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 In this paper, we present an emotion recognition framework based on a recurrent neural 
network with parametric bias (RNNPB) to classify six basic emotions of humans (joy, pride, 
fear, anger, sadness, and neutral).  To capture the expression to recognize emotions, human joint 
coordinates, angles, and angular velocities are fused in the process of signal preprocessing.  A 
wearable Myo armband and a Kinect sensor are used to collect human joint angular velocities 
and angles, respectively.  Thus, a combined structure of various modalities of subconscious 
behaviors is presented to improve the classification performance of RNNPB.  To this end, two 
comparative experiments were performed to demonstrate that the performance with the fused 
data outperforms that of the single modality sensor data from one person.  To investigate the 
robustness of the proposed framework, we further carried out another experiment with the 
fused data from several people.  Six types of emotions can be basically classified using the 
RNNPB framework according to the recognition results.  These experimental results verified 
the effectiveness of our proposed framework.

1. Introduction

 Emotions have an important effect on a person’s daily life.  It is crucial to read emotions 
accurately and effectively from other people to avoid misunderstanding in interpersonal 
interactions.  The ability of perceiving, understanding, and handling of one’s own and others’ 
emotions can be regarded as an expression of emotional intelligence.(1)  It is one of the important 
abilities for individual survival.  Moreover, available studies have shown that the skills of 
emotional intelligence  have a high correlation with our mental health.(2)  Emotion recognition 
using computing techniques has attracted increasing attention in recent years.  The applications 
of emotion recognition, such as human–robot interaction (HRI), autonomous driving vehicles, 
intelligent surveillance systems, and entertainment, are very popular in our lives.(3–8)  For an 
intelligent robot, endowing it with the ability of emotion recognition and cognition is very 
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helpful for detecting and identifying human emotional states, reasoning, making decisions, 
and reacting to human expressions appropriately in HRI.  For example, the capability of 
understanding unspoken intentions or feelings exactly through autistic children’s physical 
behavior can help a robot grasp their mental status and adjust the topic timely as needed in the 
interactive communication process.(9) 
 As a complicated mental state, emotions often result in physical and psychological changes.  
These changes are associated with many internal and external activities.  The internal activities 
include electroencephalogram (EEG), electrocardiograph (ECG), and electromyography (EMG) 
signals.  The external activities involve body languages that are affected, mediated, and even 
regulated by emotions.  In fact, body language, especially sensorimotor behavior, is usually 
subconscious; thus, it is rarely deceptive.  Therefore, sensorimotor behaviors can be used to 
distinguish different emotions.  
 Various types of features have been utilized to recognize emotion successfully by different 
modeling methods for these features.  These features include human facial expression, text, 
voice intonation, and some physiological signals, such as EEG and electrooculography (EOG).  
From these cues, one of the most popular features is facial expression.  A number of emotion 
classification methods based on facial expression have been studied.(10–13)  The commonality 
of these methods is that the features usually are appearance features, geometric features, or a 
hybrid of appearance and geometric features of the target face.  For the appearance features, 
the information that describes the texture of the face is often extracted from different face or 
global face regions.(10,11)  The geometric features are usually constructed as a feature vector by 
using the relationship between different facial components.(12)  As for the hybrid features, the 
authors combined the advantages of appearance and geometric features to provide better results 
in certain cases.(12,13)

