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	 Sensor-based optimal spacecraft attitude reorientation control by momentum exchange based 
on a computational programming approach is addressed in this study.  The control problem of 
a rigid spacecraft actuated by more than three reaction wheels with an open time of maneuver 
is considered.  The modified Rodrigues parameters for large principal rotations are applied to 
derive our kinematical model.  The introduced algorithm can be realized by attitude sensors, 
such as rate gyros, with an appropriate arrangement.  The cost function to be minimized is 
defined as a weighted performance index of the time of the maneuver and the integral of the 
squared sum of wheel-torque magnitudes.  Instead of utilizing Pontryagin’s minimum principle, 
an iterative procedure is used to reformulate and solve the optimal reorientation control problem 
as a constrained nonlinear programming problem.  To show the feasibility of the proposed 
method, numerical simulated results are included for illustration.

1.	 Introduction

	 Many current and future spacecraft have mission requirements of pointing, tracking, 
and multitarget acquisition within the physical limits of actuators.  To achieve these tasks, 
sequences of revolutions about body principal axes are required to generate the required attitude 
reorientation maneuver.  During the spacecraft attitude maneuver, the directional vectors of  
bright celestial objects, such as the Sun and the Earth, are measured by optical sensors (e.g., 
infrared sensors or star sensors).  Then, the appropriate sensors communicate with an electronic 
module, which records the timing of triggers on the Sun and the Earth.  The attitude can be 
determined by processing the recorded data.  Many studies considering a rigid spacecraft with 
three attached control torques perpendicular to the three principal axes have been published, 
including studies on time-optimal attitude control,(1,2) energy-optimal control,(3) feedback 
control with input saturation,(4) finite-time output feedback control,(5) adaptive sliding mode 
control,(6–10) and path-planning control.(11,12)
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	 Because of their smooth operating modes, reaction wheel systems are usually utilized by 
momentum exchange to achieve and maintain the precise attitudes of a spacecraft.  The control 
input signals of a reaction wheel system are the wheel torques.  Many schemes of actuator fault 
detection(10) have been introduced to determine whether the control input signals are working 
precisely.  Normally, three reaction wheels are used to control a spacecraft with the wheel axes 
aligned with the body principal axes.  In practice, reaction wheel systems are assembled in a 
specific configuration with K wheels, where K > 3 provides redundancy in three-axis control.  
The K reaction wheels can be mounted in arbitrary orientations in the spacecraft frame, but at 
least three wheel directions have to be linearly independent for maneuver controllability.
	 Different aspects of spacecraft attitude control actuated by multiple reaction wheels have 
been addressed.  Studies include spacecraft large-angle attitude control with a four-wheel 
pyramid configuration by the application of anti-windup control and intelligent integrators,(13) 
and the synthesis of a four-wheel control algorithm by applying the energy-shaping technique.(14)  
However, rapid and energy-efficient large-angle attitude maneuvers are important in many 
spacecraft missions.  Consequently, research on attitude maneuvers of spacecraft actuated by 
multiple reaction wheels utilizing optimal control has also been reported.  For example, Vadali 
and Junkins addressed the optimal large-angle reorientation of a rigid asymmetric spacecraft 
with multiple reaction wheels by using an integral of a weighted quadratic function for control 
as the cost function.(15)  Carrington and Junkins developed a means of nonlinear optimal polynomial 
feedback control for the large-angle attitude maneuver of a spacecraft with four reaction wheels.(16)  
Wei and Lu introduced nonlinear feedback control logic for the near-minimum-time eigenaxis 
reorientation control of a rigid spacecraft actuated by four reaction wheels.(17)  In Ref. 18, the 
problem of a constrained minimum-time maneuver by reaction wheels was solved by particle 
swarm optimization.  In Ref. 19, kinematic steering attitude control by reaction wheels was 
proposed in the form of an inner–outer control loop.
	 In this study, the optimal large-angle reorientation attitude control (OLRAC) problem of a 
rigid spacecraft actuated by K reaction wheels between two different attitudes is considered.  
The rest-to-rest reoriented wheel-torque control inputs are determined to minimize a weighted 
performance index of the time of maneuver and the integral of the squared sum of wheel-torque 
magnitudes.  Owing to the difficulty of applying Pontryagin’s minimum principle (PMP),(20) 
the OLRAC problem of an asymmetric rigid spacecraft actuated by multiple reaction wheels 
with the free time of maneuver has not attracted much attention.  Thus, in this paper, we extend 
the concept in Refs. 21 and 22 to solve the OLRAC problem of a rigid spacecraft with an open 
time of maneuver that is actuated by K > 3 reaction wheels mounted in arbitrary and linearly 
independent orientations.
	 We introduce a novel iterative procedure to reformulate and solve the OLRAC problem as a 
constrained nonlinear programming (NLP) problem.  Then a method to generate initial feasible 
solutions of the NLP problem by using modified Rodrigues parameters (MRP) is also proposed.  
Since initial feasible solutions can be determined easily, the optimization of the NLP problem 
can be started from different points to find an optimal rest-to-rest reorientation maneuver 
between two different rotational attitudes under the constraints on wheel-torque inputs for a 
rigid spacecraft with K momentum wheels.  Numerical simulations are performed to show the 
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feasibility of the proposed method.  The proposed algorithm can be realized by using attitude 
sensors, such as rate gyros, GPS receivers, and star sensors, with an appropriate arrangement.
	 This paper is organized as follows.  Section 2 reviews the spacecraft and reaction wheel 
dynamics and attitude representation by the MRP for large principal rotations.  Then, the 
OLRAC of a rigid spacecraft between two rotational attitudes is formulated as an NLP problem 
in Sect. 3.  In Sect. 4, our approach to generate initial feasible solutions of the NLP problem 
from different starting points is introduced.  The procedure used to solve the OLRAC problem 
and the simulation results are shown in Sects. 5 and 6, respectively.  Finally, conclusions are 
given in Sect. 7.

