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	 In this paper, we present a novel piezoelectric micromachined ultrasonic transducer (PMUT) 
array with a high fill factor and a large quality factor (Q).  With the reusable design of etching 
holes, the pitch between PMUTs is effectively minimized, improving the fill factor of the 
array.  With a newly developed surface micromachining process, the fabricated PMUT array 
only needs few etching holes to release the structure, and all sealed etching holes are removed 
from the resonance region, achieving a large Q.  The demonstrated process facilitates low-cost 
volume manufacturing.  As a result, a 50 × 50 PMUT array containing 48-μm-diameter PMUTs 
with a 52 μm pitch achieves a high fill factor of 67%.  For an individual PMUT, a large Q of 351 
is achieved at a center frequency of 12.62 MHz, the peak displacement is 3.25 nm/V, and the 
effective electromechanical coupling coefficient is 1.6%.  The achieved high fill factor and large 
Q render the proposed PMUT array promising in applications such as flow sensing, chemical 
detection, and energy transmission.

1.	 Introduction

	 Over the past decade, ultrasonic transducers have been intensively studied and developed 
for various applications, such as medical imaging, object recognition, flow sensing, and 
range finding.(1,2)  Conventional ultrasonic transducers comprising bulk piezoelectric ceramic 
materials suffer from acoustic impedance mismatching between the piezoelectric layer and 
the medium;(3) thus, creating a two-dimensional (2D) matrix ultrasonic array for three-
dimensional (3D) imaging is difficult.(4)  In contrast, micromachined ultrasonic transducers 
(MUTs) have a compliant membrane structure for good acoustic coupling to the medium, such 
as air or liquids,(5) and MUTs can incorporate numerous ultrasonic transducers into an array.  In 
addition, MUTs have advantages of miniaturized size,(6) low power consumption,(7) and low-
cost volume manufacturing,(8) granting MUTs remarkable potential in consumer electronics and 
biomedical applications.
	 Research on MUTs has significantly progressed, and on the basis of the transduction 
mechanism, they can now be divided into capacitive MUTs (CMUTs) and piezoelectric 
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MUTs (PMUTs).  Compared with CMUTs, PMUTs can achieve a desired sensitivity without 
limitations, such as a high bias voltage(9) or a small gap,(10) thus reducing circuit and fabrication 
complexity.(11)  In addition, PMUTs also have a low acoustic impedance and an enhanced 
sensitivity.(12)

	 However, difficulties in enhancing acoustic efficiency using a low-cost method have 
prevented the widespread practical application of PMUTs.  To increase the acoustic efficiency of 
PMUTs, the fill factor of the PMUT array should be sufficiently high.  On the basis of a typical 
wet isotropic etching process, various PMUT arrays were fabricated.  However, most of these 
arrays suffer from large PMUT dimensions and pitches resulting from the angled sidewalls 
during isotropic etching, which generate a low fill factor.  Through-wafer deep reactive ion 
etching (DRIE) is more efficient than wet isotropic etching to improve fill factor as observed in 
compact PMUT arrays with a PMUT diameter of 50 μm and a pitch of 100 μm fabricated via 
DRIE.(13)  However, the fill factors of PMUTs are restricted by the aspect ratio of DRIE.  To 
solve the above-mentioned fill factor problem, some PMUT arrays were implemented using 
silicon-on-insulator (SOI) technology,(14) but the fabrication is costly.
	 In addition, certain applications, such as flow sensing, chemical detection, and energy 
transmission, need to use continuous waves excited by PMUTs.(15)  Under these circumstances, 
the quality factor (Q) should be as large as possible to achieve acceptable acoustic efficiency.  
For example, in a previous work, PMUTs with a sloped profile were fabricated and their Q was 
improved to 332;(15) however, the variations of the side wall’s inclination are difficult to control.
	 In this study, we propose a novel PMUT array with improved fill factor and Q.  By designing 
a series of reusable etching holes on the surface of the silicon wafer, a compact design of a 
PMUT array is proposed.  The diameter of the proposed PMUT is 48 μm, and the pitch among 
the PMUTs is 52 μm, realizing a fill factor of 67%.  By minimizing the number of etching holes 
and removing them from the resonance region, the Q of an individual PMUT is enhanced to 
351.  Furthermore, the process presented herein is compatible with the complementary metal 
oxide semiconductor (CMOS) process, implying that the PMUT array is suitable for high-
volume manufacturing with low cost.