 Although numerous studies mainly focus on facial expressions, there is increasing attention 
on other channels such as EEG, voice, and text.(14,15)  Some advanced approaches have also 
been explored and developed to prove that multimodal information outperforms a single 
modality in recognition results.(16)  However, most of the previous studies concentrated on 
supervised methods to recognize emotion using labeled datasets, and few studies focused on 
unsupervised methods by using human behaviors from ordinary users.  As with any supervised 
learning problem, once we pick a model to classify emotions, it is difficult to obtain a labeled 
and sufficiently large training set.  First, collecting emotion data and tagging those huge data 
are very troublesome and time-consuming.  Second, we have to take someone’s true emotion 
into account to evaluate the effectiveness of the data.  Since videos or other signals do not 
always generate corresponding emotions for the user, nobody is sure whether the features 
are sufficiently reliable before feeding into algorithms.  Aside from that, there is still another 
problem, that is, the interface of the device is often unfriendly and inconvenient to acquire 
data.  To address the problem of tagging huge data, an unsupervised method with generalization 
ability is a promising solution.  The wearable devices that are easy to use for ordinary users 
provide an alternative way to collect and train the data in our daily life.  Hence, a possible 
solution to address these problems is using the unsupervised method to recognize emotion with 
more believable emotion features collected by a wearable device.
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 The wearable devices are usually used to capture sensorimotor behaviors, particularly 
human joint movements.  Human joints from sensorimotor behaviors have been reported to be 
one of the critical features of emotion.(17)  In our previous study, we applied the continuous joint 
coordinates from human nonverbal behavior to classify five emotions (joy, pride, fear, anger, 
and sadness) using unsupervised methods.(18)  However, we captured behavior using only the 
Kinect sensor, which does not consider the advantages of the wearable device and multimodal 
data fusion.  Many studies have shown that multimodal information can improve recognition 
performance.(19)  It is also an interesting challenge to merge different modalities of information 
together and apply data fusion technologies to achieve the purpose of understanding emotions.  
On the other hand, most researchers have concentrated on integrating auditory and visual 
modalities to recognize emotion.(20)  In contrast, a few research efforts have centered around 
human joints in multimodal emotion recognition, such as human joint angles and joint angular 
velocity.  Compared with physiological signals and videos, different modalities of information 
of the joint convey more abundant and essential cues of human emotional states.
 In this paper, to integrate the spatial and continuous temporal features of human joints, we 
present an unsupervised framework called the recurrent neural network (RNN) with parametric 
bias (RNNPB) to perceive six emotions (joy, pride, fear, anger, sadness, and neutral).  The 
Kinect sensor was used to obtain joint coordinates and angles, and the Myo armband was used 
to collect the joint angular velocity.  The main contributions of this paper are summarized as 
follows.  
(1) Compared with other emotion recognition methods, multimodality signals using Kinect and 

Myo armbands are employed to achieve an easy and fast deployment of the sensors.  We 
also demonstrate that using these two sensors leads to more accurate results in our learning 
framework.

(2) Human emotions are recognized by bodily behaviors using an unsupervised framework.  
This framework can overcome the disadvantages of usual supervised emotion recognition 
methods that need a large number of labeled training data.

(3) Because of the generalization ability of the proposed framework, six untrained emotional 
behaviors (joy, pride, fear, anger, sadness, and neutral) collected from different people are 
well classified.

2. Preliminary

 In this section, we first introduce the framework of the proposed method.  Some relevant 
devices for acquiring data are also described in detail.

2.1 General overview

 The framework of emotion recognition by RNNPB is presented in Fig. 1.  A Kinect sensor 
and a Myo armband were used to capture different modalities of human behaviors.  Joint 
coordinates, angles, and angular velocities of human behaviors were simultaneously collected 
while people were presenting certain actions in the process of data collection.
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2.2 Kinect sensor

 The Kinect for Windows v2 sensor (Kinect V2) was used in our work.  It contains three 
vital pieces: an RGB color camera, an IR emitter, and a 3D depth sensor to provide color, IR, 
and depth images, as shown in Fig. 2(a).  With these devices, the Kinect sensor can track up to 
human skeletons, capture full-body 3D motion, and recognize simple gestures.  Compared with 
Kinect V1, Kinect V2 can track 25 body joints.  In this paper, Kinect V2 was used to collect 3D 
joint coordinates and angles of human behaviors.

2.3 Wearable device (Myo armband)

 The Myo armband [Fig. 2(b)] is a body-wearable and portable device produced by Thalmic 
Labs.  It is a lightweight elastic armband consisting of a number of metal contacts.  These metal 
contacts can measure electrical activity in a user’s forearm muscle to transmit gestures that he/
she makes with his/her hands to a control computer via Bluetooth.  Therefore, the Myo armband 

Fig. 1. (Color online) Framework of our proposed method.

Fig. 2. (Color online) (a) Kinect V2 sensor and (b) Myo armband.

(a) (b)
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allows the user to control his/her cell phones, computers, and other favorite digital technologies 
wirelessly with hand gestures and motions by reading the electrical activity of muscles and the 
motion of the arm.  Hand gestures and motions are detected by proprietary EMG muscle sensors 
and a highly sensitive motion sensor separately.  The Myo armband is used to capture the joint 
angular velocity of the human arm.  