2.	 Spacecraft and Reaction Wheel Dynamics and Attitude Representation

	 The large-angle maneuver of a rigid spacecraft actuated by a set of inertial reaction wheels 
is considered in this section.  The reaction wheel assembly is assumed to comprise K reaction 
wheels mounted with arbitrary orientations to provide redundancy for three-axis control.  
Usually, K > 3 wheels allows the failure of at most K − 3 reaction wheels.  The nonlinear three-
axis rotational dynamics of a rigid spacecraft can be represented as(13,23)

	 T 1( ) [ ],B B R B
−= − − × −J CJ C h Cuω ω 	 (1)

	 ,B B R R= +ω ωh J CJ 	 (2)

	 1 T ,R R B
−= − ω ωJ u C 	 (3)

where JB and JR are the inertia matrices of the spacecraft and reaction wheels, respectively.  h 
and ωB = [ωx ωy ωz]T are the angular momentum vector of the total system and the angular 
velocity vector of the body in the body coordinate frame, respectively.  ωR = [ω1 ω2 ... ωK]T is 
the wheel speed vector in the wheel coordinate frame.  u = [u1(t) u2(t) ... uK(t)]T is the wheel-
torque input vector and C is the 3 × K coordinate transformation matrix that describes the 
orientations of all reaction wheels in the spacecraft frame.  At least three column vectors of C 
must be linearly independent or (CCT)−1 must exist for independent three-axis control.  The 
vector Cu in Eq. (1) represents the three principal axis components of the spacecraft control 
torque inputs.  It is clear that matrix C is reduced to a third-order identity matrix for a rigid 
spacecraft equipped with three reaction wheels that are mounted coaxially with the origin of the 
principal axes at the spacecraft’s center of mass.  For a spacecraft-command control input vector 
ucom, the wheel-torque input vector is u = C+ucom, where C+ = CT(CCT)−1 is the pseudo inverse 
of transformation matrix C.
	 On the other hand, the attitude representation for a rigid spacecraft is described by the MRP.(24)  
The physical interpretation of the MRP arises from Euler’s theorem.  It states that the general 
displacement of a rigid body with one point fixed is uniquely determined by a principal unit 
vector e = [e1 e2 e3]T and a principal angle of rotation Φ.  The MRP vector σ [σ1 σ2 σ3]T is related 
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to the principal axis and principal angle by σ = etan(Φ/4), which is well defined for all principal 
axis rotations in the range 0° ≤ Φ ≤ 360°.  The body angular velocity ωB and the kinematics of 
rigid body motion are related by the celebrated formula(24)