2.	 Materials and Methods

2.1	 Design strategy for the PMUT array

	 The 3D structure of a 4 × 4 PMUT array is presented in Fig. 1(a), with its cross-sectional 
view shown in Fig. 1(b).  The whole transduction structure is integrated on a (100) silicon 
substrate.  The PMUT array demonstrated herein comprises 48-µm-diameter PMUTs with a 52 
µm pitch.  The PMUTs are arranged in rows and columns that are electrically connected through 
the top and bottom electrode metal layers, respectively.  Each PMUT in the array is designed 
to connect with the surrounding etching holes [as shown in Fig. 1(c)] through microetching 
channels [as shown in Fig. 1(d)] to accelerate the release of the membrane.  Furthermore, each 
etching hole is shared by the surrounding PMUTs, and this design of reusable etching holes 
minimizes the spacing between PMUTs to 4 μm, which effectively improves the fill factor of 
the array.
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	 Each PMUT is a piezoelectric unimorph, comprising a piezoelectric layer of aluminum 
nitride (AlN) covered by Au and Pt electrodes on the top and bottom, respectively, an insulating 
layer of SiO2, and an elastic layer of polysilicon.  Cr and Ti are used as binders for the top 
and bottom electrodes, respectively.  Figure 2 shows the thickness of each layer.  Notably, 
the PMUTs demonstrated herein use AlN as the piezoelectric material because it has a lower 
dielectric constant than lead zirconate titanate (PZT), which enables high performance,(16)  
particularly in terms of sensitivity in the receiving mode.  Additionally, unlike PZT films, AlN 
can be deposited at low temperatures (<400 °C) and is fully compatible with CMOS processes.(17)

	 When the voltage signal input from the top and bottom electrodes excites the piezoelectric 
material, the PMUT vibrates owing to the strain mismatch between the piezoelectric and elastic 
layers, transmitting ultrasonic waves to the medium.  In contrast, when ultrasonic waves act 
on the piezoelectric material, the surfaces of the piezoelectric material accumulate charges, 
outputting an electrical signal.
	 The vibration mode shapes of a PMUT with a pressure of 100 kPa on the upper surface are 
obtained through the finite element method (FEM), as shown in Fig. 3, wherein the first mode 
shown in Fig. 3(a) is preferred for the largest displacement, i.e., for a high acoustic coupling 
efficiency.  The first resonant frequency can be calculated using Eq. (1) for a circular PMUT:(18)

	 0 2  0.47 t Ef
r ρ

= ,	 (1)

where t is the thickness of the multilayer, r is the radius of the circular PMUT, E is average 
Young’s modulus, and ρ is the average density of the PMUT.  The thicknesses, diameters, 

Fig. 1.	 (Color online) (a) 3D sketch of a 4 × 4 PMUT array. (b) 3D cross-sectional view showing the details of 
the structure, which is cut along the dotted line shown in (a). (c) Magnified view that shows the etching holes. (d) 
Magnified view that shows the etching channels.

(a) (b)

(c) (d)
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densities, and Young’s modules of materials are listed in Table 1.  To obtain a resonant 
frequency above 10 MHz, the diameter of an individual PMUT is set as 48 μm, calculated using 
Eq. (1).  The high resonant frequency of the PMUT provides an adequate axial resolution, and 
the small pitch of the PMUTs array is desirable for good array performance at high frequencies, 
such as the increased acoustic efficiency per unit area.  Therefore, in the design of the PMUT 
array, the spacing between the PMUTs has been minimized as far as possible under the 
fabrication process constraints to achieve a small pitch of 52 μm.
	 The electromechanical coupling of PMUTs can be enhanced by optimizing the area of the 
top electrode.  For a circular PMUT with a thin piezoelectric film, the edge of the top electrode 
should be placed where ( ) ( )   0r d dθσ σ+ = ,(14)  with rσ  and θσ  being the stresses in the r and 
θ directions, respectively, in polar coordinates in the piezoelectric plane, and d varies from 0 to 
48 μm along the diameter of the PMUT.  By applying a pressure of 100 kPa to the upper surface 

Fig. 2.	 (Color online) Cross-sectional view of a single PMUT and the thickness of each layer. 