3. Data Collection

 In this section, the specific process of data collection will be described; this process includes 
joint coordinates, human upper body joint angles, and joint angular velocities from emotion-
aroused human body behavior.  Since the Kinect sensor can capture human joint coordinates 
directly, the details on how to acquire the joint coordinates of a human body will not be 
introduced.

3.1 Joint angles captured by Kinect sensor

 The Kinect sensor can track up to six people’s whole skeletons within its view at one time.  
Each skeleton has 25 joints.  These joints are numbered 0–24 [Fig. 3(a)].  Through the RGB 
camera and depth sensor of Kinect, we can acquire the 3D coordinates of each joint for an 
object human body.  As shown in Fig. 3(b), skeletons can be tracked regardless of whether the 
object human body is standing or sitting.  Note that the Kinect sensor treats joints as one person 
is looking in the mirror.  Thus, the “left side” human body joints are on the left in Fig. 3 and the 
“right side” human body joints are on the right.  
 Once we obtain the 3D coordinates of the human joints, the joint angles can be calculated 
by the space vector approach.  Assuming that there are two points 0 0 0( ,  ,  )P x y z=  and 

Fig. 3. (Color online) (a) 25 human joints and (b) human body skeleton captured by Kinect sensor.

(a) (b)
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1 1 1( ,  ,  )Q x y z=  in 3D space, the distance between these two points can be calculated as

 2 2 2
1 0 1 0 1 0( ) ( ) ( ) ,PQd PQ x x y y z z= = − + − + −



 (1)

where vector 1 0 1 0 1 0( ,  ,  )PQ x x y y z z= − − −


 and dPQ is the distance between the points P and Q.  
Using the law of cosines, the angle between two vectors can be calculated easily.(21)  Similarly, 
the angle between two joints can be obtained by applying the same method.  In the Kinect 
coordination, a joint can be regarded as a vector.  Assume that joint 1 is expressed as OA



 and 

joint 2 is expressed as OB


; then, the angle between these two joints can be computed as

 cos AOB cos( , ) OA OBOA OB
OA OB

⋅
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⋅

 

 

 
. (2)

 According to Eq. (1), the coordinates obtained by the Kinect sensor can be converted to 
vectors and the corresponding angles can be calculated using Eq. (2).
 In this work, only the upper human body joint angles consisting of left and right arms joint 
angles were collected.  Since each arm has seven degrees of freedoms (DoFs), 14 joint angles 
were captured in total, which include the shoulder pitch angle, shoulder roll angle, shoulder yaw 
angle, elbow pitch angle, elbow roll angle, wrist pitch angle, and wrist yaw angle for both left 
and right arms.  Figure 4 shows the specific angle calculation process of a left arm based on the 
space vector approach.  The black dotted lines OX, OY, and OZ are the Kinect’s 3D coordinate 
system in Cartesian space, and the red dotted lines are auxiliary lines.  The shoulder pitch 
angle CDE∠COD was computed using Eq. (2) from the vector CO



 to CD


, and the points C, O, and 
D denote the left shoulder, left hip, and left elbow, respectively.  The same method was utilized 

Fig. 4. (Color online) Human joint angles of left arm calculation.
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to calculate the elbow pitch angle CDE∠CDE and wrist pitch.  Similarly to the shoulder pitch, the 
shoulder yaw angle CDE∠JOK can be computed by applying the three points B, C, and D, which 
represent the right shoulder, left shoulder, and left elbow, respectively.  In Fig. 4, the vectors OK



 

and OJ


 with the red dotted line are the mapping results of the vectors CB


 and CD


 in the plane 
XZ, and are separately parallel to CB



 and CD


.  Therefore, the wrist yaw angle can be calculated 
by the same method.  The elbow roll angle can be obtained by computing the angle of two 
planes between CDE and DEF by the same method.  Among the auxiliary lines, DL



 and CM


 

are respectively vertical to the vectors DE


 and CD


, and the vector CN


 is parallel to DL


.  Then, 
the angle CDE∠MCN between the vectors CN



 and CM


 is defined as the shoulder roll, which can be 
calculated by a similar calculation method.
 The corresponding angles of the right arm were computed in the same way.  Thus, the 
angles of human body behaviors were acquired and these angles were fed into the unsupervised 
algorithm together with other modality data to perceive human emotions.  

