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	 In this study, a driver assistance system that uses a network model based on deep learning 
technology was developed.  It has forward collision warning and lane-mark recognition features.  
The application uses a webcam to capture forward images, which are transferred to a computer 
in which object recognition has been implemented.  The system information is displayed on 
smart glasses through the network as an augmented reality image.  You Only Look Once (YOLO) 
real-time object detection (tiny YOLOv2) was used as the main architecture to reduce the 
network complexity and enhance computing efficiency.  During the training process, K-means 
was used to select the anchor box from each dataset.  This enabled the size of the predicted box 
to be determined as a reference to enhance efficiency.  This system makes it possible for the 
driver of a vehicle to learn about the movements and positions of vehicles ahead with respect 
to distance and lane marks.  This reduces the chance of collisions as well as the violations of 
traffic regulations and improves driving safety.

1.	 Introduction

	 According to the 2018 World Health Organization (WHO) global road safety report, the 
number of deaths from road traffic accidents continues to rise.  Around 1.35 million people die 
each year from traffic accidents, and the report emphasizes that road accidents are the main 
killer of children and adolescents.(1)  One of the main causes of road accidents arises from 
drivers paying too little attention to the vehicles on the road in front of them.  This may happen 
because the driver has been distracted or visibility is poor.  The problems may also be the fault 
of the drivers themselves.  A vehicle, pedestrian, or even an obstruction may suddenly appear, 
the driver reacts too slowly, or is unable to take corrective action soon enough, and a collision 
results.  The most common dangerous encounter is with another automobile, a pedestrian, or a 
motorcycle.  Whether it be the driver’s fault, or that of a pedestrian or another vehicle, these are 
all key factors contributing to the sudden appearance of an object in front of a moving vehicle 
and the cause of accidents.  Accidents often result from a violation of regulations such as non-
compliance with a traffic sign or traffic lights.
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	 Although many accidents result from intentional violations by drivers, many are the 
result of the failure of the driver to notice a traffic sign or traffic lights.  The problem may be 
environmental (bad weather) or the result of poor design and inadequate traffic control.  In any 
case, paying too little attention to the road ahead, to traffic signs, and particularly to the vehicle 
directly in front is dangerous.
	 The development of technology for autonomous vehicle control has been rapid, and 
according to the Boston Consulting Group (BCG),(2) the size of the global autonomous vehicle 
market will reach 42 billion US dollars by 2025.  The sale of automated vehicles will account 
for 12.4% of the overall market, and the market scale will double by 2035.  At present, the 
definition of autonomous vehicles in the industry generally complies with the J3016 standard 
of the Society of Automotive Engineers (SAE).  This standard has six levels (0 to 5) depending 
on the degree of vehicle automation.  Autonomous vehicles rely mainly on technologies such as 
the advanced driver assistance system (ADAS) and the Internet of Vehicles (IoV).  For ADAS, 
forward collision warning (FCW) is the key to solving the problem of a lack of attention to the 
road ahead and the vehicle in front.  Also, road sign recognition (RSR) is a key to the resolution 
of violations of traffic regulations.  However, most research is concerned with standing road 
signs and traffic lights, and signs on the ground are neglected.  Often, too little attention is paid 
to zebra crossings and yellow box junctions.  Failure, for any reason, to observe the instructions 
given by road-level signs can cause serious accidents that harm both the driver at fault and 
others on the road.
	 Early data processing algorithms had drawbacks, namely, features needed to be extracted 
manually and the computers available could not handle the large amounts of data involved.  
However, the graphics processing units (GPUs) now freely available, as well as modern fast 
multicore processors, have raised computing efficiency by orders of magnitude.  Artificial 
intelligence (AI) is now booming and deep learning (DL) has been rejuvenated and is now the 
most popular AI technology and a serious market focus.
	 Visual technology is another focus of the entire technology circle and has been a leading 
trend for years.  Major manufacturers have launched augmented reality (AR), virtual reality 
(VR), and mixed reality (MR) products, and these new technologies have been widely applied 
in various fields.  Spectacular and attractive products, often with special hardware, are available 
to the public.  The market is growing rapidly.  According to a forecast by Digi-Capital,(3) the 
AR market will reach 70 to 75 billion US dollars in 2023, and the VR market will reach 10 to 15 
billion US dollars.  AR technology has huge business potential.