Fig. 3.	 (Color online) Finite element simulation results of the vibration mode shapes of a circular PMUT. (a)–(d) 
correspond to the 1st–4th vibration mode shapes.

(a) (b)

(c) (d)
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of the PMUT, rσ  and θσ  can be obtained via FEM.  On the basis of the results shown in Fig. 4, 
the diameter of the top electrode was determined to be 34 μm.
	 PMUT sensitivity can be improved by optimizing the thickness of the piezoelectric layer.  
When the applied pressure of 100 kPa is evenly distributed on the upper surface of the PMUT, 
the voltage at the center of the piezoelectric layer can be obtained via FEM, and this voltage 
varies as the thickness of the piezoelectric layer changes from 0 to 3 μm, as shown in Fig. 5.  
According to this result, the thickness of the piezoelectric layer is chosen to be 1 μm to obtain 
maximum electrical potential and sensitivity.
	 Reducing the impact caused by etching holes on the resonant frequency can enhance the Q 
of the PMUTs.(19)  FEM simulation is used to optimize the arrangement of the etching holes.  
As shown in Fig. 6, the resonant frequency and eigenvalue quality factor are extracted from 
PMUT models with different numbers of etching holes present around the resonant area.  The 
corresponding result indicates that the PMUT without etching holes has a large eigenvalue 
quality factor, and the smaller the number of etching holes, the larger the eigenvalue quality 
factor.  Hence, in the PMUTs fabricated herein, four etching holes are set around the resonance 
region to achieve both a large Q and a high accelerated release rate for the membrane.  In 
addition, keeping the sealed etching holes far from the resonance region can reduce the acoustic 
wave leakage via the sealed etching holes into the substrate, which helps eliminate anchor loss.(20)  
Therefore, the etching holes are removed from the resonance region to further increase the Q of 
the PMUTs.

2.2	 Microfabrication technique

	 The PMUT process flow is shown in Fig. 7 and described step-by-step as follows.
(a)	The fabrication process begins with a conventional 4-in (100) Si wafer.  A 1-μm-thick low-

temperature oxide (LTO) layer and a 0.25-μm-thick phosphor silicate glass (PSG) layer are 
deposited by low-pressure chemical vapor deposition (LPCVD) and patterned in turn.  The 
PSG/LTO layers serve as the sacrificial structures for the PMUT.  The LTO layer defines the 
gap between the function layer and the substrate.  The PSG layer covering the LTO layer is 
used to increase the lateral etching speed, wherein the phosphorous content determines the 
etching rate.  The lateral etching channels only comprise PSG to facilitate sealing in later 
processes.

Table 1
Dimensions and material properties used in FEM simulation of PMUT.
Material Thickness (μm) Diameter (μm) Density (kg/m3) Young’s modulus (Pa)
Polysilicon 1.5 48 2320 160 × 109

SiO2 0.1 48 2200 70 × 109

Ti 0.02 48 4506 115.7 × 109

Pt 0.1 48 21450 168 × 109

AlN 1 48 3300 330 × 109

Cr 0.02 34 7150 279 × 109

Au 0.1 34 19300 70 × 109
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Fig. 5.	 (Color online) Finite element simulation voltage at the center of the piezoelectric layer with the thickness 
of the piezoelectric layer varying from 0 to 3 μm. The applied pressure of 100 kPa is evenly distributed on the upper 
surface of the PMUT, and the thicknesses of the other layers are shown in Fig. 2.

Fig. 6.	 (Color online) Finite element simulation resonant frequency and eigenvalue quality factor with different 
numbers of etching holes around the resonant area.

Fig. 4.	 (Color online) Finite element simulation values of stresses in the r and θ directions and their sum along a 
48-μm-diameter piezoelectric film with a pressure of 100 kPa applied to the upper surface of the PMUT.