	 ( ) ,B=σ σ ωG 	 (4)

where 

	 ( )T T
3 3 3 3( ) 0.5 ( ) 0.5(1 ) .× ×= − + − +σ σ σσ σ σG I S I 	 (5)

	 Here, S(∙) is the skew-symmetric matrix operator and I3×3 is the third-order identity matrix.

3.	 OLRAC Problem

	 The OLRAC problem of a rigid spacecraft actuated by K reaction wheels between two 
attitudes is to determine the wheel-torque inputs that will drive the rigid spacecraft system from 
an initial attitude to a desired final attitude, where the initial and final body angular velocities 
are assumed to be zero.  The performance index to be minimized is defined as a weighted 
performance index of the time of maneuver and the integral of the squared sum of wheel-torque 
magnitudes.  From the dynamics in Eqs. (1)‒(5), the OLRAC problem can be formulated as 
follows:
	 PROBLEM I: For a rigid spacecraft with the dynamics in Eqs. (1)‒(5), assuming that the 
initial attitude and angular velocity vectors are given as

	
T

1_ 2 _ 3_(0) ,initial initial initialσ σ σ =  σ 	 (6)

	 [ ]T(0) 0 0 0 ,B =ω 	 (7)

	
T

1_ 2 _ _(0) ,R initial initial K initialω ω ω =  ω 	 (8)

determine the wheel-torque input vector u = [u1(t) u2(t) ... uK(t)]T for [0, ]ft t∈  to minimize

	 ( )T
0

1ft
J dtρ= +∫ u u 	 (9)

subject to

	
T

1_ 2 _ 3_( ) ,f final final finalt σ σ σ =  σ 	 (10)
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	 [ ]T( ) 0 0 0 ,B ft =ω 	 (11)

and

	 , ,( ) for [0, ]; 1, 2, ..., ,i min i i max fu u t u t t i K≤ ≤ ∈ = 	 (12)

where [σ1_initial σ2_initial σ3_initial]T and [σ1_ final σ2_ final σ3_ final]T represent the initial and the 
desired final attitude vectors of the spacecraft, respectively.  In this problem, note that the time 
of maneuver tf is treated as a free variable and will be determined by an optimization process.  
The constant ρ is a weighting factor reflecting the relative importance of the control inputs with 
respect to the time of maneuver.  
	 Problem I is clearly difficult to solve because of the nonlinear and coupled relation of the 
rigid spacecraft system.  To cope with the difficulty, Problem I will be formulated and solved 
in the discrete-time domain by numerical methods.  The first step is to divide the interval 

[0, ]ft t∈  into N equal time intervals, where N is the number of control steps.(21,22)  That is,

	 1 for 1, 2, , .i i ft t t t N i N−− = ∆ = =  for i = 1, 2, ..., N.	 (13)

	 If the angular acceleration vector of the rigid spacecraft Bω  is assumed to be constant for 
each sub-interval, one obtains

	

1

0
( ) ( 1) ( 1) (0) ( )

for 1, 2, ...,

i

B B B B B
j

i i i t j t

i N

−

=
= − + − ⋅∆ = + ⋅∆

=

∑ ω ω ω ω ω
	 (14)

where ωB denotes ωB(i ∙ Δt).  Substituting Eq. (1) into Eq. (14) gives

	
[ ]

1
T 1

0
( ) (0) ( ) ( ) ( ) ( )

for 1, 2, ..., ,

i

B B B R B
j

i j j j t

i N

−
−

=
= + − − × − ⋅∆

=

∑ J CJ C h Cuω ω ω
	 (15)

where h( j) = JBωB( j) + CJRωR( j)  Similarly, from Eq. (3), one can obtain the iterative forms of 
the angular spinning rate vector of the reaction wheels as

