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	 The lower exoskeleton system has attracted considerable interest in walking assistance 
of paraplegic patients.  A critical issue in the walking assistance lower exoskeleton is how to 
generate gait motions for paraplegic patients.  Predefined gait trajectory planning methods are 
widely used owing to their simplicity and effectiveness.  However, a predefined gait trajectory 
planning method has three main drawbacks: (1) it requires a different gait model for different 
patients, (2) it cannot adapt to different terrains, such as slopes and stairs, (3) it does not 
consider the stability of the human exoskeleton system.  In this study, we modeled the walking 
assistance lower exoskeleton with paraplegic patients as a human exoskeleton hybrid agent (HEHA).  
On the basis of the HEHA model, an adaptive gait planning method with dynamic movement 
primitives is proposed; in this method, the center of mass of HEHA is considered to ensure 
the stability of the human exoskeleton system.  To adapt different pilots in slope scenarios, 
the reinforcement learning method is employed to update the parameters of the proposed 
gait model.  The experimental results in both the simulation environment and the real-time 
exoskeleton system show that the proposed gait planning method makes the human exoskeleton 
system more stable in uphill slope scenarios.  

1.	 Introduction

	 Lower limb exoskeletons have been widely used among strength augmentation, walking 
assistance, and rehabilitation-related scenarios.  In walking assistance scenarios, lower limb 
exoskeletons are built for patients whose lower limbs are disabled, such as paraplegic patients.  
The purpose of these lower limb exoskeletons is to assist paraplegic patients in performing 
their daily activities.  In the research on lower limb exoskeletons with paraplegic patients, a 
critical issue is how to rebuild the gait of the human exoskeleton system, especially for different 
patients in complex environments.  For most lower limb exoskeleton systems for paraplegic 
patients, predefined gait trajectories, such as Rewalk,(1–3) Ekso,(4–7) and ATLAS, are employed.(8)  
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In the predefined gait planning method, reference gait trajectories should be trained in different 
tasks and environments.  For example, the lower exoskeleton should have different reference 
gait trajectories on different stairs and slopes.  Moreover, the predefined gait planning method 
cannot adapt to different pilots.(9,10)  In the hybrid assistive limb (HAL) system,(11–16) the 
myoelectric signal of the pilot’s upper limb is employed to generate gait trajectories of the lower 
limb exoskeleton, which aim to adapt different pilots.  In the proposed gait planning method in 
the HAL system, gait trajectories are generated on the basis of fusing the pilot’s myoelectric 
signal, joint states, and plantar sensory information.  However, in scenarios with complex 
terrains, this method is difficult to implement since the gait of the lower limb exoskeleton is 
related to the environment,(17) such as slopes with different gradients.  
	 In our previous work, we employed dynamic movement primitives (DMPs) for modeling 
gait trajectories of a lower limb exoskeleton with healthy pilots, which aim to adapt different 
gait trajectories in different walking speeds.(18,19)  Furthermore, the proposed gait models are 
employed for stair scenarios of the lower limb exoskeleton with paraplegic patients.(20)  With 
the proposed gait model, the lower exoskeleton system could generate smooth gait trajectories 
by changing the goal position of the ankle joint.(21)  However, in the previous work, we did not 
consider the stability of the human exoskeleton system in different scenarios, as well as the 
comfort of the pilot during different tasks.  
	 In this paper, we proposed an adaptive gait planning method based on DMP architecture 
and reinforcement learning, which aims to adapt different pilots in uphill slope scenarios.  To 
obtain the center of mass (CoM) of the human exoskeleton system, we modeled the lower limb 
exoskeleton with a paraplegic patient as a human-exoskeleton hybrid agent (HEHA).  Different 
from the previous gait model, the CoM of the human-exoskeleton system is employed in the 
proposed adaptive gait model.  In the proposed adaptive gait model, goal states of the lower 
limb exoskeleton are calculated on the basis of the CoM of HEHA.  For adapting different 
pilots, a reinforcement learning method based on policy improvement and path integrals (PI2) 
is employed to learn the parameters of the proposed gait model.  In the reinforcement learning 
process, the stability performance of HEHA and the comfort of the pilot are both considered 
in the cost function.  We validate the proposed gait planning method in the simulation 
environment, and experimental results show that the proposed gait method improves the 
stability of HEHA and the comfort of the pilot during walking in uphill slopes.  
	 The structure of this paper is organized as follows.  We generally introduce the proposed 
gait model based on the DMP architecture in Sect. 2.  Afterwards, experimental results and 
discussion are given in Sect. 3.  Finally, we conclude in Sect. 4.  

