
1311Sensors and Materials, Vol. 32, No. 4 (2020) 1311–1338
MYU Tokyo

S & M 2571

*Corresponding author: e-mail: zhaojie.ju@port.ac.uk
**Corresponding author: e-mail: 6133292@qq.com
https://doi.org/10.18494/SAM.2020.2571

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Robust Bacterial Foraging Algorithms 
Based on Few-excellent-individuals Guidance Strategy

Hongwei Gao,1 Jiahui Yu,1,2 Dai Peng,1 Zhaojie Ju,2* and Yanju Liu1**

1School of Automation and Electrical Engineering, Shenyang Ligong University,
Shenyang 110159, China 

2School of Computing, University of Portsmouth,
 Portsmouth PO1 3HE, UK

(Received August 29, 2019; accepted December 13, 2019)

Keywords: bacterial foraging optimization, 80/20 rule, constriction factor PSO, gradient migration 
probability, robustness

 In recent years, the novel bacterial foraging optimization has been widely applied.  However, 
in past studies, the process of bacterial foraging lacked guidance and the structure of the 
algorithm was inadequate, which resulted in a low convergence speed and a large number 
of parameters in the algorithm, thus reducing its search accuracy and speed.  Additionally, 
researchers only improved the algorithm for complex situations, for which a comprehensive 
evaluation of its robustness could not be made.  Here, to resolve these issues, two improved 
algorithms are proposed and compared comprehensively.  Our algorithms are suitable for 
modeling the foraging process of organisms in nature: a small number of individuals with 
rich resources can attract other individuals to forage locally.  First, we propose a decreasing 
composite function and gradient migration behavior and introduce the 80/20 rule.  A few 
excellent individuals guide the population to migrate to the optimal solution and increase the 
convergence speed.  Second, we introduce the renewal speed of particles and propose another 
composite function, and the biological characteristics of Escherichia coli are also introduced 
to achieve the screening of excellent individuals.  Finally, we show the results of numerous 
experiments and comprehensively evaluate the applicability of the proposed organisms.

1. Introduction

 Owing to the wide application of intelligent optimization algorithms in various research 
fields, researchers have studied bionic-based swarm intelligence optimization algorithms.  
The classical algorithms include the artificial fish swarm (AFS) algorithm, genetic algorithm 
(GA), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee 
colony (ABC) algorithm, and standard particle swarm optimization (PSO).(1–3)  Until recently, 
most studies indicated that the BFO algorithm is a relatively good and representative swarm 
intelligence optimization algorithm.  In 2002, Passino proposed a BFO algorithm based on 
the foraging behavior and regularity of Escherichia coli in the intestines of organisms.(4)  The 
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algorithm is based on the biopsy model of the large intestine, which was proposed by Passino 
and Berg and co-workers.(5–8)  The BFO algorithm is mainly composed of four behavioral 
actions: chemotaxis, swarming, reproduction, and elimination and dispersal.  The amount 
of research on this algorithm is still limited and it still needs to be more widely studied and 
developed.  The current research is mainly focused on theoretical analysis, the multiobjective 
optimization problem, and application in optimization problems in engineering.  There are 
four main areas of research on the BFO algorithm: the improvement of the operation of the 
algorithm, the improvement of other aspects of the algorithm itself, its combined use with other 
algorithms, and the research and application of algorithm theory.  In this paper, we focus on the 
improvement of the algorithm itself and its introduction into other algorithms.
 In 2002, Passino published a BFO algorithm and applied it to various fields, such as 
adaptive control of liquid level control systems, the types of tasks of decision systems, and 
the selection and lengths of task processes.(4)  In 2003, Liu performed a preliminary study on 
the behavior of the algorithm and gave a proof of its convergence.(9)  In 2006, the process by 
which a monome searches for food and the evolution of a small-scale bacterial population under 
dynamic conditions were successfully imitated by the Tang research team, and a dynamic BFO 
algorithm was proposed.(10)  In 2011, Niu proposed a BFO algorithm based on time-varying 
chemotaxis steps.(11)  In 2015, Meng et al. introduced a variation factor in the chemotaxis 
of BFO where in each iteration, individual bacteria are selected and mutated with a certain 
probability.  By testing, it was found that the wavelet variability method is the most effective, 
and this improvement was used to solve the array synthesis problem.(12)  In 2017, Tang used the 
improved BFO algorithm to solve multilevel threshold problems in image processing.  They 
introduced the PSO operator in the process of chemotaxis to enhance the searchability, and the 
elite preservation strategy was adopted in the breeding process.  The algorithm obtained an 
optimal solution by maximizing the Tsallis threshold function.(13)  Then, Verma used a BFO 
algorithm and a minimum kernel similarity method to construct a fuzzy system to detect image 
edges.  Here, the BFO algorithm was used to optimize the fuzzy membership function and the 
parameters of the enhanced fuzzy operator.(14)  However, although these studies have improved 
the optimization ability of the BFO algorithm in practical applications, most of the recent 
studies had problems with a large number of parameters that were not easy to control.(15,16)  In 
particular, fixed values were used for some important parameters, limiting the performance of 
the algorithm.  Secondly, the parameter optimization problem has not been discussed because 
the design of most algorithms adopted a multilayer loop nesting structure.(17)  Besides, few 
groups have compared or comprehensively evaluated the improved BFO algorithms on a variety 
of complex functions.  To solve these problems, we have carried out a more detailed study.
 Recently, researchers have attempted to combine the BFO algorithm with the ideas or 
operators of other excellent algorithms.  To solve the problem of high computational complexity 
caused by multitarget and multisequence comparisons in different protein sequence analyses, 
Manikandan combined the BFO algorithm and the GA algorithm to propose a BFOGA 
algorithm to achieve efficient comparison.(18)  Zhou used an enhanced BFO-gravity search 
algorithm to study model-solving problems.  The algorithm used population reconstruction, an 
adaptive selection chemotaxis operator, and a local search strategy, and also used an external 
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archive to save the elite solution set, which solves the optimization problem more effectively.(19)  
These BFO algorithms are used in a variety of dynamic optimization problems, such as robot 
path planning in dynamic environments, robotic navigation along a wall, vehicle path planning, 
dynamic scheduling problems in manufacturing units, dynamic portfolio optimization, and 
information dynamic routing optimization.(20,21)  However, in these applications, the above 
algorithms all have the problem of premature convergence, late convergence or even no 
convergence.  This is because there are no specific principles in the selection of individuals 
that act as guiding individuals, and the problem of parameter simplification has seldom been 
considered.  In this paper, we report a detailed comparison between different group intelligent 
algorithms to improve the convergence performance of the BFO algorithm, thereby improving 
the search accuracy and search speed of the algorithm.
 In this work, we propose two improved algorithms, namely, convergent 80/20 rule bacteria 
foraging optimization (C28BFO) and convergent particle swarm optimization bacteria foraging 
optimization (CPSOBFO).  A decreasing composite function, the idea of the gradient, the 
constriction factor PSO, and the 80/20 rule are combined in our improved algorithms so that 
different grades of bacteria carry out their particular elimination and dispersal activities.  
 The remainder of this paper is organized as follows.  Section 2 is a review of the related 
work on BFO.  In Sect. 3, we explain the problem statement and give an outline of our proposed 
approaches.  Sections 4 and 5 introduce the process of the proposed method.  In Sect. 6, we 
report various experimental results as well as a comparison with state-of-the-art methods.  
Section 7 summarizes the work of this paper and gives a further direction for extending the 
study.