3.2 Joint angular velocity collection by Myo armband

 To obtain the joint angular velocity, human subjects need to wear two Myo armbands for 
each arm.  One of the Myo armbands is worn near the center of the forearm and the other one is 
worn near the center of the upper arm.  The Myo armband uses quaternions to obtain the joint 
angle and then collects the joint angular velocity by computing the basic change in joint angle.  
According to Yang et al., if the relevant joint angles are zero, any position of the human arm can 
be regarded as the initial position.(21)  When the human arm is moved to a new position U, the 
corresponding angle from the initial position to pose U is the rotation angle, namely, the joint 
angle.  
 We assume that the initial orientation of the Myo armband is denoted by frame (Xl1, Yl1, Zl1), 
and that the current orientation of the Myo armband is denoted by frame (Xl2, Yl2, Zl2).  Then, 
the angular velocities of the shoulder pitch vlx, shoulder roll vly, and shoulder yaw vlz can be 
obtained by the Myo armband worn on the left upper arm.  The angular velocities of the elbow 
pitch vl2x and elbow roll vl2y were acquired by the Myo armband worn on the left forearm.  
Then, five joint angular velocities of the right arm, vlx, vly, vlz, vl2x, and vl2y, can be acquired in 
the same way.  Ten joint angular velocities for human arms were taken from the Myo armband 
in total.
 Before collecting data, the participants were required to stand in front of the Kinect sensor 
wearing two Myo armbands for each arm.  After that, the training data was captured by the 
devices with two computers while the participants were showing emotional behaviors.  One was 
used to obtain the joint coordinates and angles; the other was used to obtain the joint angular 
velocities of the left and right arms separately.  For each emotion, two sequences were collected 
from one person.  The data collection experiments included four healthy participants aged 
between 22 and 30 years (two females and two males).  The participants were asked to perform 
six types of emotion-aroused behaviors in our experiments.  There were 48 sequences from four 
participants in total.
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4. Methods

4.1 Preprocessing

 Each joint data obtained from the Kinect sensor has eleven properties: color coordinates (X, Y), 
depth coordinates (X, Y), camera coordinates (X, Y, Z), and orientation coordinates (X, Y, Z, W).  
The Kinect’s camera coordinates use the Kinect’s infrared sensor to find the 3D points of the 
joints in space, and the camera space refers to the 3D coordinate system used by the Kinect.  In 
this paper, we focused on the camera coordinates, which are needed to obtain 3D coordinate 
data.  Nine joint coordinates (head, neck, torso, right shoulder, left shoulder, right elbow, left 
elbow, right hand, and left hand) from the human upper body were collected since they are 
significant for emotion.  In other words, the dimensions of joint coordinates were 27.
 As mentioned above, there are 24 features from human arms, which include 14 joint angles 
and 10 joint angular velocities.  For modality fusion, the feature-level fusion was employed 
to concatenate three types of feature vectors into a larger feature vector.  The total number of 
dimensions of emotion-aroused human behaviors was 51.

4.2 Unsupervised emotion recognition methods

 RNNPB, as an unsupervised learning method, was employed to learn multimodal 
sensorimotor behaviors and classify human emotions by the corresponding spatiotemporal 
sequences.(22,23)  RNNPB is substantially a RNN of the Jordan or Elman type.  Here, the 
Elman-type RNN architecture was used.(24)

 Figure 5 shows the structure of unsupervised RNNPB of the Elman type.(23)  This RNNPB 
consists of five types of layers: input layer, hidden layer, parametric bias units (PB layer), 
context layer, and output layer.  The input of hidden layers (yh) includes three parts; the details 
are expressed as