2.	 Materials and Methods

	 In this section, we present the details of the proposed gait planning method in uphill slope 
scenarios.  Firstly, we model the walking assistance lower exoskeleton with a paraplegic patient 
as HEHA in Sect. 2.1, in which the exoskeleton ankle trajectories are planned on the basis of the 
CoM of HEHA.  Then, DMPs are employed to model the gait of the exoskeleton system, which 
describes ankle trajectories of the whole gait cycle.  In Sect. 2.2, the gait learning process based 
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on the reinforcement learning method (PI2) is introduced, in which the stability of HEHA is 
considered in the cost function to achieve better stability performance.

2.1	 Gait modelling with DMPs

	 In this section, we demonstrate the details of gait modeling in uphill slope scenarios for the 
lower exoskeleton system with paraplegic patients.  Firstly, we modeled the human exoskeleton 
system as a hybrid agent, in which the gait phases of the human exoskeleton system are 
introduced.  On the basis of the gait of HEHA, the goal position of ankle joints is utilized to 
plan the gait, in which the CoM of HEHA is embedded to ensure the stability of the human 
exoskeleton system.  Finally, the DMP is utilized to model the ankle trajectories of the lower 
exoskeleton system, which aims to parameterize the gait model for a future learning process.  

2.1.1	 HEHA

	 In the lower exoskeleton system with paraplegic patients, the patient always needs to use 
crutches to maintain balance as well as to operate the exoskeleton.(22)  In this study, we consider 
the lower exoskeleton system with the paraplegic patient in low walking speed, in which the 
patient should move sticks before the exoskeleton moves.  Under this consideration, we model 
the human exoskeleton system as HEHA.  In the HEHA model, the human exoskeleton system 
is regarded as a quadruped robotic system, in which two crutches are seen as two ‘front legs’ of 
HEHA, which are controlled by the patient.  
	 In the framework of the proposed HEHA model, the lower exoskeleton system always 
follows the pilot’s crutches.  In this paper, we separate four phases to describe a single step for 
the human exoskeleton system.  Figure 1 shows four gait phases for a single step of HEHA.
	 Support Phase: The patient remains vertical with the support of the lower exoskeleton system 
and crutches [see Fig. 1(a)].  In this phase, the projection of the CoM of HEHA is located in the 
region of support, which is combined with the lower exoskeleton and crutches.  
	 Transfer Phase: In this phase, the patient moves the crutches and his/her body to transfer the 
CoM of HEHA from the right leg to the left leg [see Fig. 1(b)].  

Fig. 1.	 Gait phases for a single step of HEHA: (a) support phase, (b) transfer phase, (c) swing phase, and (d) 
transition phase.

(a) (b) (c) (d)
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	 Swing Phase: The lower exoskeleton system moves the right leg to step forward with the 
patient [see Fig. 1(c)].  The goal position of the right leg will affect the walking speed of HEHA 
as well as the stability of the single step.  
	 Transition Phase: Different from the transfer phase, the pilot moves the CoM of HEHA back 
to the center in the transition phase, which makes the human exoskeleton system return to the 
support phase [see Fig. 1(d)].  
	 In the gait planning for the proposed HEHA, we focus on the goal position of the swing 
leg, in which planning a suitable goal position is the most important problem in this paper.  
Particularly in the uphill slope scenarios, the goal position of the swing leg will affect the 
stability performance of HEHA significantly.  

2.1.2	 Gait planning with the CoM in slope scenarios

	 During the walking process of the human exoskeleton system, the lower exoskeleton system 
should follow the movement of crutches to assist the patient.  On the basis of the proposed 
HEHA, the gait of the lower exoskeleton system is planned to achieve a suitable goal position of 
the swing leg.  In our previous work, we utilized the center of pressure (COP) to adjust the gait 
length of the human exoskeleton system during normal walking, which aims to achieve better 
stability performance for different patients.(20)  However, in uphill slope scenarios, the human 
exoskeleton system should consider the information of HEHA in the sagittal plane.  Hence, we 
utilize the CoM of HEHA in the vertical direction in this paper, which aims to adjust the goal 
position of the swing leg of the lower exoskeleton system.  
	 Figure 2 shows two different step situations of the human exoskeleton system in slope 
scenarios.  As shown in Fig. 2, the lower exoskeleton system should plan different goal positions 
of the swing leg when HEHA has different CoMs in the vertical direction.  In the description in 
Fig. 2, Zcom represents the vertical distance in the z-direction of the CoM of HEHA, θ represents 
the degree of the slope, and (gi, hi) (i = 1, 2) represent the goal position of the planned gait, with 
g being the step length and h the step height.  