2. Related Work

2.1 BFO algorithm

 The BFO algorithm simulates four population behaviors of E. coli in a real environment: 
chemotaxis, swarming, reproduction, and elimination and dispersal.  Foraging involves these 
four behavioral processes, that is, the search for the optimal solution.  When using the BFO 
algorithm to solve optimization problems, we usually need to go through the process shown in 
Fig. 1.  The specific parameters of the algorithm are shown in Table 1.
 The initial values of parameters j, k, and l are all zero and refer to the parameters in Table 
1.  Firstly, ( , , ) { ( , , ) 1, 2, ..., }ij k l j k l i SΡ θ= | =  indicates the set of locations after j chemotaxis 
operations, k replication operations, and i migration operations for each individual in the 

Fig. 1. General process of the BFO algorithm for solving optimization problems.
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population.  Secondly, J(i, j, k, l) indicates the value of the fitness function possessed by 
individual i after j chemotaxis operations, k replication operations, and i migration operations.  
In this paper, we have given all the actions and steps of the BFO algorithm, and the details are 
shown in Fig. 2.

Fig. 2. Detailed process of BFO. 

Table 1
Description of parameters and labels of algorithm.
Symbol Meaning Symbol Meaning
j Number of chemotaxis operations k Number of replications
l Number of migration operations P Dimension of search space
S Total number of individuals in population C(i) Step size in the chemotaxis
Nc Number of trending operations Nre Number of replications of E. coli
Ned Number of migrations Ped Migration probability of E. coli

Ns
Maximum number of steps in one direction 
per trending operation
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2.2 Chemotaxis

 Such behavior includes swimming and flipping, which respectively correspond to changes in 
position and direction.  Individual i performs each location update in accordance with

 θi( j + 1, k, l) = θi( j , k, l) + C(i)Φ( j), (1)

where θi( j , k, l) and θi( j + 1, k, l) are the positions of individual i after j and j + 1 chemotaxis 
operations in the case of k replications and l migrations, respectively.  Here, C(i) is the step 
size in chemotaxis, indicating the distance of a single migration.  Ф( j) is a unit vector in the 
direction selected after the direction is adjusted and is given by

 T

( )( )
( ) ( )
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i i

   ∆Φ
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= . (2)

 It can be seen from Eq. (2) that Ф( j) is also a unit vector with a random direction, simulating 
the randomness of the position update.  Therefore, Eq. (1) can also be written as
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2.3 Swarming

 Swarming is the embodiment of the synergistic relationship between bacteria, that is, 
bacteria can effectively influence other bacteria in the group to move quickly to an area with 
a better food source that they have found and maintain the spacing between.  The combined 
release of gravitational and repulsive signals can not only make the individual more profitable 
in foraging but also effectively avoid malignant competition caused by bacterial clumps.  The 
mathematical expression of the aggregation behavior among individuals is
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 In the formula, Jcc(θ, P( j, k, l)) is the influence value of the signal transmitted between all 
individuals, and is expressed as the sum of the aggregation action values of each individual 
and other individuals.  θ = [θ1, θ2, ..., θp]T is a point in this multidimensional search space 
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and θm is the m component of the spatial location.  P( j, k, l) is the position of the individual 
after j chemotaxes, k replications, and l migrations, and satisfies the relationship P( j, k, l) = 
{θi( j, k, l)|i = 1, 2, ..., S}.  This is inserted into Jcc(θ, P( j, k, l)) to get the first of Eq. (4), which is 
decomposed into the attraction and repulsive signals of aggregation as follows:
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 Aggregation behavior is introduced into the updating of fitness values of tendentious 
individuals, as

 J(i, j + 1, k, l) = J(i, j, k, l) + Jcc(θi( j + 1, k, l), P( j + 1, k, l)). (7)

Here, J(i, j + 1, k, l) and J(i, j, k, l) are the fitness values of individuals after the kth replication, 
the lth migration, and the jth and ( j + 1)th chemotaxes, respectively.

2.4 Replication

 Some individuals who have failed in their foraging search strategy are eliminated, but the 
remaining individuals with strong foraging ability will replicate themselves by division to 
ensure that the population size remains unchanged.  This behavior is called replication behavior.
 In the algorithm, the fitness values of individuals after previous tendentious behaviors are 
counted and processed by summation.  Assuming that there are S individuals in the flora, their 
fitness values are sorted from small to large, so that Sr = S/2 takes the first Sr fitness value.  
This corresponds to Sr bacteria with strong foraging ability, which are then replicated.  Such 
fitness and its value are collectively called the fitness function, which measures the energy gain 
after foraging.  For individual i, the fitness function is
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Here, J(i, j, k, l) is the fitness function value of i after performing j chemotaxes, k replications, 
and l migrations.  

2.5 Reproduction

 In the algorithm, E. coli migrates with a fixed probability Ped.  After a certain algebraic 
replication, the individual will be eliminated.  Then, a new individual with different locations 
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and foraging abilities will be generated randomly in the search space.  The number of 
individuals remains unchanged, which is conducive to an individual searching for better food 
sources.

3. Problem Description and Proposed Approaches

 In the conventional BFO algorithm, the chemotaxis step C(i) in the random direction 
generated by the bacterial chemotactic rotation is a fixed constant and is too small or too large 
to affect the algorithm search effect.  In the process of copying, the original algorithm performs 
the sorting of individual bacteria, selects the individuals in the first half and replicates on 
them.  The original purpose is to give only excellent bacteria the right to survive and multiply.  
However, when making a selection, the algorithm is very likely to retain the poor bacterial 
individuals that are within half of the sequence, which affects the algorithm.  In this work, we 
attempt to solve the above-discussed problems.  The main contributions are summarized as 
follows.
 First, we propose the novel C28BFO algorithm, in which a chemotaxis step is designed on 
the basis of decreasing composite function, and the 80/20 rule is introduced to improve the 
screening method of excellent individuals.  The gradient migration probability is also proposed 
to improve the migration behavior.  The simulation results of the improved algorithm are given 
to prove its effectiveness.
 Second, to make the algorithm convergence faster with higher convergence precision, in 
this paper, we not only propose a new chemotaxis step size expression but also introduce the 
memory and perceptual energy of the particle swarm algorithm and apply them to the BFO 
algorithm.  At the same time, a phage’s foraging process of E. coli is introduced to eliminate the 
bacteria with poor foraging ability to optimize the optimization ability of the algorithm.  We 
name this method the CPSOBFO algorithm and verify its improvement.
 Third, we test the BFO algorithm, C28BFO algorithm, CPSOBFO algorithm, and GA 
algorithm simultaneously on a variety of complex optimization functions, including the Sphere 
function, Rosenbrock function, Rastrigin function, and Griewank function.  Then, using 
the test results, the convergence performance of each algorithm under different applications 
is comprehensively evaluated.  In the following section, we introduce the readers to a basic 
mathematical understanding of these two algorithms for completeness.