	
( )

1
1 T T 1

0
( ) (0) ( ) ( ) ( ) ( ) ( )

for  = 1, 2, ..., .

i

R R R B R B
j

i j j j j t

i N

−= + − − − × − ∆CJ Cω ω ω
−

−

=
⋅  ∑ J u C J h Cu

	 (16)

	 Assuming the time derivative of the MRP vector to be constant for each sub-interval, one 
also obtains
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1

0
( ) ( 1) ( 1) (0) ( )

for 1, 2, ..., .

i

k
i i i t k t

i N

−

=
= − + − ⋅∆ = + ⋅∆

=

∑ σ σ σ σ σ
	 (17)

	 Using the formula for the body angular velocity vector in Eq. (4) and the MRP vector in Eq. (5), 
one can represent Eq. (17) as

	

1 1

0 0
( ) (0) ( ) (0) ( ( )) ( )

for 1, 2, ..., ,

i i

B
j j

i j t j j t

i N

− −

= =
= + ⋅∆ = + ⋅∆

=

∑ ∑ Gσ σ σ σ σ ω
	 (18)

where σ(i), σ ( j), G(σ( j)), and ωB(i) denote σ(i ∙ Δt), σ ( j ∙ Δt), G(σ( j ∙ Δt)), and ωB( j ∙ Δt), 
respectively.
	 From the above equations, one finds that ωB(N) is a function of the angular velocity vectors 
ωB(0), ωB(1), ..., ωB(N − 1), the spinning rate vectors of reaction wheels ωR(0), ωR(1), ..., ωR(N − 1), 
the input vectors u(0), u(1), ..., u(N − 1), and the sampling period Δt.  This means that

	 ωB(N) = f1(ωB(0), ..., ωB(N − 1), ωR(0), ..., ωR(N − 1), u(0), ..., u(N − 1), Δt).	 (19)

	 In a similar way, one can also obtain

	 ωR(N) = f2(ωB(0), ..., ωB(N − 1), ωR(0), ..., ωR(N − 1), u(0), ..., u(N − 1), Δt),	 (20)

	 σ(N) = f3(σ(0), ..., σ(N − 1), ωB(0), ..., ωB(N − 1), Δt).	 (21)

	 Using Eqs. (19) and (21), Problem I is now transformed to a standard constrained NLP 
problem as follows:
	 PROBLEM II: Given the initial attitudes in Eqs. (6)‒(8), determine the values of 
u(0), u(1), ..., u(N − 1), and Δt to minimize

	
1

2

1 1
( )

N K

i
j i

J N u j tρ
−

= =

 
 = + ⋅∆
 
 

∑∑ 	 (22)

subject to

	 Δt > 0,	 (23)

	
T

1_ 2 _ 3_( ) ,final final finalN σ σ σ =  σ 	 (24)

	 [ ]T( ) 0 0 0 ,B N =ω 	 (25)
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	 ui,min ≤ ui( j) ≤ ui,max for i = 1, 2, ..., K; j = 0, 1, ..., N − 1,	 (26)

where ωB(N) and σ(N) are respectively defined in Eqs. (19) and (21).
	 Although the OLRAC problem of a rigid spacecraft actuated by K reaction wheels can be 
formulated as Problem II, there are still several difficulties to be overcome.  One difficulty is 
the choice of the number of control steps N.  A larger value of N will clearly give more freedom 
for the input variables.  However, this also means a greater computational time for Problem II.  
For a linear system without constraints on the input variables, it has been shown that the initial 
value of N must be greater than the dimension of the state variables.(21,22)  Although no similar 
criteria must be satisfied for nonlinear systems, an integer larger than the dimension of the state 
variables will be chosen as the initial value of N in this paper.

