–11. https://doi.org/10.5244/C.26.113

https://doi.org/10.1109/TVCG.2014.2360403
https://doi.org/10.1109/TVCG.2014.2360403
https://doi.org/10.1109/ICRA.2014.6906953
https://doi.org/10.1109/ICRA.2014.6906953
https://doi.org/10.1109/TFUZZ.2018.2864940
https://doi.org/10.1109/TFUZZ.2018.2864940
https://doi.org/10.5244/C.26.113

Sensors and Materials, Vol. 32, No. 4 (2020)	 1259

	 5	 B. Glocker, S. Izadi, J. Shotton, and A. Criminisi: IEEE Int. Symp. Mixed and Augmented Reality (IEEE,
2013) 173. https://doi.org/10.1109/ISMAR.2013.6671777

	 6	 B. Williams, G. Klein, and I. Reid: IEEE Trans. Pattern Anal. Mach. Intell. 33 (2011) 1699. https://doi.
org/10.1109/TPAMI.2011.41

	 7	 R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos: IEEE Trans. Robot. 31 (2015) 1147. https://doi.org/10.1109/
TRO.2015.2463671

	 8	 C. Evers and P. A. Naylor: IEEE Trans. Signal Process. 66 (2018) 863. https://doi.org/10.1109/TSP.2017.2775590
	 9	 F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard: IEEE Trans. Robot. 30 (2014) 177. https://doi.

org/10.1109/TRO.2013.2279412
	10	 J. Shotton, B. Glocker, C. Zach, S. Izadi, and A. Fitzgibbon: IEEE Conf. Computer Vision and Pattern

Recognition (IEEE, 2013) 2930. https://doi.org/10.1109/CVPR.2013.377
	11	 J. Valentin, M. Niebner, J. Shotton, A. W. Fitzgibbon, S. Izadi, and P. H. S. Torr: IEEE Conf. Computer Vision

and Pattern Recognition (IEEE, 2015) 4400. https://doi.org/10.1109/CVPR.2015.7299069
	12	 K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun: IEEE Conf. Computer Vision and Pattern Recognition (IEEE,

2016) 770. https://doi.org/10.1109/CVPR.2016.90
	13	 C. H. Lin, C. W. Liu, and H. Y. Chen: IET Image Process. 6 (2012) 822. https://doi.org/10.1049/iet-

ipr.2011.0445
	14	 A. Amanatiadis, V. G. Kaburlasos, A. Gasteratos, and S. E. Papadakis: IET Image Process. 5 (2011) 493.

https://doi.org/10.1049/iet-ipr.2009.0246
	15	 J. Yang, J. Liang, H. Shen, K. Wang, P. L. Rosin, and M. H. Yang: IEEE Trans. Image Process. 27 (2018) 5288.

https://doi.org/10.1109/TIP. 2018.2845136
	16	 P. Liu, J. Guo, C. Wu, and D. Cai: IEEE Trans. Image Process. 26 (2017) 5706. https://doi.org/10.1109/

TIP.2017.2736343
	17	 Z. Liu, X. Li, P. Luo, C. Change Loy, and X. Tang: IEEE Trans. Pattern Anal. Mach. Intell. 40 (2018) 1814.

https://doi.org/10.1109/TPAMI. 2017.2737535
	18	 G. Pagnutti, L. Minto, and P. Zanuttigh: IET Comput. Vis. 11 (2017) 633. https://doi.org/10.1049/iet-

cvi.2016.0502
	19	 W. Su and Z. Wang: IET Image Process. 11 (2017) 880. https://doi.org/10.1049/iet-ipr.2017.0070
	20	 C. Yang, Z. Wang, W. He, and Z. Li: Multimed Tools Appl. 77 (2018) 25369. https://doi.org/10.1007/s11042-

018-5789-8
	21	 C. Yang, C. Chen, N. Wang, Z. Ju, J. Fu, and M. Wang: IEEE T. Cogn. Dev. Syst. 11 (2019) 281. https://doi.

org/10.1109/TCDS.2018.2866477
	22	 C. Yang, G. Peng, Y. Li, R. Cui, L. Cheng, and Z. Li: IEEE Trans. Cybern. 49 (2018) 2568. https://doi.

org/10.1109/TCYB.2018.2828654
	23	 A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia: IEEE Trans. Multimedia 17 (2015) 1949. https://doi.org/10.1109/