4. C28BFO Algorithm

4.1 Improvement of step-size function

 Compared with the previous original algorithm, the time-varying chemotactic step size is 
designed, in this study, in accordance with the number of iterations, current fitness values, and 
migration operations, so as to provide a better convergence for the algorithm.  The step-size 
function consists of four parts: iteration number function, fitness function, migration behavior 
function, and parameter adjustment, which are shown in Fig. 3.
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 As shown in Fig. 3, the function modules are combined to improve the step function to 
improve the optimization characteristics of the algorithm.  Specifically, the design expression of 
the new chemotaxis step function for individual bacteria i is shown in
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 In Eq. (9), C(i) is the chemotaxis step size of E. coli, itermax is the maximum number of 
iterations, iter is the current iteration number, J(i, j, k, l) is the fitness value corresponding to the 
current position of bacterial individual i, μ is a large positive adjustment constant, β is a positive 
value greater than 1, l is the number of migrations of the current bacteria, ζ is the guarantee 
factor of the step and is between 0 and 1, and n is a positive value of the control convergence 
speed and accuracy .
 In the step function of Eq. (9), (itermax − iter)/itermax is a function that linearly decreases 
as the number of iterations increases.  The function |J(i, j, k, l)(1/3)| / (μ + |J(i, j, k, l)(1/3)|) is a 
decrease in  the bacterial fitness value and the reduced function.  For example, for x = J(i, j, k, l), 
μ = 5, y = |x(1/3)| ∕ (5 + |x(1/3)|), and drawing with 0.1 as the smallest unit, the argument x takes 
values from 0 to 100, and the function image is as shown in Fig. 4(a).  From this image, it can be 
seen that as x decreases, the function decreases from steep to urgent.  As the iterative process 
of the algorithm continues, the bacteria are continuously close to the optimal point because of 
positioning by random distribution in the search solution space.  At these positions, the bacteria 
pay a relatively small price and obtain relatively rich benefits, and the fitness value decreases.  
It can then be predicted that as the bacterial fitness value decreases, the function consisting of 
this fitness value will show a decreasing trend.  This is in line with the step size design intent of 

Fig. 3. (Color online) Composition diagram of new chemotactic step function.
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performing a larger step search at the beginning of the algorithm and a smaller step search later 
in the algorithm.
 The βl in the step function is an exponential function with the number of migrations of 
bacteria as an independent variable, and its function value increases as l increases.  For example, 
the function y = 20x takes β of 20 and l of x.  When drawing, 0.1 is the smallest unit, and the 
argument x takes a value from 0 to 2.5.  The function image is shown in Fig. 4(b).  By observing 
the function image, it can be found that the logarithmic function exhibits an increasing growth 
rate as the independent variable x increases.  Since the function βl is located in the denominator 
of the step function, when the number of migrations increases, the reciprocal of the function 
exhibits a downward trend that is slowed down by the rate of decline.  The function as a 
parameter of the step size also makes the step size appear from a rush to a slow situation, and 
this is also in line with the intent of the step size design.
 In summary, as the number of iterations increases, (itermax − iter) becomes smaller, and 
itermax is a fixed value, which makes C(i) smaller.  At the same time, as the number of bacterial 
searches increases, the bacteria move away from the dangerous area and continue to approach 
the ideal food source area, then the bacterial fitness value decreases accordingly.  The above 
fraction is also fed back to the algorithm with a smaller step size C(i), which, in turn, increases 
the search accuracy of the algorithm.  New individuals resulting from migratory behavior may 
have different spatial locations and foraging capabilities, enabling individuals to more easily 
search for better food source areas.  Therefore, it is effective to feed back the migration behavior 
to the chemotaxis step,  which can reflect the search accuracy.  When the number of migration 
operations l increases, βl will increase and the step size C(i) will become smaller.  On the basis 
of the above ideas, we propose the chemotaxis step function.

4.2 Improvement of replication

 In the process of individual retention and replication, the 80/20 rule is introduced to improve 
the process.  The 80/20 rule has been applied in hardware design and intelligent algorithm 

Fig. 4. (Color online) Plots of different functions. (a) y = |x(1/3)| ∕ (5 +|x(1/3)|). (b) y = 20x.

(a) (b)



1320 Sensors and Materials, Vol. 32, No. 4 (2020)

research and has achieved excellent results.(22)  In accordance with this rule, approximately 
20% of bacterial individuals in the entire flora account for nearly 80% of the high-quality food 
source energy, that is, 20% of the bacterial individuals consume 80% of the energy.  From the 
perspective of biological cell division, its specific split replication process will be as shown in Fig. 5.
 In the traditional BFO algorithm, the total number of individuals in the flora is S, and the 
number of individuals retained is Sr = S/2.  In the improved algorithm, Sf is taken as the number 
of excellent individuals retained in accordance with 80/20 rule, so that Sf = S/5.  The newly 
generated individual retains the location information and other basic information of the parent 
individual.  θ(i, j, k, l) is used to indicate the position of the ith bacterium in the search space 
after performing the jth chemotaxis operation, the kth copy operation, and the lth migration 
operation.  For the copying process, the location replication process of bacterial individuals in 
the search space involved is described below.

 θ(i + Sf, j, k, l) = θ(i, j, k, l) (10)

 θ(i + 2Sf, j, k, l) = θ(i, j, k, l) (11)

Fig. 5. (Color online) The five-times binary fission behavior of the excellent individual. 
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 θ(i + 3Sf, j, k, l) = θ(i, j, k, l) (12)

 θ(i + 4Sf, j, k, l) = θ(i, j, k, l) (13)

 Equation (10) denotes the first replication of the remaining 25% of E. coli in the flora and the 
location information in the solution space.  Equation (11) denotes the replication of half the 2Sf 
bacteria and the retention of their location information.  Equation (12) denotes the replication 
and cloning of the location information of the other half of the 2Sf bacteria in the flora.  At 
present, the number of bacteria in the flora is 4Sf.  Equation (13) represents the replication of 
25% of the current flora and the assignment of identical location information to new individuals.  
When the above-mentioned replication process is completed sequentially, a new population with 
good foraging ability is born, and the number of the population is still S.
 For the individual in the solution space of the algorithm, the information contained in 
the algorithm itself is not only the location information but also other information, such as 
the chemotaxis step information, which is very important information for determining the 
performance of the algorithm.  Other information about individuals is represented here as f(i, j, k, l), 
and the replication process is described as

 f(i + Sf, j, k, l) = f(i, j, k, l), (14)

 f(i + 2Sf, j, k, l) = f(i, j, k, l), (15)

 f(i + 3Sf, j, k, l) = f(i, j, k, l), (16)

 f(i + 4Sf, j, k, l) = f(i, j, k, l). (17)
 
 Equation (14) indicates that one-quarter of the number of bacteria retained in the flora 
is replicated, and information related to the individual bacterium, such as the size of the 
chemotaxis step, must be replicated during the replication process.  Similarly, Eqs. (15) and 
(16) sequentially indicate that the relevant information of the first half and the latter half of the 
newly generated 2Sf bacteria in the flora are separately copied.  Equation (17) represents the last 
copy of one-quarter of the current 4Sf bacteria, which replicates the relevant information carried 
by the individual.  When the above two types of replication behavior processes are completed, 
it can be considered that E. coli completed the improved replication behavior based on the 80/20 
rule.  The specific operation process of the BFO algorithm for simulating the elimination and 
replication behavior of individual bacteria is shown in Fig. 6.
 Each bacterium has an independent label from 1 to 5 Sf.  In the four blocks in the middle of 
Fig. 6, the white area indicates the space where the individual population of bacteria is copied, 
in which the black dots represent the mother bacteria, the green areas represent the space of the 
newly generated individual groups after replication, among which gray dots indicate progeny 
bacteria and red arrows indicate the correspondence between the mother and the offspring.  The 
six blocks on the right side of Fig. 6 represent the serial number relationship of individuals.  
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From the quantitative relationship between the serial numbers, the corresponding relationship 
between the two individuals can be accurately determined, for example, whether it is a 
relationship between a parent and a child, or whether it is a neighbor relationship.