2.	 Related Work

	 This paper has four parts: DL, object detection, FCW, and lane-mark recognition.

2.1	 DL

	 DL is a branch of machine learning (ML).  Its algorithms use an artificial neural network (ANN) 
architecture, which inputs data to implement feature learning.  The concept of an ANN can be 
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traced back to 1943, when a paper by neuroscientist Warren S. McCulloch and mathematician 
Walter Pitts appeared in the Bulletin of Mathematical Biology.(4)  In this paper, the concept of 
an ANN was proposed, as well as a mathematical model for artificial neurons.  This started the 
era of research into neural networks, and in 1958, Rosenblatt released the Perceptron,(5) the first 
ANN model, and laid a foundation for serious ANN research.  In 1974, Werbos proposed back-
propagation (BP)(6) to solve the problem of mutual exclusion, which was beyond the capability 
of basic sensors.  In 1986, Rumelhart et al. provided a more comprehensive description of BP(7) 
that caused a boom in ANN research.  However, a few years later, another BP problem was 
revealed, the vanishing gradient.  This caused stagnation in ANN research until 2006, when 
Hinton, the father of DL, proposed the restricted Boltzmann machine (RBM)(8) and the deep 
belief network (DBN).(9)  This solved the vanishing gradient problem, and the deep neural 
network (DNN) became DL.  However, the computing process was run on central processing 
units (CPUs) at that time.  The huge DL calculations strained the capabilities of CPUs, and 
once again, there was a lull in progress.  However, in 2012, at the ImageNet image recognition 
competition, two of Hinton’s students used a GPU plus a deep convolutional neural network 
(DCNN)(10) to win the championship.  At that time, GPU operation speed had reached more 
than 70% of that of CPUs.  After this competition, DL became one of the hottest current 
technologies.

2.2	 Object detection

	 There are two types of object detection algorithm: traditional and DL algorithms.  The 
traditional algorithm story began in 2001 when Viola and Jones wrote a thesis regarding 
object detection,(11) which combined three algorithms for facial recognition; they used integral 
image, adaboost, and the cascade classifier to achieve very good recognition.  There are two 
approaches to DL algorithms.  One approach is R-CNN,(12) proposed by Girshick et al. In this 
approach, algorithms first generate the candidate regions and then classify them.  Although 
these algorithms have high accuracy, they are slow.  The other approach includes You Only 
Look Once (YOLO)(13) proposed by Redmon et al., and SSD(14) offered by Liu et al. These 
algorithms predict the location and category probability of the object directly, and although the 
accuracy is lower, they are much faster than the R-CNN series.

2.3	 FCW

	 FCW is an indispensable core technology used in devices for FCW.  These include cameras 
and ultrasonic, radar, and optical sensors.  Cameras provide rich image data and can allow 
the category of a forward object to be identified.  This study concentrates on image-based 
FCW, and many other studies have been made on this aspect in recent years.  Among these, 
Song et al.(15) used stereo imaging to detect objects in forward vision and also employed UV 
disparity for image segmentation in the implementation of a FCW system.  Mukhtar et al.(16) 
selected the sensor first, followed by the detection and tracking of vehicles, and finally provided 
the best option for a collision avoidance system.
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2.4	 Lane-mark recognition

	 Some research was done on lane-mark recognition by Gupta and Choudhary,(17) and 
Mathibela et al.(18) used a single camera to first select a region of interest (ROI) image, and then 
used grayscale and smoothing before foreground detection and segmentation.  The connected 
components of the processed image were then found using principal component analysis (PCA), 
and classification was done using spatio-temporal incremental clustering (STIC) to check if it 
was a traffic lane line or a ground sign.  This was followed by graph embedding grassmann 
discriminant analysis (GGDA) to recognize ground-level signs.  Mathibela et al.(18) focused on 
the recognition of line-type ground signs.  They first divided the signs into seven categories, 
then used inverse perspective mapping (IPM) to convert the input images into aerial view 
images.  The node position of each image was then determined and used to classify the images.  
Final classification of the extracted ground road signs was done by random under sampling 
boost (RUSBoost) and conditional random field (CRF) algorithms.