4.	 Initial Feasible Solutions to Form Different Starting Points

	 After formulating the OLRAC problem of a rigid spacecraft actuated by K reaction wheels 
as an NLP problem, there are only two ways to guarantee the global minimum of this NLP 
problem.  The first one is to specify that the problem is convex (minimizing a convex objective 
function over a convex feasible region).  If the problem is not convex, then the second way is to 
choose a sufficient number of different starting points so that all local minima can be obtained.(25)  
In the convex case, a local minimum is also a global minimum.  In the nonconvex case, the 
global minimum is determined by evaluating the objective function at each local minimum.  
Since Problem II is clearly not a convex problem, only the second way can be used to find its 
global minimum.
	 In Problem II, an initial feasible solution is a set of u(0), u(1), ..., u(N − 1), and Δt satisfying 
the constraints in Eqs. (23)‒(26).  In this section, a systematic approach will be proposed to 
generate initial feasible solutions of Problem II.  If initial feasible solutions can be found easily, 
then the optimization process of Problem II can be started from different points to find all local 
minima.
	 The first step of this approach is to find a maneuvering trajectory of the rigid spacecraft 
that satisfies the boundary conditions in Eqs. (6)‒(8) and Eqs. (23)‒(25), irrespective of the 
constraint in Eq. (26).  If this trajectory satisfies the dynamics constraint in Eq. (26), then an 
initial feasible solution is found.  Otherwise, this trajectory can be adjusted to a feasible one by 
reducing the velocities and accelerations but tracking the same positions.  Such adjustment is 
similar to the situation of flying an airplane along a flight path.  If a high flight speed cannot be 
achieved, then the airplane should fly at a lower speed with the same course.
	 To generate a maneuver trajectory that satisfies the boundary conditions in Eqs. (6)‒(8) and 
Eqs. (23)‒(25) for a chosen value of N, the first step is to set

	

(0) 0,1

( ) (0) (1 ) ( ) for 2, ..., 1

( ) , 1,

i i

i

i N i N

N i N N

λ λ

=
= + − = −

 = +

σ

σ σ σ

σ

	 (27)
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where the values of λi, i = 2, ..., N − 1, are randomly selected from the interval [0, 1].  It is 
obvious that σ(0) and σ(N) are set to [σ1_initial σ2_initial σ3_initial]T and [σ1_ final σ2_ final σ3_ final]T 
in this procedure, respectively.  Thus, the constraints in Eqs. (6) and (24) will be satisfied.  By 
arbitrarily choosing a positive value of Δt to satisfy the constraint in Eq. (23), one obtains

	
( 1) ( )( ) i ii

t
+ −

=
∆

σ σσ  for i = 0, 1, ..., N.	 (28)

	 Therefore, it is apparent that

	 [ ]T(0) 0 0 0=σ 	 (29)

and

	 [ ]T( ) 0 0 0N =σ ,	 (30)

since σ(0) and σ(N) are set to be equal to σ(1) and σ(N + 1), respectively.
	 After determining the MRP vectors σ(i) and their derivatives ( )iσ  for i = 0, 1, ..., N, the 
spacecraft body velocity vector ωB(i) can be determined by substituting the values in Eqs. (27) 
and (28) into Eq. (4) to yield

	 [ ] 1( ) ( ( )) ( )B i i i−=ω σσG  for i = 0, 1, ..., N.	 (31)

	 The inverse matrix [G(σ(i))]−1 in Eq. (31) is well defined by the properties of the MRP.(24) 
Substituting Eqs. (29) and (30) into Eq. (31) gives ωB(0) = [0 0 0]T and ωB(N) = [0 0 0]T.  This in 
turn will verify that the constraints in Eqs. (7) and (25) are satisfied.  Therefore, the trajectory 
determined by the above steps will satisfy the boundary conditions in Eqs. (6) and (7) and Eqs. 
(23)‒(25).  However, one still needs to check that the torque constraints in Eq. (26) are satisfied.  
Therefore, we discuss how to generate the corresponding input torques and how to adjust the 
input torques to make them feasible.
	 After determining the angular velocity vectors ωB(0), ωB(1), ..., ωB(N) and angular 
acceleration vectors (0), (1), ..., ( 1)B B B N −ω ω ω    of the rigid spacecraft, the corresponding 
wheel-torque input vectors u(0), u(1), ..., u(N − 1) can be computed sequentially provided that 
the value of ωR(0) given by Eq. (8) is known.  Firstly, the initial total angular momentum vector 
h(0) can be obtained by substituting Eq. (8) into Eq. (2).  The spacecraft command control input 
vector ucom(0) is calculated as 