4.3 Improvement of elimination and dispersal

 In the original BFO algorithm, the bacteria were all redistributed into the solution space with 
a certain probability Ped.  However, this approach did not consider the problem that the bacteria 
around the global optimum also migrate with Ped.  The original intention of the originally 
designed migration behavior was to help individuals who were in a local best area and its 
surrounding areas to jump out of their current position through such a redistribution.  However, 
this generalized approach has led to the erroneous result of the forced migration of many elite 
individuals, causing a deterioration in understanding.  If this situation can be reduced, the 
migration will be done well.

Fig. 6. (Color online) Reproduction of all the E. coli individuals in the improved algorithm.
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 We propose a gradient migration behavior based on individual fitness values as the basis for 
migration.  The fitness value of each bacterial individual is statistically summed to determine 
the health function value of the bacterium J i

health (taking individual i as an example).  As 
mentioned above, the health function of a bacterium reflects the ability of the bacterium 
to forage in the living space.  The health function values of all bacterial individuals in the 
population are sorted, and bacteria with low health function values are identified.  Individuals 
with high health function values have poor foraging ability and they are the target of priority 
migration.  This clarifies that a more targeted migration strategy should be adopted for bacteria 
with different foraging abilities.
 P4, P3, P2, and P1 are four important parameters, and their meanings are as follows.  P4: 
the migration probability (Ped) of 0–25% of bacterial individuals is 0.75.  P3: Ped of 25–50% of 
bacterial individuals is 0.1855.  P2: Ped of 50–75% of bacterial individuals is 0.48757.  P1: Ped of 
75–100% of bacterial individuals is 0.15625.  The relationship between these four parameters is 
as below:

 P4 = 75% × Ped = 75%Ped, (18)

 P3 = 25% × 75% × Ped = 18.75%Ped, (19) 

 P2 = 25% × 25% × 75% × Ped = 4.6875%Ped, (20)

 P1 = 25% × 25% × 25% ×75% × Ped = 1.5625%Ped. (21)

 This design ensures that more outstanding individuals are unaffected by forced migration 
and that these individuals with poor foraging ability and tendency to fall into local optima have 
a large migration probability.  The goal of the design is to keep the bacteria with good foraging 
ability close to the best of the world as much as possible and to help those bacteria that are 
trapped near local extremes to migrate with suitable probability.  The specific process of the 
C28BFO algorithm is shown in Fig. 7.

5. CPSOBFO Algorithm

5.1 Improvement of particle swarm optimization

 The individual bacteria in the original BFO algorithm did not obtain any historical 
empirical data.  The search for individuals placed more interest on nonhistorical search 
without comparison of historical values and only the individual interaction behavior was 
used for individual orientation.  The aggregate operation at the current optimal position of 
the population is close to such a nonhistorical operation and is insufficient to fully exploit the 
maximum performance of the algorithm search.  For the BFO algorithm, the introduction of the 
constriction factor PSO enables the full use of the ability of individuals in the PSO algorithm to 
perceive themselves and the historical optimal position of the group.(23,24)
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 In the BFO algorithm, the forward direction adjustment vector of the E. coli individual is 
Φ( j), its length is a unit value, and the direction is random.  In the improved algorithm proposed 
in this paper, the particle update rate 1k

idV +  of the constriction-factor-based PSO algorithm is 
regarded as the adjustment vector of the individual direction of the bacteria instead of Φ( j), as 
shown in

 1 2( ) ( ) ( )k k k k k
id id id d idj V Pbest X Gbest XΦ χ φ φ = + − + −  , (22)

 
2

2

2 4
χ =

φ φ φ− − −
. (23)

Fig. 7. Overall flow diagram of C28BFO algorithm.
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 Equation (23) is derived from the case where n is taken as 1 in Eq. (22).  Other parameters 
involved in the two equations, such as ϕ1, ϕ2, etc., are determined by the values of parameters c1, 
r1 and c2, r2.  The basis for selecting the local optimum k

idPbest  and the global optimal position 
k
dGbest  is the level of bacterial fitness.

 Add an inertia weight coefficient w in front of Eq. (22), which constitutes a new particle 
velocity update formula, as shown in Eq. (24); the particle position update formula is retained, 
as shown in Eq. (25).

 1
1 1 2 2( ) ( )k k k k k k

id id id id d idV wV c r Pbest X c r Gbest X+ = + − + −  (24)

 1 1k k k
id id idX X V+ += +  (25)

 In the SPSO algorithm, the local and global optimizations can be balanced by adjusting w.  
Larger w values can enhance the algorithm’s global search capabilities, while smaller w 
values can enhance the algorithm’s local search capabilities.  To achieve a search balance, 
speed exceeding Vdmax can be removed by artificially reducing the value of w.  The number of 
iterations can also be reduced by decreasing the value of w.  Regarding the SPSO algorithm, the 
moving direction of the particle consists of three parts, namely, the original particle velocity k

idV , 
the distance ( )k k

id idPbest X−  in the space relative to the local optimal position of the particle 
itself, and the distance ( )k k

d idGbest X−  in the space relative to the global optimal position of the 
group.  The importance of each part is determined by the respective weight coefficients w, c1r1, 
and c2r2.
 Ebethart proposed a strategy for reducing the inertia weight coefficient w on the basis of 
the number of incremental iterations.(25)  The algorithm achieves a large w value with a small 
number of iterations and thus has a strong ability to search for new regions.  As the value of w 
decreases, the convergence ability of the algorithm is gradually enhanced to allow it to search 
for potential optimal solutions more finely.  Ebethart experimentally found that w from 0.9 to 0.4 
results in a better performance of the algorithm for both search range and search accuracy and 
also gives the following linear decrement equation, where kmax and k are the maximum number 
of iterations and the current number of iterations, and wstart and wend are the starting and ending 
values of the inertia weight coefficient, respectively.

 
start end

k start
max

w ww w k
k

−
= − ×  (26)

5.2 Improvement of chemotaxis step size

 We propose to use a composite function to control the change in the step size.  The function 
includes an e-exponential function, a logarithmic function, and a trigonometric function.  
It exhibits a decreasing trend, so that the algorithm has a relatively large step size at the 
beginning, which is beneficial for obtaining a stronger global search capability.  In the later 
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stage, the algorithm has a relatively small step size, which provides the algorithm with a better 
local searchability.  Therefore, the improved algorithm gradually evolves from the initial wide 
search range to the later finer search accuracy, which helps to acquire the optimal solution as 
soon as possible.  We analyze the improved step function in detail.
 For the cosine function, the slope of the function curve changes periodically.  For example, 
the slope of the curve of the function cos(x) in the interval (0, π) exhibits three states, which 
are followed by a slow decline, sharp decline, and gentle decline.  Within the interval (0, π/2), 
the cos(x) function exhibits a slow to rapid decline as x increases.  In the composite function, 
x = (itermax + iter) × π/24 is included in the interval (0, π/2) and increases as k increases.  
Figure 8(a) shows the image of the cosine function in the interval [−π/2, 3π/2] to facilitate the 
understanding of  the characteristics of the function (Note: π ≈ 3.1415926).
 Since the composite function that controls the step size requires a logarithmic function, 
we briefly introduce the nature of the logarithmic function to be used.  First, the base of the 
logarithmic function should be a value greater than 0 but not 1.  For example, when 0 < a < 1, 
the logarithmic function exhibits a decreasing trend; when a > 1, the logarithmic function 
exhibits an increasing trend.  The plot of this function is shown in Fig. 8(b).
 The value of the function cos((itermax + iter)π/24) must be between 0 and 1.  For this function 
being the base of the logarithmic function, the plot is shown in Fig. 9(a) with 0 < a < 1.  The 
base of the exponential function is replaced by cos((itermax + iter)π/24).  Here, we assume that 
the cosine function is a constant, then the function y = logcos((itermax + iter)π/24)x decreases with 
increasing x, and when x > 1, the function value is less than 0.
 In Fig. 9(b), when 0 < a < 1, if the absolute value of the original logarithm function is 
y = |logax|, then the part of the original logarithm function less than 0 is on the x-axis.  The 
y = logax function image with a > 1 is presented on the plot.  By observing the image of the 
segment, it can be found that the function gradually increases as x increases, and conversely, the 
function gradually decreases as x decreases.