Fig. 5. (Color online) Structure of RNNPB in this paper.
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 ( ) ( ) ( 1) ( )h i hi h hc n hp
i c n

y k g k w g k w PB k w= + − +∑ ∑ ∑ ,  (3)

where k is the time step, and k is omitted to avoid agitation if the parameters express the states 
from the same time step in one expression.  whi is the weight between the hidden layer and 
the input layer, whp is the weight between the PB layer and the hidden layer,  and the weight 
connecting the hidden layer with the context layer is denoted as whc.  gi(k) is the activation 
function, and the subscripts i and h are related to the parameters of the input and hidden layers.  
PBn(k) depicts the activation function of the PB layer.  
 Figure 5 clearly shows that the PB layer is connected with hidden layers.  The internal values 
of the PB layer are adjustable.  Also, the PB layer endows the network with generalization 
ability.  Most importantly, the trained values of the PB layer could be applied to recognize 
multiple sequences such as emotional behaviors.  The internal values of the additional PB layer 
are learned unsupervised and updated through back-propagation in a self-organized manner.  
Also, the weights of this network are updated with backpropagation through time (BPTT).  The 
internal values of the PB layer at the time step k of the i-th time series are updated as

 ,
1

( 1) ( )i i

T
PB
i k

k
ie eρ γ δρ
=

+ = + ∑ , (4)

where the epoch e represents an entire forward-backward training cycle, ρi(e) is the output of PB 
layers, ,

PB
i kδ  is the backpropagation error of the PB layer at the time step k, and T is the length of 

each time series.  γi is the update rate of the PB layer, and the relationship between γi and ,
PB
i kδ  is 

formalized as

 ,
1

1 T
PB
i k

k
i T
γ δ

=
= ∑ . (5)

 The cost function during training is determined by

 2( ( 1) ) )1
2

(
T N

i i
k i

d oJ g k g k= + −∑∑ , (6)

where ( 1)d
ig k +  is the desired output, ( )o

ig k  is the actual output, and N is the size of the 
output layer.  The weights in the network obey the gradient descent and will be updated by the 
following equation:

 ( )ij
ij

ij
Jw e

w
γ ∂

∆ = −
∂

. (7)

 The learning rate of weights (γij) is adjusted using the partial derivative of wij after every 
epoch.  The partial derivative of wij can be positive or negative, which means that the sign is 
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changing.  The change in sign is determined by

 ( 1) ( )ij
ij ij

J Je e
w w

ε ∂ ∂
= −
∂ ∂

. (8)

 If εij > 0, the learning rate has to be increased by a factor, which is greater than one, to speed 
up convergence, and vice versa.  The update of the learning rate can be expressed as

 

max( ( 1) , ) if 0,

( ) min( ( 1) , ) if 0,

( 1) else.

γ ζ γ ε

γ γ ζ γ ε

γ

−

+

 − ⋅ >
= − ⋅ <
 −

ij min ij

ij ij max ij

ij

e

e e

e
 (9)

Here, ζ − and ζ + represent the changing rate of γij, and ζ − < 1 is the decreasing rate, ζ + > 1 is 
the increasing rate, and γmin and γmax are the minimum and maximum values of γij, respectively.  
 The sigmoid function proposed in Ref. 25 is used for all neurons in RNNPB, as well as for 
the transfer function in the PB layer:

   2sigmoid( ) tanh ,  1.7159
3

x a x a = ⋅ = 
 

,  (10)

 2sigmoid ( )
3k kPB eρ =  

 
,  (11)

where x denotes the input vector to the neurons in the hidden and output layers.
 The RNNPB model is used to classify human emotions without the labeled datasets.  For 
this method, the values of PB units indicate the corresponding emotions of datasets.  Different 
sequences with the same emotion will result in similar PB values based on the method.  Thus, 
human emotions are recognized in an unsupervised way.  Because of the additional PB layer, 
the RNNPB model is endowed with generalization ability to untrained datasets.  This means 
that although few samples are trained, a relatively stable recognition result will be obtained.  
Before the fused data is fed into the network, normalization is needed for the input features 
to enhance the accuracy and convergence speed of the model.  The values of the normalized 
datasets range from zero to one.  The multimodal RNNPB model is implemented in Python 
language.  