3.	 Methodology

	 This section describes Anchor box selection, Tiny YOLO network, and FCW and lane-mark 
recognition.  The system flow chart is shown in Fig. 1.

3.1	 Anchor box selection

	 When YOLO was first used, the predicted box was calculated using the results of neural 
network prediction directly as the box value.  However, prediction using this method was 
inefficient and in YOLOv2, the anchor box was used, mainly to provide a reference of the size 
of the predicted box, which improved calculation efficiency.

Fig. 1.	 (Color online) (a) System training process and (b) system detection process.

(a) (b)
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Fig. 2.	 (Color online) Flow chart—K-means anchor box selection.

	 In this study the K-means algorithm was used for the selection of the anchor box and to 
classify the required number and size of the anchor boxes from all the ground truth boxes.  In 
addition, since the only anchor box values needed are width and height, the value of the center 
coordinate is not calculated.  The center points of all ground truth boxes are then set and 
consistent for classification.  The steps are shown in the classification flow chart in Fig. 2.

3.2	 Tiny YOLO network

	 (1) Network architecture: The network architecture used in this study was based on that of 
Tiny YOLO.  Tiny YOLO was selected to reduce network complexity and enhance computing 
efficiency, as well as to allow real-time computation.  The architecture has nine convolutional 
layers and six pooling layers, and adds batch normalization (BN)(19) in the first eight sets of the 
convolutional layer and uses Leaky ReLU (LReLU)(20) as the activation layer.  Figure 3 shows 
the architecture of the Tiny YOLO network.

Fig. 3.	 (Color online) The Tiny YOLO Network.
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	 (2) YOLOv2 principle: The main idea of YOLOv2 is to cut a picture of equal width and 
height into an S × S grid, predict B pieces of predicted boxes in each grid, and then predict the 
center coordinates, the size, the confidence, and the probability of C categories (see Fig. 4).
	 Equation (1) can be obtained from the above, and  the final predicted value can be obtained 
from Eq. (1).  S = 13, B = 5, and C = 6 are used as the settings for the demonstration.

	 ( )4 1finalP S S B C= × × × + + 	 (1)

	 The confidence is defined in Eq. (2), where Pr(Object) determines whether the predicted 
box contains the object: if there is no object, Pr(Object) = 0; if there is an object, Pr(Object) = 1.  
Since the network used in this study was the Tiny YOLO, the accuracy is relatively low 
compared with other networks; therefore, for the experimental results, the threshold of 
confidence was set to 0.45.
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	 In addition, IOU(boxp, boxr) is the Intersection over Union (IOU) of the predicted box and 
ground truth box.  The calculation method is shown in Eq. (3).  In the equation, p rbox box∩  is 
the intersection area of the predicted box and ground truth box, and p rbox box∪  is the union 
area of the predicted and ground truth boxes.
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Fig. 4.	 (Color online) Principle of YOLOv2.
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	 Figure 5 shows a demonstration diagram of the IOU.  The green frame is the ground truth 
box, the blue frame is the predicted box, the area enclosed by the red line is the union, and the 
area enclosed by the purple line is the intersection.
	 (3) Loss Function: The main purpose of the Loss Function is to evaluate the difference 
between the predicted value and the actual value.  It is expected that the Loss Function will 
approach 0 at the end to enable the neural network to have a good predictive effect.  The mean 
square error (MSE) method was used to make the difference between the predicted value and 
the actual value of the YOLO loss function positive and avoid possible positive and negative 
value offset.
	 The Bounding Box Loss Function was divided into four parts: the central coordinate loss, the 
size loss, the confidence loss, and the category probability loss.  Among these, the confidence of 
the bounding box was also divided into those with an object and those with no object, as shown 
in Eq. (4).
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3.3	 FCW and lane-mark recognition