(a) (b)

Fig. 8. (Color online) Plots of basic functions. (a) Cosine function in the interval [−π/2, 3π/2].  (b) Plot of 
logarithmic function.
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 Now, we analyze the influence of the logarithm when the base a of the logarithm function 
y = logax takes a different value.  Since only the case where the bottom value is greater than 
0 and less than 1 is analyzed, the results obtained with base numbers 1/5, 1/3, and 1/2 are 
compared, and the corresponding logarithmic function size relationship is shown in Fig. 
9(a).  In this figure, these logarithmic functions with base numbers 1/5, 1/3, and 1/2 are all 
from 0.001 to 5, and the minimum unit of advance is 0.01.  The 100 on the x-axis represents 
100 minimum advance units, that is, 0.01 × 100 = 1.  Similarly, 150 on the x-axis represents 
the value 1.5, 300 represents the value 3, and 500 represents the value 5.  Intercepting the 
arguments of <1<5<5 in Fig. 9(a), we find that the different bottom functions with the same 
x value have the relationship log

1/5
x > log

1/3
x > log

1/2
x when the base is at (0, 1).  In the 

meantime, the function value decreases as the base increases.  Under the same conditions, the 
relationship |log

1/5
x| < |log

1/3
x| < |log

1/2
x| can be derived, as shown in Fig. 9(b).  In addition, 

the logarithmic absolute function value involved in the step function numerator is a function 
of cos((itermax + iter)π/24) with (itermax − iter + 1) being an independent variable.  Within the 
effective range, the base function gradually decreases as the iter increases.  The independent 
variable function gradually decreases as the iter increases.  Therefore, it can be seen that the 
function numerator gradually becomes smaller as iter increases, and the process of decrement is 
also in line to design a new step.
 Combining the previously introduced cosine functions and logarithmic functions, we 
propose a new chemotaxis step size expression based on the above analysis:

 ( )
( )

2
2

24
cos

log ( 1)

( ) exp

log 7

max max

max min min

iter iter iter iter

C i C C C

 
 
 
 

 
  
 

+ π

 
 

− + 
 
 = − + 
 

  
 
 
 

 

, (27)

(a) (b)

Fig. 9. (Color online) Plots of different functions when bases are 1/5, 1/3, and 1/2. (a) Logarithmic function.  (b) 
Logarithmic absolute function value.
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where Cmax and Cmin are the maximum and minimum step sizes, and itermax and iter are the 
maximum number of iterations and the current number of iterations, respectively.  The function 
value of the e-index first increases gradually and then increases sharply as the independent 
variable becomes larger.
 Since the position of the bacteria in the solution space is random, only a small number of 
bacterial individuals gather near the initial global advantage at the beginning of the algorithm.  
The new step size design allows bacteria to initially have a relatively large-varying step size 
and a wide range of search capabilities, i.e., a strong global search capability.  As the number 
of iterations increases, the chemotaxis step size of the bacteria is gradually reduced, and the 
accuracy of the search is gradually improved, that is, the local search ability becomes strong.  
The new chemotaxis step strategy proposed in this paper takes into account locality and 
globality and thus has a higher convergence speed.

5.3 Improvement of reproduction

 In the original BFO algorithm, the replication process plays a role in screening elite 
individuals, sorting all bacteria in accordance with their health function, and retaining the top 
50% of the individuals and copying them once, so that all individuals in the new population 
have excellent characteristics.  In this paper, the biological characteristics are introduced, that is, 
they have the characteristics of preying on other bacteria.  Here, the biological predation habit 
of the T4 phage infecting E. coli is introduced to achieve the effect of eliminating undesirable 
individuals in the flora.
 The T4 phage can infect E. coli.  In general, a T4 phage can release 100 to 200 progeny 
individuals after a certain time of infection of a bacterium, which means that an equal number 
of E. coli individuals are eliminated.  In BFO and its improved algorithm, the number of flora 
is not set to such a large number, because although high populations help to improve the ability 
to find the optimal solution in the solution space, it will take a long time.  At the same time, the 
BFO algorithm and its improved algorithm are used to obtain the global optimal solution.  For 
example, in fields such as PID control systems and image optimization, these applications often 
have strict requirements for task processing time, and the calculation time cannot be too slow.  
Therefore, in consideration of the limitations of the actual situation, it is necessary to impose 
certain conditions on the generation rate of the progeny of the T4 phage.  Let R(N) denote 
the number of progeny individuals generated after the phage individual infects the E. coli 
individual,

 R(N) = (3N − 2) × 2N + N and 2S > 2NS − R(N) > S. (28)

 The number of E. coli individuals in the flora is S, N is the number of progeny of the phage 
infecting the E. coli, and 2NS is the number of all bacterial individuals in the population of all 
bacterial individuals of the original population after N divisions and reproductions.  R(N) is 
defined by the above inequalities for S and N.
 As a condition of the biological behavior of T4 phage, it is stipulated that E. coli cells need 
not retain half of the population and then replicate as specified by the original algorithm, but 
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instead, N bacteria of the entire population are replicated N times.  At the same time, a phage 
is introduced to infect an E. coli individual, and N-proliferation is performed in the body in 
accordance with the R(N) rule to generate progeny phage.  In this paper, it is stipulated that 
when these phages reinvade the bacteria, they will perish with the host.  
 From the specific value of S, the N value can be determined and the number of E. coli 
[2NS − R(N)] in the new population can be obtained.  Then these individuals are sorted in 
accordance with the health value, and the former S bacteria are retained as all the individuals of 
the new population, thus achieving the screening of excellent individuals.

6. Results and Discussion

6.1	 System	specifications
 
 All the algorithms are implemented using MATLAB 7.0, version 7.0.0.19920 (R14), as shown 
in Fig. 10.  The main frequency of the processor is 2.0 GHz and the memory size is 3 GB.

6.2 Test functions

 In this work, we partitioned each of the functions below into simulating and testing functions 
so that the performance of various algorithms can be tested and evaluated comprehensively.  
The images of all functions simulated by MATLAB are shown as Fig. 11.
 Sphere function: The formula of the sphere function is shown as Eq. (29).  From the image 
of the sphere function, we can see that its global optimum point is {0, ..., 0}, then the global 
optimum value corresponding to the function is f(x) = 0.