5. Experiments

 Motivated by our previous work,(17) we performed three experiments to recognize six 
human emotions and compare the clustering performance in different cases.  The details will be 
introduced as follows.
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5.1 Experimental setup

 The experiments were performed with the same parameters for RNNPB to learn the 
spatiotemporal sequences of human behaviors.  The parameters are shown in Table 1.  
 Except for the above parameters, the sizes of the input and output layers are not listed.  
The sizes of these two parameters are both equal to the dimensions of input data.  Since the 
dimensions of the input data for each experiment are different, the sizes of the input and output 
layers are different.  

5.2 Experimental results

 Three experiments were implemented to explore how the different modality sensor data 
affect emotion recognition results.  Three types of data sets were fed into RNNPB for training.  
In the first experiment, 12 sequences with 41 dimensions (two sequences for each emotion) 
that include the joint coordinates and angles were provided as the input of the network.  For the 
second experiment, the same type of emotion data was used to recognize emotion with the same 
parameters for the network.  Different from the first experiment, the dimensions of the input 
data were 51 and the additional 10 dimensions are human joint angular velocities including 
those of both the left and right arms.  Note that all the training data sets regarding the first and 
second experiments were captured from one person.  With respect to the third experiment, 24 
sequences (four sequences for each emotion) expressing six emotions were trained to classify 
emotions.  The data structure was the same as in the second experiment.  However, the data sets 
were collected from four different people.  Since the previous experiment was conducted using 
the single modal data (coordinates) based on RNNPB, only the results between the merging of 
information (joint coordinate and angle) and the fusion of different multimodal sensor data (data 
collected from the Kinect sensor and Myo armband) were compared in this paper.(16,17)

 The PB values of the first and second experiments are shown in Figs. 6 and 7, respectively, 
and the corresponding results of the third experiment are presented in Fig. 8.  The same shapes 
of the markers express the same motion, and the markers with different colors and the same 
shapes imply different sequences for one emotion in Figs. 6–8.  The annotations of “angry1”, 
“angry2”, “angry3”, and “angry4” express different sequences for angry emotions in Figs. 

Table 1
RNNPB parameters.

Parameter Description Value
H Size of hidden layer 40
C Size of context layer 40
P Size of PB layer 2
γn Learning rate of BPTT 0.001
γi Learning rate of PB layer 0.2
ζ − Decreasing learning rate of γn 0.99999
ζ + Increasing learning rate of γn 1.00001
γmin Upper bound of γk 1 × 10−4

γmax Lower bound of γk 1 × 10−8
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6–8.  The annotations of the other four emotions are the same as those of angry emotions.  
Figures 9–11 show the root–mean–square error (RMSE) curves of the training process in 200 
consecutive epochs (200 iterations for each epoch).  For the RMSE curves, the same emotion is 
depicted by the same color with different shapes.  Figures 9(a)–11(a) show the RMSE curve of 
the first epoch, and Figs. 9(b)–11(b) show the mean RMSE values of 200 epochs.  In Figs. 9–11, 
the RMSE values are computed using the following equation:

 ( ) 2( , ) ( ( ) ( )1  )
m

i

iRMSE x h h x y i
m

= −∑ , (12)

Fig. 6. (Color onl ine) PB values of the f i rst 
experiment in PB space.

Fig. 8. (Color online) PB values of the third experiment in PB space.

Fig. 7. (Color online) PB values of the second 
experiment in PB space.
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Fig. 9. (Color online) (a) RMSE curve of epoch one and (b) mean values of RMSE curve of 200 epochs in the first 
experiment.

Fig. 10. (Color online) (a) RMSE curve of epoch one and (b) mean values of RMSE curve of 200 epochs in the 
second experiment.

(a) (b)

(a) (b)

Fig. 11. (Color online) (a) RMSE curve of epoch one and (b) mean values of RMSE curve of 200 epochs in the 
third experiment.

(a) (b)
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where m is the total number of samples, h(x(i)) is the predicted value of the i-th sample, and y(i) 
is the actual value of the i-th sample.