Sensors and Materials, Vol. 32, No. 5 (2020)	 1791

(b)	A 1.5-μm-thick polysilicon layer is deposited via LPCVD at 620 °C.  The polysilicon layer 
serves as an elastic layer in the PMUT.  After the polysilicon layer is annealed to eliminate 
residual stress, it is patterned via RIE to open the etching holes for sacrificial layer etching.

(c)	The sacrificial layer is removed using 40% HF for 8–10 min.  Then, a 2-μm-thick tetraethyl 
orthosilicate (TEOS) oxide layer is deposited via LPCVD and patterned via buffered oxide 
etching (BOE) to seal the etching holes.  The reasons for choosing the TEOS oxide layer 
as the sealing plug are as follows: (1) the TEOS oxide layer provides excellent conformal 
coverage to etching holes, and (2) the low vacuum during TEOS oxide layer deposition 
(50 Pa at 720 °C) simultaneously vacuums the chamber of the PMUT.  As the wafer is cooled 
to room temperature (25 °C), the reference pressure in the chamber of the PMUT further 
decreases to about 15 Pa (100 mTorr).

(d)	A 0.1-μm-thick thermal SiO2 layer, which serves as an insulation layer in the PMUT, is 
grown.

(e)	A 20-nm-thick Ti layer and a 0.1-μm-thick Pt layer are sputtered in order and patterned via 
the lift-off technique.  The Pt layer serves as the bottom electrode and the Ti layer serves as 
its binder layer.

(f)	A 1-μm-thick AlN layer is sputtered and patterned via the iron beam technique to expose the 
bottom electrode.

(g)	Finally, a 20-nm-thick Cr layer and a 0.1-μm-thick Au layer are sputtered in order and 
patterned via the lift-off technique.  The Au layer serves as the top electrode and the Cr layer 
serves as its binder layer.

	 A scanning electron microscopy (SEM) image of the fabricated 50 × 50 PMUT array is 
shown in Fig. 8(a), where the array size is only 3 × 3 mm2.  Each PMUT fabricated herein 
has a diameter of 48 μm with a pitch of 52 μm, as shown in Fig. 8(b).  A comparison of the 
dimensions and fill factors of the PMUT array is shown in Table 2.  The present array achieves 

Fig. 7.	 (Color online) Fabrication of PMUT array.
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a fill factor of 67%.  Compared with those of previously published PMUT arrays,(13,21–23) the 
fill factor of the PMUT array proposed in this paper is improved by about 20–168%, which is 
attributed to the reusable design of etching holes in the PMUT array, and the proposed PMUT 
array features both the very small PMUT size and the very small pitch between PMUTs.  The 
magnified view in Fig. 8(c) shows the microchannels and sealed etching holes, the compact 
arrangement of which realizes a small space of 4 μm between the PMUTs, thus achieving a 
high fill factor of the PMUT array.  Additionally, one etching hole is reused by four surrounding 
PMUTs to reduce the number of etching holes around the resonance region, and the etching 

Table 2
Comparison of dimensions and fill factors of PMUT array.
PMUT dimension Pitch (μm) Fill factor (%) Reference
50 × 50 μm2 100 25 Ref. 13
Diameter = 100 μm 150 35 Ref. 21
Diameter = 510 μm 650 48 Ref. 22
100 × 125 μm2 150 56 Ref. 23
Diameter = 48 μm   52 67 This work

Fig. 8.	 (Color online) (a) SEM image of the fabricated 50 × 50 PMUT array. (b) Top view of the PMUT array. The 
diameter of a single PMUT is 48 μm, and the pitch of the PMUT array is 52 μm, achieving a fill factor of 67%. (c) 
The microchannels and sealed etching holes can be clearly observed; their compact arrangement realizes the high 
fill factor. In addition, one etching hole is reused by four surrounding PMUTs, and the etching holes are placed far 
from the resonance area, achieving a large Q. (d) Cross-sectional view of a PMUT. The etching chamber can be 
clearly observed, with the polysilicon, SiO2, Ti/Pt, AlN, and Cr/Au layers above it.
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holes are placed far from the resonance area, thereby increasing the Q of the PMUTs.  The 
cross-sectional view of a PMUT is shown in Fig. 8(d), wherein the etching chamber, elastic 
layer of polysilicon, isolated layer of SiO2, bottom electrode of Pt, piezoelectric layer of AlN, 
and top electrode of Au can be clearly observed.