	 T( ) ( ) ( ) ( ) ( )com B R B Bi i i i = − − + × ω ωu J CJ C h  for i = 0.	 (33)
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	 Thus, the wheel-torque input vector u(0) is determined as 

	 ( ) ( )comi i+=u C u  for i = 0,	  (34)

where C+ = CT(CCT)−1 is the generalized inverse matrix of the transformation matrix C.  Then 
ωR(1) is determined by substituting ωR(0), ωB(0), h(0), and u(0) into Eq. (16).  By applying the 
procedure repeatedly from i = 0 to i = N − 1, u(0), u(1), ..., u(N − 1) are determined sequentially.  
A flowchart to illustrate the generation of u(0), u(1), ..., u(N − 1) is shown in Fig. 1.  

Fig. 1.	 Flowchart to illustrate the generation of u(0), u(1), …, u(N − 1).
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	 In the above procedure, it is very likely that the input constraints in Eq. (26) will be violated.  
Therefore, a simple and effective method will be proposed for their adjustment.  The basic 
idea is to increase the value of Δt to reduce the maneuvering velocities and accelerations of the 
rigid spacecraft while maintaining the same position.  Since the velocities and accelerations are 
decreased, the required input torques will also be decreased such that the constraints in Eq. (26) 
are met.  To provide a more detailed illustration, we will discuss how to generate and adjust a 
trajectory in the simulation examples.  Because the maneuvering trajectory in Eq. (27) can be 
randomly generated, a sufficient number of different initial feasible solutions of Problem II can 
be induced so that all local minima are obtained.  Thus, the global minimum is determined by 
evaluating the objective function at each local minimum.

5.	 Procedure to Solve the OLRAC Problem

	 The procedure to solve the OLRAC problem for a rigid spacecraft between two different 
rotational attitudes can be summarized as follows.
	 Algorithm A: (Solution of Problem II)
Step 1:	Choose a value of Δt, an integer N, and an integer nfeasible.

Step 2:	Set i = 0.
Step 3:	Formulate the OLRAC problem as the NLP Problem II with the chosen value of N.
Step 4:	i = i + 1.
Step 5:	Apply the procedure described in Sect. 4 to generate an initial feasible solution of 

Problem II.
Step 6:	Use any NLP algorithm to obtain a local minimum of Problem II based on the initial 

feasible solution (starting point) specified in Step 5.
Step 7:	If i ≤ nfeasible, then go to Step 5.  Otherwise continue.
Step 8:	Choose the smallest local minimum among those found in Step 6.
Step 9:	 N ∙ Δt is the time of maneuver.  End.
	 In the above algorithm, one finds that (nfeasible + 1) different starting points are generated for 
each value of N and at most (nfeasible + 1) local minima can be obtained.  Therefore, it is obvious 
that one can choose a large value of nfeasible to generate a sufficient number of starting points.  
However, this will also result in a long computation time.  Therefore, the choice of nfeasible 
involves a trade-off between the computation time and the number of different starting points.  
As a compromise, when performing the simulation examples in Sect. 6, nfeasible is chosen as 20.
	 A smaller value of Δt will result in higher discretization accuracy.  Therefore, an upper limit 
on the discretization sampling period, denoted by Δtlimit, can be chosen by considering the 
required accuracy of the discretization between the continuous system and the discrete system.  
If the optimal sampling period Δt(N) corresponding to a given value of Δt is greater than Δtlimit, 
then the value of N needs to be adjusted.  Since the choice of Δtlimit and the adjustment of N 
are not the main issues of this paper, the value of N will be fixed in the following simulation 
examples.  For a detailed discussion about the choice of Δtlimit and the adjustment of N, see Refs. (21) 
and (22).
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6.	 Simulation Results and Discussion