Fig. 2.	 Two different step situations of the human exoskeleton system in slope scenarios: (a) with higher CoM and (b) 
with lower CoM.

(a) (b)
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	 According to step situations described in Fig. 2, we build the model of the goal position 
based on the CoM of HEHA, which aims to ensure the stability of the human exoskeleton 
system.  Equations (1) and (2) give the model of the goal position of the swing leg.  

	
com

kg t
Z

= + ,	 (1)

	 tanh g θ= ,	 (2)

where k and t are parameters for adjusting different goal positions for different patients, which 
need to be learned for the adaptation process.  From the proposed model described in the 
above equations, the goal position could be calculated through the estimated CoM of HEHA.  
Since this paper is focused on the gait model and adaptation process, we will not introduce the 
estimation process for the CoM of HEHA.  

2.1.3	 Modelling with DMPs

	 With the calculated goal position based on the CoM of HEHA, another essential problem is 
how to generate joint trajectories for the lower exoskeleton system based on the goal position.  
In this paper, DMPs are utilized to model the trajectory of the ankle joint of the swing leg.(23–25)  
Here, we ignore the inverse kinematics of the lower exoskeleton system, which transfers ankle 
trajectories to joint trajectories.  
	 The DMP model is based on the nonlinear dynamical system, which describes a linear 
spring system perturbed by an external force.  For a motion trajectory denoted by x, a DMP 
model can be defined as the following nonlinear system equation:

	 0( ) ( )v K g x Dv g x fτ = − − + − ,	 (3)

where v xτ=  is an intermediate variable that indicates the first-order derivative of the output 
trajectory x, x0 is the initial position of the system, g represents the goal position of the system, 
K and D are the stiffness and damping parameters of the system, respectively, and τ indicates 
the frequency of the system.  f is a combination of nonlinear functions with Gaussian kernels:

	 1

1

( )
( )

( )

N
i ii

N
ii

s s
f s

s

δψ

ψ
=

=

=
∑
∑

, 	 (4)

	 2( ) exp( ( ) )i i is h s cψ = − − , 	 (5)

where hi and ci are the height and width of Gaussian kernels, respectively.  δi are weight 
parameters that can be obtained through the training process.  In the initial training process 
of the DMP model, the nonlinear function f can be calculated on the basis of the input training 
trajectory:
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0
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g x

τ− + +
=

−


.	 (6)

Here, the nonlinear function f is converted to the frequency domain for the convenience of 
calculations.  After obtaining the nonlinear function f, the weight parameters δi are trained 
through the regression method.  
	 With the trained DMP model with the input motion trajectory, the goal position of the DMP 
model can be set with different values to generate different trajectories.  Figure 3 shows the 
change in goal position in the DMP model of ankle trajectories in the x- and z-directions.  The 
simulation results show that the DMP model can generate ankle trajectories with different goal 
positions.  

2.2	 Gait adaptation with reinforcement learning

	 With the gait model described in Sect. 2.1, gait trajectories of the lower exoskeleton system 
can be generated through the DMP gait model with the CoM of HEHA.  However, for different 
patients and slopes, the model described in Eq. (1) should be learned to obtain the optimal 
parameters of the proposed gait model.  The learning process will be introduced in detail in this 
section.  
	 To adapt different patients and slopes, a reinforcement learning method based on PI2 is 
utilized to learn the parameters of the proposed gait model.  Figure 4 shows the framework of 
the learning process of the proposed gait model.  As shown in Fig. 4, on the basis of the DMP 
gait model with CoM, parameters in the gait planning model with CoM should be learned 
to adapt different patients.  According to Eqs. (1) and (2), we set k and t as actions in the 
reinforcement learning process, which should be optimized in the learning process.  The cost 
function is defined on the basis of improving the stability and comfort of the patient during 
walking on slope scenarios:

Fig. 3.	 (Color online) Changing goal positions with trained DMP model: (a) x-direction and (b) z-direction. 