 2

1
( )

n

i
i

f x X
=

= ∑  (29)

Fig. 10. (Color online) Operation interface of MATLAB development environment.
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Fig. 11. (Color online) MATLAB simulation images of different test functions. (a) Sphere function. (b) Rosenbrock 
function. (c) Rastrigin function. (d) Griewank function. (e) Standard test model.

(a) (b)

(c) (d) (e)

 Rosenbrock function: The formula is shown as Eq. (30).  Although the valley of this function 
is easily found, the algorithm is easily misled by the gradient information of the function, and 
a small change in the value in the valley makes it difficult to find the global minimum.  From 
the image of the function, we can see that its global optimum point is {1, ..., 1}, where the global 
optimal value f(x) = 0 is obtained.

 
2

1
( ) +

n

i i
i

f x X X
=

= ∑  (30)

 Rastrigin function: It is difficult to find the minimum value of the function, which mainly 
depends on a larger search space of the function and a large number of deep local minimum 
values of the function arranged in accordance with the sinusoidal inflection points.  The 
formula is shown as Eq. (31).  The global minimum is the global optimal point at {0, ..., 0}.  The 
function value corresponding to this point is f(x) = 0.  It should be noted that the optimization 
algorithm easily falls into the local optimum.

 
2 2

1
( ) ( 10cos(2 ) 10)

n

i i
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f x X Xπ
=

= − +∑  (31)
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 Griewank function: Its mathematical description is shown as Eq. (32).  This function is 
a complex multimodal function with local minimum points and large obstacles.  The high 
correlation of variables makes the algorithm fall into a local optimum easily.  The global 
optimal point of the function is at {0, ..., 0} with the corresponding function value of f(x) = 0.

 2

1 1

1001( ) ( 100) cos 1
4000

nn
i

i
i i

Xf x X
i= =

− 
= − − + 

 
∑ ∏  (32)

 Standard test function: The selection of standard test functions is shown as Eq. (33).  We 
discuss the simulation results of the traditional BFO algorithm, C28BFO algorithm, and 
CPSOBFO algorithm running on standard test functions.

 2

1
( )

n

i i
i

f x X X
=

= +∑  (33)

6.3 Simulation results

 We optimize the parameters of the two improved algorithms, and then run the optimized 
algorithm on the standard test function to obtain the simulation results.  Additionally, we 
compare the simulation results of the improved algorithm and the traditional algorithm and 
discuss the performance of the improved algorithm.
 The parameters of the C28BFO algorithm are optimized as follows: the bacterial population 
is set to 50, the dimension of the search space is 15, the migration probability Ped is 0.25, the 
minimum chemotaxis step Cmin is 0.05, the number of chemotaxis executions Nc is 1000, the 
number of replications Nre is 5, the number of executions Ned is 2, the maximum number of steps 
forward in the same direction during chemotaxis Ns is 4, the number of excellent individuals 
retained in the replication behavior is Sf = S/5, and the maximum number of iterations is 10000.
 The parameters of the CPSOBFO algorithm are also optimized as follows: bacterial 
population size of 52, search space dimension of 15, migration probability Ped of 0.25, maximum 
and minimum chemotaxis step sizes of Cmax = 0.1 and 0.05, and Cmin = 0.1 and 0.05, number of 
chemotaxis executions NC of 1000, replication number Nre of 5, number of migration executions 
Ned of 2, maximum number of steps forward in the same direction during chemotaxis of 4, and 
c1 and c2 of 2.05.  
 After setting the parameters, simulations with both algorithms are performed 10000 times.  
Several indicators for evaluating the performance of these algorithms are obtained: min value, 
max value, average value, and standard deviation.  The standard data obtained from eight 
simulations with C28BFO and CPSOBFO algorithms are shown in Tables 2 and 3.
 As shown, the simulated data are close to each other after a large number of iterations.  At 
the same time, the simulated images for each group are similar.  Therefore, the corresponding 
images of the first group of data in the table are given as an example.  
 The results of simulations using the C28BFO algorithm shown in Fig. 12(a) demonstrate 
that the C28BFO algorithm finds the minimum value and shows good global convergence in 
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Table 2 
Results of simulation with C28BFO algorithm.
S/N Minimum Maximum Average value Standard deviation
1 9.8535 6.8647e+004 1.3817e+003 7.4929e+003
2 9.0499 6.9979e+004 1.3145e+003 7.1791e+003
3 10.2501 6.5632e+004 1.3877e+003 7.1940e+003
4 12.8886 6.4345e+004 1.3878e+003 7.1507e+003
5 9.7737 6.6766e+004 1.2079e+003 6.8080e+003
6 7.8143 7.3082e+004 1.3745e+003 7.6817e+003
7 9.6852 7.0552e+004 1.3794e+003 7.5952e+003
8 10.3507 7.3194e+004 1.4279e+003 7.5933e+003

Table 3 
Results of simulation with CPSOBFO algorithm.
S/N Minimum Maximum Average value Standard deviation
1 0.1012 6.3004e+004 9.1633e+003 1.5509e+004
2 0.1241 6.7967e+004 9.2164e+003 1.7492e+004
3 0.1016 6.6854e+004 1.0333e+004 1.6819e+004
4 0.1059 6.6021e+004 9.2164e+003 1.5768e+004
5 0.0971 6.4306e+004 9.6864e+003 1.5955e+004
6 0.0920 7.5300e+004 1.2640e+004 1.9540e+004
7 0.0965 6.8206e+004 1.0797e+004 1.7417e+004
8 0.0909 7.1584e+004 1.0884e+004 1.7797e+004

(a) (b)

Fig. 12. (Color online) MATLAB simulation image using the C28BFO algorithm. (a) Improved algorithm. (b) BFO 
algorithm.

the process of dealing with test function problems when the number of iterations is about 600.  
Figure 12(b) shows that the original BFO algorithm usually converges only after about 5800 
iterations.  Through the comparison, we can see that the C28BFO algorithm has a better overall 
performance.
 Similarly, as shown in Fig. 13(a).  the CPSOBFO algorithm finds the minimum value and 
shows good global convergence when the number of iterations is about 4500 times.  Figure 
13(b) shows that the original BFO algorithm usually converges only after about 6000 iterations.  
Compared with the BFO algorithm, the CPSOBFO algorithm has better overall performance.
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6.4 Test results

 In this section, four kinds of algorithms, that is, the GA algorithm, the BFO algorithm, 
the C28BFO algorithm, and the CPSOBFO algorithm, are applied to complex test functions, 
including the Sphere function, Rosenbrock function, Rastrigin function, and Griewank function.  
For complex functions with different characteristics, we discuss the different performances 
of various algorithms referring to the test results and evaluate the robustness of the improved 
algorithms.
 The results of tests using the four algorithms for the Sphere function are given in Table 4, 
and Fig. 14(a) shows the images for the four algorithms from 0 to 1000 iterations.  In addition, 
n = 12 and Cmin = 0.02 were selected in the test.  
 As shown, the GA algorithm drops faster, but quickly falls into a local optimum at about 100 
iterations.  Before 200 iterations, the C28BFO algorithm has a better fitness value; after 200 
iterations, the CPSOBFO algorithm drops faster, and the convergence is the best among the four 
functions.  The C28BFO algorithm is also slightly better than the BFO algorithm.  Therefore, 
the two improved algorithms proposed in this paper show superior convergence properties for 
the Sphere test function over the traditional algorithms.
 The results of tests using the four algorithms for the Rosenbrock function are given in Table 
5, and Fig. 14(b) shows the images of the four algorithms from 0 to 1000 iterations.  In addition, 
n = 12 and Cmin = 0.05 were selected in the test.
 As shown, the GA drops the fastest at the beginning and falls into a local optimum at about 
50 iterations.  The C28BFO algorithm dropped faster before 900 iterations, and the CPSOBFO 
algorithm slowed slightly faster than the C28BFO algorithm after 900 iterations.  Both the 
C28BFO algorithm and the CPSOBFO algorithm are far superior to the GA algorithm and the 
BFO algorithm, and the convergence of the two improved algorithms for the Rosenbrock test 
function is similar.