	 In this section, several simulations are used to verify the feasibility of the proposed 
method.  During each simulation, the K reaction wheels used to actuate the rigid 
spacecraft are chosen to be the same.  The inertia matrix of the spacecraft is assumed to 
be JB = diag(86.215, 85.070, 133.565) kg·m2.  The moment of inertia of each wheel is set to 
0.05 kg·m2.  Meanwhile, the magnitudes of the control saturation limit on each wheel torque 
are assumed to be ui,min = −0.55 N·m and ui,max = 0.55 N·m for i = 1, 2, ..., K.  The initial 
MRP vector is set to σ(0) =[0 0 0]T.  The final orientation corresponding to the principal 
unit vector and the principal angle of rotation are set to e = [0.4896 0.2032 0.8480]T and 
Φ = 2.5 rad, respectively.  That is, the final attitude in terms of the MRP vector is given by σ(tf) 
= [0.1582 0.0657 0.2740]T.  The initial and final angular velocities of the rigid spacecraft are 
assumed to be ωB(0) = ωB(tf) = [0 0 0]T rad/s.  For convenience, the initial speed of each reaction 
wheel is also set to zero.  
	 Numerical examples are presented for three major kinds of K-wheel reaction control systems.  
For the case of K = 3, the transformation matrix is assumed to be the third-order identity 
matrix, which means that three reaction wheels are aligned with the body axes.  For K = 4, the 
transformation matrix is given by

	

1 0 0 1 2

0 1 0 1 2
0 0 1 1 2

 
 

=  
 
 

C .

	 In the case of K = 5, the transformation matrix of this wheel configuration is set to  

	

1 0 0 1 2 1 2

0 1 0 1 2 1 2
0 0 1 1 2 1 2

− 
 

=  
 − 

C .

	 In general, the wheel-torque inputs corresponding to the maneuvering trajectory found 
in Sect. 4 will violate the dynamic constraint in Eq. (26).  For example, a plot of the set of 
infeasible wheel-torque inputs for K = 4, N = 35, and Δt = 16 s is shown in Fig. 2, in which the 
wheel torque u3 exceeds the saturation limits in some control steps.  A simple way to adjust 
this trajectory to be feasible is to increase Δt.  The plot of a set of feasible wheel-torque inputs 
corresponding to K = 4, N = 35, and Δt = 20 s is shown in Fig. 3.  After generating the initial 
feasible solutions, the OLRAC problem can be solved by applying Algorithm A.  By selecting 
the weighting factor ρ = 0.01, Δt and N ∙ Δt are found to be 0.6918 and 24.2124 s, respectively, 
for K = 4 and N = 35.  In comparison, for the time of maneuver (tf = N ∙ Δt), the values of 
81.6625 and 42.4974 s were given in Refs. (22) and (26), respectively.  This indicates the 
advantageousness of the present method.  
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	 For the case of ρ = 0.001 the simulation results of rigid spacecraft attitude maneuvers 
with  K = 3, 4, and 5 reaction wheels are shown in Fig. 4.  According to this figure, the rigid 
spacecraft accomplished the maneuver from the initial attitude to the final attitude in less than 
30 s with different values of K.  In addition, the greater the number of actuators, the faster the 
attitude maneuver is achieved.  Figure 5 depicts plots of the wheel-torque inputs for K = 5.  At 
least one of the wheel-torque inputs is always at its extreme value, which has been observed in 
many cases of time-optimal attitude control.

Fig. 2.	 Set of infeasible wheel-torque inputs corresponding to K = 4, N = 35, and Δt = 16 s.

Fig. 3.	 Set of feasible wheel-torque inputs corresponding to K = 4, N = 35, and Δt = 20 s.
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Fig. 4.	 (Color online) Time history of the MRP (a) σ1, (b) σ2, and (c) σ3 for the case of ρ = 0.01 and K = 3, 4, and 5. 

(a) (b)

(c)

Fig. 5.	 Wheel-torque inputs of the rigid spacecraft for ρ = 0.01 and K = 5.