3.	 Results and Discussion

	 The X-ray diffraction (XRD) test is implemented to characterize the quality of the AlN 
film.  As observed in Fig. 9, a peak exists near 36.04°, implying that AlN is sputtered onto the 
substrate along the preferred orientation of 002, resulting in a good piezoelectric performance 
of AlN.
	 A laser dropper vibrometer (LDV, Polytec) is used to measure the displacement frequency 
response in air.  The measurement is first conducted using an 8 V chirp signal with a frequency 
ranging between 10 and 15 MHz to excite a single PMUT.  As shown in Fig. 10, the PMUT 
has a large Q of 351 with a center frequency of 12.62 MHz.  Compared with the previously 
published PMUT arrays,(13,15) the proposed PMUT array generally exhibits a Q larger than those 
indicated in Ref. 13 (Q = 198) and Ref. 15 (Q = 332), which is attributed to that few etching 
holes are needed to release the PMUT structure, and all sealed etching holes are removed from 
the resonance region in the PMUT array.  More importantly, the herein proposed PMUT array 
features high-yield, low-cost, and volume fabrication with a simple surface micromachining 
process.  Then, the PMUT is excited using an 8 V sinusoidal signal with a frequency of 12.62 
MHz, and the peak displacement is observed to be 3.25 nm/V, as shown in Fig. 11.
	 The impedance of the fabricated PMUT is measured using an impedance analyzer (4294A, 
Agilent).  Figure 12 shows the measured impedance curves.  The resonant frequency derived 
from the curves is 12.55 MHz, which agrees well with the result of the displacement frequency 

Fig. 9.	 (Color online) XRD spectrum of the AlN 
film with a peak near 36.04°.

Fig. 10.	 (Color online) Displacement frequency 
response in air. The center frequency of the PMUT is 
12.62 MHz.
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response, and the antiresonant frequency is 12.65 MHz.  The effective electromechanical 
coupling coefficient keff is defined as(24)

	
2 2

2
2  a r

eff
a

f fk
f
−

= ,	 (2)

where fa and fr are the antiresonant and resonant frequencies, respectively.  On the basis of the fa 
and fr given above, 2

effk  is calculated as 1.6%.

4.	 Conclusions

	 A PMUT array with a high fill factor and a large Q is proposed herein.  The reusable design 
of etching holes and their optimized arrangement were analyzed and designed to achieve a high 
fill factor and a high Q.  The demonstrated process for the present PMUT array is compatible 
with the CMOS process facilitating low-cost volume manufacturing in standard semiconductor 
foundries.  Results show that the fill factor of the PMUT array and the Q of an individual 
PMUT are 67% and 351, respectively, validating the superior performance of the novel 
transducer design.  Compared with those of previously published PMUT arrays,(13,21–23) the fill 
factor of the PMUT array proposed in this paper is improved by about 20–168%, and the PMUT 
array proposed features both the very small PMUT size and very small pitch between PMUTs.  
Furthermore, the proposed PMUT array generally exhibits a Q larger than those indicated in 
Ref. 13 (Q = 198) and Ref. 15 (Q = 332).  More importantly, the herein proposed PMUT array 
features high-yield, low-costs, and volume fabrication with a simple surface micromachining 
process.  The PMUT with a high fill factor and a large Q together with low-cost fabrication 
is promising for use in applications such as flow sensing, chemical detection, and energy 
transmission.

Fig. 11.	 (Color online) The peak displacement of the 
PMUT is 3.25 nm/V.

Fig. 12.	 (Color online) Impedance spectrum of the 
PMUT. The resonant and antiresonant frequencies 
derived from the curves were 12.65 and 12.55 MHz, 
respectively.
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