(a) (b)

Fig. 13. (Color online) MATLAB simulation image using the CPSOBFO algorithms. (a) Improved algorithm. (b) 
BFO algorithm.
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Fig. 14. (Color online) Results of algorithms for various test functions. (a) Sphere function. (b) Rosenbrock function. (c) 
Rastrigin function. (d) Griewank function.

Table 4
Results of simulation with the four algorithms for the Sphere function.
Test function Minimum Maximum Average value Standard deviation
BFO 0.1165 6.9690e+004 1.4812e+004 2.0093e+004
GA 4.3713e+004 6.2961e+004 4.6172e+004 1.3527e+003
C28BFO 0.0853 6.3004e+004 1.2031e+004 1.7856e+004
CPSOBFO 0.08090 7.3580e+004 1.19888e+004 1.8727e+004

(a) (b)

(c) (d)

Table 5
Results of simulation with the four algorithms for the Rosenbrock function.
Test function Minimum Maximum Average value Standard deviation
BFO 225.3188 3.4477e+010 3.7777e+009 7.5218e+009
GA 1.1800e+010 2.6945e+010 1.3573e+010 1.3098e+009
C28-BFO 243.6926 2.4465e+010 2.0026e+009 4.8327e+009
CPSO-BFO 238.6558 3.2732e+010 2.3334e+009 5.7894e+009

 The results of tests using the four algorithms for the Rastrigin function are given in Table 6, 
and Fig. 14(c) shows the images of the four algorithms from 0 to 1000 iterations.  In addition, 
n = 12 and Cmin = 0.05 were selected in the test.
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 As shown, the convergence performances of the BFO algorithm, the C28BFO algorithm, and 
the CPSOBFO algorithm are relatively good.  However, compared with the BFO algorithm, the 
C28BFO algorithm and the CPSOBFO algorithm have better convergence, and the two perform 
similarly.  Although the GA algorithm has a very fast convergence rate at the beginning, it starts 
to enter a slow decline period at about 50 iterations, and falls into a local optimum at about the 
580th iteration.  Therefore, the two improved algorithms proposed in this paper show better 
convergence.
 The results of tests using the four algorithms for the Griewank function are given in Table 
7, and Fig. 14(c) shows the images of the four algorithms from 0 to 1000 iterations.  It should 
be noted that the algorithm function does not stop convergence when it is performed only 1000 
times, but continues to calculate until the algorithm function converges or reaches the maximum 
number of iterations.  In addition, n = 12 and Cmin = 0.05 were selected in the test.
 As shown, in the initial stage of the iteration, the GA algorithm has a good convergence 
speed, and it falls into the local optimum with 330 iterations.  The BFO algorithm, the 
CPSOBFO algorithm, and the C28BFO algorithm show better convergence.  It can be seen that 
the C28BFO algorithm has the best convergence, followed by the CPSOBFO algorithm and the 
BFO algorithm.

7. Conclusion and Future Directions

 We studied and improved the traditional BFO algorithm, and proposed two novel algorithms.  
Both algorithms achieved remarkable results in solving the convergence problem.  The 
optimization of the algorithm parameters greatly improved the search speed and accuracy of the 
algorithm.  The results of the overall performance assessment in this work are summarized as 
follows.
 First, the C28BFO algorithm was proposed to improve the chemotaxis, replication, and 
migration behaviors of the algorithm.  The chemotaxis step was improved to a decreasing 
composite function, and the management behavior of the 80/20 rule was applied to improve the 
screening of elites.  Then, the fixed probability migration behavior was improved to a migration 

Table 6
Results of simulation with the four algorithms for the Rastrigin function.
Test function Minimum Maximum Average value Standard deviation
BFO 240.3213 6.3737e+004 1.4217e+004 1.7534e+004
GA 4.0809e+004 6.2357e+004 4.2855e+004 1.3951e+003
C28BFO 66.7099 6.2688e+004 1.0420e+004 1.6313e+004
CPSOBFO 113.0388 6.312e+004 1.1199e+004 1.5986e+004

Table 7 
Results of simulation with the four algorithms for the Griewank function.
Test function Minimum Maximum Average value Standard deviation
BFO 0.0210 16.7172 3.7408 4.8635
GA 11.7086 15.6413 11.7574 0.2118
C28BFO 0.4281 15.3644 2.6954 3.9745
CPSOBFO 0.3650 17.0981 3.0520 4.2946
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behavior with a gradient migration probability.  Readers can explore more management ideas 
with the algorithm to achieve control of the group, such as The Mirror Theory and The Role 
Model effect.
 Second, the related technology of particle swarm optimization based on a constriction factor 
was introduced to improve the chemotaxis and replication behaviors.  Then, the CPSOBFO 
algorithm was proposed.  For the chemotaxis behavior, the particle update rate was used 
instead of the E. coli individual’s forward direction adjustment vector, and a composite function 
of several special functions was introduced as the chemotaxis steps.  For the replication 
behavior, the biological characteristics of a phage foraging E. coli were introduced to achieve 
the screening of excellent individuals.  Readers can extensively explore other optimization 
algorithms combined with BFO algorithms to improve the performance of the algorithm for 
specific issues such as the formation problem and optimal path.
 Third, the results of simulation using the two improved algorithms for the standard test 
function were given and compared with those of using the GA algorithm.  The results of tests 
using the four algorithms for various complex test functions were given, and the performance 
of each algorithm was comprehensively evaluated.  Then, the performance of each algorithm 
in different situations was analyzed in turn; few studies have included such a comprehensive 
comparison.  At present, the bionic algorithm, including the ant colony algorithm and 
combinatorial optimization, has very strict hardware requirements, and the research of bionic 
intelligent hardware is at the forefront of international research, so readers can explore this field.
 Collectively, the study reported in this paper revealed the shortcomings of the traditional 
BFO algorithm and detailed improvement methods were proposed.  The simulation results 
showed that the two improved algorithms have excellent performance in many complex test 
functions.

Acknowledgments

 The authors would like to acknowledge support from the following projects: (1) Liaoning 
Provincial Science and Technology Department Natural Fund Guidance Project, project name: 
weighted joint target recognition based on spatial relationship of contour segments (No. 2019-
ZD-0252); (2) Liaoning Province Higher Education Innovative Talents Program Support Project 
(No. LR2019058); (3) Liaoning Provincial Department of Education Project (No. LG201917); 
and (4) National Natural Science Foundation of China (No. 51575412).