5.3 Analysis of experimental results

 According to the experimental results, it is not difficult to find that the PB values 
corresponding to the same emotions are clustered together, and the RMSE is convergent to 
a small certain value.  To investigate how the results vary with different modality data, the 
recognition performance characteristics of the first and second experiments were evaluated on 
the basis of the above results.
 The emotion recognition performance was assessed from two perspectives.  The first is the 
distance of PB values corresponding to different emotions.  The quantitative confusion matrices 
are given in Figs. 12 and 13, which present the distance among various PB values in the PB 
space to evaluate the clustering results of the first and second experiments.  Since the PB value 
in the PB space is a point, the distance between two PB values can be computed using Eq. (1).  
The distance of the PB values includes the intraclass distance dw, interclass distance db, and 
relative distance dr.  dr is calculated using the maximum db divided by the average of dw.  The 
intraclass distance reflects the aggregation level of the same class, and the interclass distance 
reveals the scattered level of different classes.  The relative distance expresses the relationship 
between the intraclass and interclass distances.  These distances ref lect the clustering 
performance to some extent.  In general, the desired clustering result is that dw is small, and db 
and dr are large.  The second point is the convergence speed and eventual values of RMSE.  The 
detailed analyses and comparisons will be discussed with respect to these two points.
 Firstly, the specific distances of PB values are listed in Table 2 by observing Figs. 12 and 
13.  For the first experiment, it is clear that there is a large interclass distance among different 

Fig. 13. (Color online) Distance matrices between 
different emotions for the second experiment.

Fig. 12. (Color online) Distance matrices between 
different emotions for the first experiment.
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emotions and a large intraclass distance from the same emotion (Fig. 6).  As for the second 
experiment, the results in Fig. 7 clearly show that the intraclass and interclass distances are 
both smaller than those in the first experiment.  However, the relative distance between the 
dw and db of the second experiment is larger than that of the first one.  Combining Fig. 7 and 
Table 2, we can conclude that the emotion recognition result of the second experiment is better.  
This implies that the joint angular velocity is useful for distinguishing different emotions and 
facilitating a smaller distance of the same class.  In other words, the joint angular velocity may 
provide complementary information of emotions.  Then, the convergence speed and the mean 
RMSE values of 200 epochs are compared by observing Figs. 9 and 10.  We often expect a 
higher convergence speed and a smaller RMSE.  In comparison with the first experiment, the 
convergence speed is much higher and the RMSE is slightly smaller than those in the second 
experiment.  To sum up, the recognition results of the fused data from the multimodal sensor 
reveal a better performance than those of the single modal sensor data.
 The first and second experiments merely classified six emotions from one person.  
Therefore, the third experiment was performed to investigate the effectiveness and stability 
of our proposed framework.  Figure 8 shows the recognition results.  The results imply that 
the RNNPB framework can basically classify six emotions from different people.  Since there 
are differences in the behavioral expressions of different people to react to the same emotion, 
the classification results are slightly inferior to those of the first or second experiment.  The 
expressions of sensorimotor behaviors are regulated by the internal emotion states;(16) there 
are also some common critical features for the same emotion of different people.  This can be 
proved by the classification results.  According to Figs. 6–8, we can find that the results of sad 
and neutral emotions are better than those of other emotions.  That is probably because the 
external behavior and internal state of two emotions are both very similar.

6. Conclusions

 In this paper, an unsupervised RNNPB framework was proposed to classify human emotions 
using multimodal sensor fused data.  Multimodal data were the spatiotemporal sequences 
of emotional human behaviors, which were collected by a wearable Myo armband and a 
Kinect sensor containing human joint coordinates, angles, and angular velocities.  Then, three 
experiments were performed to explore how multimodal data affect the emotion recognition 
results and to evaluate the stability of the RNNPB framework.  The experimental results showed 
that multimodal fused data can markedly increase the relative distance between intraclass and 
interclass, and decrease the intraclass distance and RMSE compared with the single modal 

Table 2
Distances of PB values in PB space for the first two experiments.
Description First experiment Second experiment
Average intraclass distance 0.048 0.0092
Largest interclass distance 1.4045 0.32
Relative distance between interclass and intraclass 29.26 34.78
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sensor data.  The qualitative and quantitative analysis and evaluation results demonstrated 
the effectiveness of our proposed RNNPB framework.  Moreover, these experimental results 
also indicated that signals from different modalities provide complementary information, and 
that the multimodal information can be integrated to enhance the robustness of the emotion 
recognition system compared with a single modal framework.
 In the future, we will combine visual information (facial expression), auditory information 
(voice), and human behaviors to construct a more robust and effective emotion recognition 
system to enhance the clustering performance.  
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