TMM.2015.2477680
	24	 A. Kendall and R. Cipolla: IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2017) 6555. https://

doi.org/10.1109/CVPR.2017.694
	25	 A. Kendall, M. Grimes, and R. Cipolla: IEEE Int. Conf. Computer Vision (IEEE, 2015) 2938. https://doi.

org/10.1109/ICCV.2015.336
	26	 C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich: IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2015) 1. https://doi.org/10.1109/
CVPR.2015.7298594

	27	 A. Kendall and R. Cipolla: Int. Conf. Robotics and Automation (IEEE, 2016) 4762. https://doi.org/10.1109/
ICRA.2016.7487679

	28	 I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu: IEEE Int. Conf. Computer Vision Workshops (IEEE, 2017)
870. https://doi.org/10.1109/ICCVW.2017.107

	29	 T. V. Phan and M. Nakagawa: Int. Conf. Frontiers in Handwriting Recognition (IEEE, 2014) 23. https://doi.
org/10.1109/ICFHR.2014.12

	30	 P. Xu and R. Sarikaya: IEEE Int. Conf. Acoustics, Speech and Signal Processing (IEEE, 2014) 136. https://doi.
org/10.1109/ICASSP.2014.6853573

	31	 R. Clark, S. Wang, A. Markham, N. Trigoni and H. Wen: IEEE Conf. Computer Vision and Pattern
Recognition (IEEE, 2017) 2652. https://doi.org/10.1109/CVPR.2017.284

	32	 D. Galvez-López and J. D. Tardos: IEEE Trans. Robot. 28 (2012) 1188. https://doi.org/10.1109/tro.2012.2197158
	33	 M. M. Farhangi, M. Soryani, and M. Fathy: IET Image Process. 8 (2014) 310. https://doi.org/10.1049/iet-

ipr.2013.0449
	34	 R. Mur-Artal and J. D. Tardos: IEEE Trans. Robot. 33 (2017) 1255. https://doi.org/10.1109/TRO.2017.2705103

https://doi.org/10.1109/ISMAR.2013.6671777
https://doi.org/10.1109/TPAMI.2011.41
https://doi.org/10.1109/TPAMI.2011.41
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TSP.2017.2775590
https://doi.org/10.1109/TRO.2013.2279412
https://doi.org/10.1109/TRO.2013.2279412
https://doi.org/10.1109/CVPR.2013.377
https://doi.org/10.1109/CVPR.2015.7299069
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1049/iet-ipr.2011.0445
https://doi.org/10.1049/iet-ipr.2011.0445
https://doi.org/10.1049/iet-ipr.2009.0246
https://doi.org/10.1109/TIP
https://doi.org/10.1109/TIP.2017.2736343
https://doi.org/10.1109/TIP.2017.2736343
https://doi.org/10.1109/TPAMI
https://doi.org/10.1049/iet-cvi.2016.0502
https://doi.org/10.1049/iet-cvi.2016.0502
https://doi.org/10.1049/iet-ipr.2017.0070
https://doi.org/10.1007/s11042-018-5789-8
https://doi.org/10.1007/s11042-018-5789-8
https://doi.org/10.1109/TCDS.2018.2866477
https://doi.org/10.1109/TCDS.2018.2866477
https://doi.org/10.1109/TCYB.2018.2828654
https://doi.org/10.1109/TCYB.2018.2828654
https://doi.org/10.1109/TMM.2015.2477680
https://doi.org/10.1109/TMM.2015.2477680
https://doi.org/10.1109/CVPR.2017.694
https://doi.org/10.1109/CVPR.2017.694
https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICRA.2016.7487679
https://doi.org/10.1109/ICRA.2016.7487679
https://doi.org/10.1109/ICCVW.2017.107
https://doi.org/10.1109/ICFHR.2014.12
https://doi.org/10.1109/ICFHR.2014.12
https://doi.org/10.1109/ICASSP.2014.6853573
https://doi.org/10.1109/ICASSP.2014.6853573
https://doi.org/10.1109/CVPR.2017.284
https://doi.org/10.1109/tro.2012.2197158
https://doi.org/10.1049/iet-ipr.2013.0449
https://doi.org/10.1049/iet-ipr.2013.0449
https://doi.org/10.1109/TRO.2017.2705103