References

 1 H. Gao, D. Peng, B. Niu, and B. Li: Int.Conf. Intelligent Computing (2013) 641. https://doi.org/10.1007/978-3-
642-39482-9_74

 2 V. Gazi and KM. Passino: IEEE Trans. Automat. Contr. 48 (2003) 4. https://doi.org/10.1109/TAC.2003.809765 
 3 K. Dervis: Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering 

Department. https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
 4 K. M. Passino: IEEE Control Syst. [serial online] 22 (2002) 3. https://doi.org/10.1109/MCS.2002.1004010
 5 Y. Liu, K. M. Passino, and M. Polycarpou: Proc. 2002 American Control Conf. (IEEE 2002) 1278. https://doi.

org/10.1109/ACC.2002.1023196

https://doi.org/10.1007/978-3-642-39482-9_74
https://doi.org/10.1007/978-3-642-39482-9_74
https://doi.org/10.1109/TAC.2003.809765
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
https://doi.org/10.1109/MCS.2002.1004010
https://doi.org/10.1109/ACC.2002.1023196
https://doi.org/10.1109/ACC.2002.1023196


Sensors and Materials, Vol. 32, No. 4 (2020) 1337

 6 H. C. Berg and N. Brown: Nature 239 (1972) 5374. https://doi.org/10.1038/239500a0
 7 G. Lowe, M. Meister, and N. Berg: Nature 325 (1987) 6105. https://doi.org/10.1038/325637a0
 8 S. Mishra and C. N. Bhende: IEEE Trans. Powor Deli. 22 (2006) 457. ht tps://doi.org /10.1109/

TPWRD.2006.876651 
 9 Y. Liu and K. M. Passino: J. Optimiz. Theory Appl. 115 (2002) 3. https://doi.org/10.1109/ACC.2002.1023196
 10 W. Tang, Q. Wu, and J. Saunders: Int. Conf. Computational Science and Its Applications. (2006) 556. https://

doi.org/10.1007/11751540_59
 11 B. Niu, Y. Fan, H. Wang, L. Li, and I. Wang: Int. J. Artif. Intell. 7 (2011) 11. https://doi.org/10.1155/2012/698057
 12 Y. Meng, S. Zhao, and S. Hu: Int. J. Comput. Sci. Math. 6 (2015) 471. ht tps://doi.org/10.1504/

IJCSM.2015.072969
 13 K. Tang, X. Xiao, J. Wu, J. Yang, and I. Luo: Appl. Intell. 46 (2017) 1. https://doi.org/10.1007/s10489-016-

08329
 14 O. P. Verma and S. Parihar: IEEE Trans. Fuzzy Syst. 25 (2017) 1. https://doi.org/10.1109/TFUZZ.2016.2551289
 15 L. Chen: 19th Int. Conf. Network-Based Information Systems (2016). https://doi.org/10.1109/NBiS.2016.48
 16 M. Tripathy and P. Mishra: Int. J. Elec. Power Energy Syst. 66 (2015). https://doi.org/10.1016/j.ijepes.2014.10.022
 17 X. Yan, Z. Zhang, J. Guo, S. Li, and S. Zhao:  Int. Conf. Intelligent Computing (Springer 2016) 627. https://doi.

org/10.1007/978-3-319-42291-6_62
 18 P. Manikandan and J. Ramyachitra: Sci. Rep. 7 (2017) 1. https://www.nature.com/articles/s41598-017-09499-1
 19 J. Zhou, Y. Xu, Y. Zheng, and Y. Zhang: Energies 10 (2017) 7. https://doi.org/10.3390/en10070911
 20 J. Lin and S. Lin: Int. J. Adv. Rob. Syst. 14 (2017) 4. https://doi.org/10.1177/1729881417720872
 21 H. Hossein: Appl. Math. Modell. 40 (2016) 2. https://doi.org/10.1016/j.apm.2015.09.004
 22 W. Steven and D. Sudhir: IBM J. Res. Dev. 38 (1994) 5. https://doi.org/10.1147/rd.385.0493
 23 M. Clerc and K. James:  IEEE Trans. Evol. Comput. 6 (2002) 1. https://doi.org/10.1109/4235.985692
 24 E. Ozcan and C. K. Mohan:  Proc. 1999 Congr. Evolutionary Computation-CEC99 3 (1999). https://doi.

org/10.1109/CEC.1999.785510
 25 Y. Shi and R. Eberhart: Proc. Conf. Evolutionary Computation (IEEE, 1998) 696. https://doi.org/10.1109/

ICEC.1998.699146

About the Authors

Hongwei Gao received his Ph.D. degree in pattern recognition and intelligent system from 
the Shenyang Institute of Automation (SIA), Chinese Academy of Sciences (CAS), in 2007.  
Since September 2015, he has been a Professor of the School of Automation and Electrical 
Engineering, Shenyang Ligong University.  He is currently the leader of academic direction for 
optical and electrical measuring technology and systems.  His research interests include digital 
image processing and analysis, stereo vision, and intelligent computation.  He has published 
more than 60 technical articles in these areas as first author or co-author.  (ghw1978@sohu.com)

Jiahui Yu received his B.S. and M.S. degrees from Shenyang Ligong University, China, in 
2017 and 2019, respectively.  Since 2019, he has been a Ph.D. candidate at the University of 
Portsmouth, U.K.  His research interests are in deep learning, machine vision, and human-robot 
interaction and collaboration.  (yujiahui77@163.com)

Dai Peng received his B.S. and M.S. degrees from Shenyang Ligong University, China, in 2012 
and 2015, respectively.  His research interests are in particle swarm optimization algorithm and 
machine vision.  (657332929@qq.com)

https://doi.org/10.1038/239500a0
https://doi.org/10.1038/325637a0
https://doi.org/10.1109/TPWRD.2006.876651
https://doi.org/10.1109/TPWRD.2006.876651
https://doi.org/10.1109/ACC.2002.1023196
https://doi.org/10.1007/11751540_59
https://doi.org/10.1007/11751540_59
https://doi.org/10.1155/2012/698057
https://doi.org/10.1504/IJCSM.2015.072969
https://doi.org/10.1504/IJCSM.2015.072969
https://doi.org/10.1007/s10489-016-08329
https://doi.org/10.1007/s10489-016-08329
https://doi.org/10.1109/TFUZZ.2016.2551289
https://doi.org/10.1109/NBiS.2016.48
https://doi.org/10.1016/j.ijepes.2014.10.022
https://doi.org/10.1007/978-3-319-42291-6_62
https://doi.org/10.1007/978-3-319-42291-6_62
https://www.nature.com/articles/s41598-017-09499-1
https://doi.org/10.3390/en10070911
https://doi.org/10.1177/1729881417720872
https://doi.org/10.1016/j.apm.2015.09.004
https://doi.org/10.1147/rd.385.0493
https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/CEC.1999.785510
https://doi.org/10.1109/CEC.1999.785510
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/ICEC.1998.699146


1338 Sensors and Materials, Vol. 32, No. 4 (2020)

Zhaojie Ju received his Ph.D. degree in intelligent robotics from the University of Portsmouth, 
U.K., in 2010.  He held a research appointment at the University College London, U.K., before 
he started his independent academic position at the University of Portsmouth, U.K., in 2012.  
His research interests include machine intelligence, pattern recognition, and their applications 
on human motion analysis, multifingered robotic hand control, human-robot interaction and 
collaboration, and robot skill learning.  (zhaojie.ju@port.ac.uk)

Yanju Liu received her Ph.D. degree from Shenyang University of Technology, China, in 2011 
She has been a professor at Shenyang Ligong University.  Her research interests are in intelligent 
instrumentation, networked measurement, and control technology.  (6133292@qq.com)