	 Plots of the time of maneuver (tf) and the control effort (the integral of the squared sum 

of wheel-torque magnitudes, 2
10

( )ft K
ii u t dt

=∑∫ ) with respect to the weighting factor ρ for 

K = 3, 4, and 5 are illustrated in Fig. 6.  The time of maneuver approaches infinity as ρ→∞.  The 



1684	 Sensors and Materials, Vol. 32, No. 5 (2020)

minimal time-slewing control is achieved as ρ→0.  Meanwhile, a larger integral of the squared 
sum of wheel-torque magnitudes is required to perform this minimal time-slewing maneuver.  
Increasing the value of ρ will decrease the control effort and increase the time of maneuver.  For 
ρ ≤ 0.1, increasing the number of reaction wheels K will reduce the time of maneuver but require 
a larger control effort.  On the other hand, the control effort is almost the same with different 
K for large values of the weighting factor (ρ > 0.1).  It is concluded that the trade-off between 
the time of maneuver and the control effort for a spacecraft’s maneuvers can be determined by 
adjusting the weighting factor ρ.  Nearly minimum-time control with an appropriate control 
effort is obtained by choosing a suitable weighting factor of about ρ ≈ 0.1.  This is consistent 
with the main results provided in Ref. 22.
	 Figure 7 shows the rigid spacecraft angular velocity with respect to the normalized duration 
t/tf for K = 5 with three different weighting factors.  By comparing the results in Fig. 7 with 
the previous results in Refs. 1, 6, 24, 26, and 27, it can be seen that these angular velocity 
trajectories with a smaller value of ρ have similar characteristics of the time-optimal solutions.  
By increasing the value of ρ, smoother spacecraft maneuvers are produced.  
	 In Fig. 8, wheel-torque magnitudes are plotted with respect to the normalized duration 
t/tf for K = 5 and three different weighting factors ρ with N = 35 control steps.  It has been 
shown that for the case of rest-to-rest slewing with ρ = 10, all the wheel-torque magnitudes are 
approximately linear functions of time and do not reach their saturation levels.  By decreasing 
the weighting factor ρ, some of the wheel-torque magnitudes can be expected to reach their 
limits and contribute more to the rotation.  By successively decreasing the weighting factor ρ, 
minimum-time control can be obtained, where some or all of the wheel-torque magnitudes are 
of the bang-bang type.

Fig. 6.	 Plot of time of maneuver and control effort with respect to weighting factor for K = 3, 4, and 5.

(a)

(b)
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Fig. 7.	 Angular speeds (a) Ω1, (b) Ω2, and (c) Ω3 with respect to the normalized duration t / tf for K = 5.

(a)

(b)

(c)

(a) (b)

(c) (d)

Fig. 8.	 Plots of wheel-torque magnitudes (a) u1, (b) u2, (c) u3, and (d) u4 with respect to the normalized duration 
t / tf for K = 5. 
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7.	 Conclusion 

	 We presented a novel method to solve the OLRAC problem of a rigid asymmetric spacecraft 
actuated by K reaction wheels mounted in arbitrary orientations with respect to the spacecraft 
frame.  The performance index to be minimized is chosen as a weighted performance index 
of the time of the maneuver and the integral of the squared sum of wheel-torque magnitudes.  
Different from the conventional shooting method, which utilizes PMP, this optimal control 
problem is first transformed into an NLP problem by an iterative procedure.  The main 
advantage of the proposed method is that one does not need to solve a set of highly nonlinear 
differential equations.  A systematic method to generate initial feasible solutions is also 
proposed.  This allows the optimization process of the NLP problem to be started from many 
different points to search for all local minima.  Thus, the global minimum can be obtained by 
evaluating the objective function at each local minimum.  
	 The solutions obtained can be verified to satisfy the Kuhn‒Tucker condition,(25,28) which 
is a criterion used to check a local minimum.  If a solution does not satisfy the Kuhn‒Tucker 
condition, then the solution is not a global minimum.  However, even if a solution satisfies the 
Kuhn‒Tucker condition, one still cannot determine whether the solution is globally optimal 
or not.  Many phenomena in this paper have indicated that the solutions obtained should be 
globally optimal.  However, more effort will be needed to obtain a mathematical proof.  
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Fig. 8.	 (Continued) Plots of wheel-torque magnitudes (e) u5 with respect to the normalized duration t / tf for K = 5. 
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