(a) (b)
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where N is the number of steps for each episode of the reinforcement learning process and 
m is the number of stable walking steps of each episode; the first term in Eq. (7) indicates 
the stability performance of HEHA in each episode.  Vp is the variance of pitch angle of the 
upper body of HEHA in each episode, in which the pitch angle is measured by an inertial 
measurement unit (IMU) sensor installed on the upper body of the lower exoskeleton system.  ri 
is the average of the integral of ground reaction forces of crutches during each step: 

	
0

1 t
ir f dt

t
= ∫ ,	 (8)

where f indicates the ground reaction force, which is measured through plantar sensors on the 
crutches.  The second term in Eq. (7) indicates the comfort of the patient in each episode.  The 
weight parameters ω1, ω2, and ω3 can be changed if we need to change the learning process for 
different terrains, which are set as fixed positive values in this paper.  
	 With the defined cost function of the reinforcement learning process through Eq. (7), the 
learning process is described in Table 1.  In the learning process, actions are set with k and t in Eq. (1), 
which are embedded in a vector θ = [k, t]T.  δk is a Gaussian noise vector for action parameters, 
in which two elements of the noise vector are independent of each other.  In the implementation 
of the PI2 method, the model parameters are updated once every K times.  During each episode, 
the path cost matrix S and probability matrix P need to be calculated through Eqs. (9) and (10):

	 T
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1( , ) ( ) ( )
2k k k k k

j
k i

Ν

=
= + + +∑S R θ δ θ δ ,	 (9)

Fig. 4.	 Framework of the learning process of proposed gait model.
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where k represents the kth walking test (from the first step to the step fall down), and j 
represents the jth step of walking in each walking test.  Rk represents cost of the kth walking 
test.  λ represents the discount factor, (0,1]λ ∈ .  Finally, the parameters of each step are 
calculated as

	
1

[ ]( , )
=
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K

k
t kk iPθ δ .	 (11)

	 With the calculation of Eq. (11), model parameter updating should be normalized through 
Eq. (12), and finally the parameters of the proposed gait model should be updated.  
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	 θ = θ + Δθ.	 (13)

	 After each updating of model parameters, the cost function R should be calculated, which 
aims to determine if the parameters are optimal or not.  If the cost function R has not reached 
the convergence condition, the learning process should be executed iteratively until we obtain 
the optimal parameters of the proposed gait model.

Table 1
Parameter learning process of gait model by PI2.
Input: θ, δ, N, K

While the cost function R does not reach the convergence condition in each episode:
HEHA performs K times of random attempts
Test noise δk is added in each episode
For k [1, ]For i N∈ [1, K]:

θk = θ + δk
For i [1, ]For i N∈ [1, N]:

For k [1, ]For i N∈ [1, K]:
Calculate the path cost matrix S through Eq. (9)
Calculate the probability matrix P through Eq. (10)

End for
End for
For i [1, ]For i N∈ [1, N]:

Calculate the model parameter increments Δθti in each try by Eq. (11)
Normalize model parameter increments Δθ by Eq. (12)
Update model parameters θ = θ + Δθ
Perform an evaluation experiment on the system with the parameter θ
Calculate the cost function R

Output: θ
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3.	 Experimental Results and Discussion

	 In this section, we give the details of the experimental results and discussion of the 
proposed gait model and its learning process in a simulation environment.  In Sect. 3.1, we 
briefly introduce the simulation environment and the human exoskeleton model.  Then, 
the reinforcement learning process of the proposed gait model is verified in the simulation 
environment, as well as in experiments for validating the learned gait model.  

3.1	 Simulation environment

	 In this paper, we validate the proposed gait model and its learning process in a simulation 
environment.  The human exoskeleton model and simulation environment are based on Gazebo.  
Figure 5 shows the simulation environment with uphill slope scenarios.  In the simulation 
environment, the human exoskeleton system is modeled as a special quadruped robot with a 
total of ten DOFs, in which eight of them are active.  Four active degrees of freedom (DOFs) 
are set on hips and knees, and the others are set on the upper limbs for controlling crutches to 
simulate the interaction between the patient and the exoskeleton system.  

3.2	 Experiments and discussion

	 The simulation experiments are divided into two parts.  The first part is the learning process 
of the proposed gait models, which learn the optimal parameters through the reinforcement 
learning process.  The second part is validation with the learned gait models, which verify the 
proposed gait learning method in uphill scenarios.
	 In the parameter learning experiments, four cases are considered, in which four different 
initial values of the gait model are set.  Table 2 shows the initial parameters of four cases in 
simulation experiments.  This experiment aims to ensure the convergence of the reinforcement 
learning process and obtain the limits of initial parameters of the gait model.  As shown in Table 2, 

Table 1
Parameter learning process of gait model by PI2.
Input: θ, δ, N, K

While the cost function R does not reach the convergence condition in each episode:
HEHA performs K times of random attempts
Test noise δk is added in each episode
For k [1, ]For i N∈ [1, K]:

θk = θ + δk
For i [1, ]For i N∈ [1, N]:

For k [1, ]For i N∈ [1, K]:
Calculate the path cost matrix S through Eq. (9)
Calculate the probability matrix P through Eq. (10)

End for
End for
For i [1, ]For i N∈ [1, N]:

Calculate the model parameter increments Δθti in each try by Eq. (11)
Normalize model parameter increments Δθ by Eq. (12)
Update model parameters θ = θ + Δθ
Perform an evaluation experiment on the system with the parameter θ
Calculate the cost function R

Output: θ

Fig. 5.	 (Color online) Process of HEHA’s walking in uphill scenarios.
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k is chosen in [1, 2] and t is chosen in [−0, 0.5].  As a balance of stability and comfort of the 
human exoskeleton system, weight parameters in Eq. (7) are both chosen as 1/3.  
	 In the implementation of the reinforcement learning process, we set N as 6 and K as 5.  
Figure 6 shows the experimental results of the reinforcement learning process for gait parameter 
optimization.  As shown in Fig. 6, the optimal model parameters can be learned within 20 
iterations, with optimal parameters [k, t] = [1.53, 0.13].  Figure 6(a) shows the convergence of 
the cost function, which illustrates that different initial values of the parameters could achieve 
optimal results after the learning process.  The pitch-angle variance of the upper body of 
the human exoskeleton system is shown in Fig. 6(b).  Figure 6(c) shows the number of stable 

Table 2
Initial parameters in simulation experiments.
Initial parameters k t
Case 1 2 0.1
Case 2 1.74 0
Case 3 1.23 −0.2
Case 4 1 0.3

Fig. 6.	 (Color online) Experimental results of the learning process of model parameters: (a) convergence of the 
cost function, (b) pitch-angle variance of upper body of the human exoskeleton system, (c) number of stable walking 
steps, and (d) pressure on the crutches. 

(a) (b)

(c) (d)
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walking steps during the learning process.  As shown in Fig. 6(c), the human exoskeleton 
system can walk stably for all the N gait cycles.  Figure 6(d) shows the pressure on the crutches 
during the learning process.  The results show that after obtaining optimal gait parameters, the 
patient (upper limbs in the simulation model) could reduce the strength cost for stable walking 
(660 N compared with 360 N).  
	 To compare the learned gait model with the traditional fixed step method, we validated the 
learned gait model with the human exoskeleton system on slope scenarios in the simulation 
environment.  In the experiments, 6 fixed step lengths are chosen for comparison (from 0.10 
to 0.15 m).  Figure 7 shows comparisons of the proposed adaptive gait planning method and 
fixed step length methods.  As shown in Fig. 7(a), the proposed adaptive gait planning method 
has reduced the pressure on the crutches significantly (almost 250 N compared with the 0.11 m 
fixed step length).  With the comparison of the 0.15 m fixed step length, the pressure on the 
crutches gives almost the same performance.  However, the 0.15 m fixed step length could not 
stabilize walking on the uphill slope scenarios.  From Fig. 7(b), we can see that the proposed 
adaptive gait planning method can achieve stable walking in all the N gait cycles on the slope.  
	 To evaluate the performance of the proposed adaptive gait planning method in different 
slope scenarios, experiments in different slopes with different gradients are carried out in the 
simulation environment.  Table 3 shows experimental results of the human exoskeleton system 
in three different slopes (with 6, 12, and 18 degrees), with the comparison of the average 
pressure and the number of successful steps during walking on the slope.  As shown in Table 

Fig. 7.	 (Color online) Comparison of the proposed adaptive gait planning method and fixed step length methods: (a) 
pressure on the crutches and (b) number of stable walking steps. 

(a) (b)

Table 3
Experimental results in different slopes with different gradients.
Slopes Average pressure (N) Number of steps
6 deg gradient 283.4 10
12 deg gradient 325.2 10
18 deg gradient 408.7   9
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3, we can see that in the human exoskeleton system in slopes with larger gradients, the patient 
should experience more pressure on the crutches during the whole experiment.  Experiments 
in the simulation environment show that the proposed adaptive gait planning method can 
achieve better performance than the fixed step length methods, with the improvement of the 
stability characteristic, as well as reducing the pressure on the crutches significantly to give a 
comfortable physical interaction for the patient.  

4.	 Conclusions and Future Work

	 In this paper, we presented an adaptive gait planning method for a walking assistance 
lower exoskeleton in uphill slopes.  The proposed gait planning method considers a gait model 
based on CoM and utilizes reinforcement learning to learn the optimal parameters of the gait 
model according to the stability and comfort performance.  Experimental results show that the 
proposed method can improve the stability and comfort of patients during walking in uphill 
slopes.
	 In the future, we will extend our gait planning method to more application scenarios, such 
as complex outdoor environments with different terrains.  Furthermore, more evaluation 
experiments should be carried out in real time with the lower exoskeleton system.
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