	 (1) Object recognition: The neural network obtains the predicted box by calculation, but 
its central coordinates, size, and confidence are not extracted directly from the results.  If the 

Fig. 5.	 (Color online) Demonstration diagram of IOU.
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results of the prediction are used directly as settings for the predicted box, effective predictions 
cannot be properly calculated.  There are four parts (settings) to the predicted box: the central 
coordinates, the size, the confidence, and the category probability.  A predicted box diagram is 
shown in Fig. 6.
	 The first part is the central coordinates of the predicted box.

	 ( )_p x x xbox sigmoid t c= + 	 (5)

	 ( )_p y y ybox sigmoid t c= + 	 (6)

	 In Eqs. (5) and (6), boxp_x and boxp_y are the X and Y coordinates of the center of the 
predicted box, respectively.  tx and ty are the predicted values of the X and Y coordinates of the 
center of the predicted box, respectively.  cx and cy are the X and Y coordinates of the upper left 
of the related block of the current predicted box, respectively.  A Sigmoid function is used to 
limit tx and ty between 0 and 1 to prevent the coordinates in the box moving to other boxes.  
	 The second part is the size of the predicted box.

	 _ _
wt

p w a wbox box e= ⋅ 	 (7)

	 _ _
ht

p h a hbox box e= ⋅ 	 (8)

	 In Eqs. (7) and (8), boxp_w and boxp_h are the width and height of the predicted box, boxa_w 
and boxa_h are the width and height of the anchor box, and tw and th are the predicted width and 
height of the predicted box, respectively.  An exponential function is used to implement scaling 
to avoid the value being too high.  The predicted value is limited to between −0.2 and 0.2 via a 
Gaussian distribution.  

Fig. 6.	 (Color online) Predicted Box diagram.
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	 The third part is the confidence of the predicted box.

	 ( )_p o obox sigmoid t= 	 (9)

	 In Eq. (9), boxp_o is the confidence of the predicted box and to is its confidence predicted 
value.
	 The last part is the category probability of the predicted box.  

	 _p c cbox t= 	 (10)

	 In Eq. (10), boxp_c is the category probability of the predicted box and tc is its predicted 
value.
	 (2) FCW decision: In addition to object recognition, this system includes FCW to alert the 
driver to the approach of an object on the road ahead.  YOLOv2 can find an object and its 
position in a picture.  The distance between the object’s bounding box and the bottom edge of 
the picture is an indication of how close the object is to the camera.  The smaller this distance, 
the closer the object.  When the bounding box is close to the top of the picture, the object is far 
away.  A decision model can be established using this feature as follows.

	 _true, if ( 0.75)

false, otherwise
btm y hobject image

warning
> ×= 


	 (11)

	 In Eq. (11), objectbtm_y is the Y-axis coordinate at the bottom of the predicted box for the 
forward object and imageh is the height of the picture.  When the forward object exceeds the 
set value, the system will warn the driver.  Since this study was carried out in an urban area, 
the average speed was about 40 to 50 km/h, and a warning was expected when the distance 
between the object and the camera was 3 to 5 m.  The set value used was 75% of the total image 
height.  A schematic diagram of the object collision warning system is shown in Fig. 7.  The 
yellow part is the warning area, and when the image of the object enters this area, the system 
will send a warning.

Fig. 7.	 (Color online) Forward collision decision.
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4.	 Experimental

4.1	 Voice signal preprocessing

	 Figure 8 shows a hardware architecture diagram, which can be divided into three parts: an 
input device, a computing device, and a display device.  The input device used in this study was 
a Logitech C525 HD webcam, the computer was a D830MT computing platform with a GTX 
1080 Ti GPU for DL, and the AR display device used was BT-350 smart glasses.

4.2	 Dataset

	 The dataset used for training in this study was a record of images from the driving recorder.  
Each image was 1920 × 1080 pixels.  Three sets of data were used: a forward object, a night 
forward object, and a ground road sign.  The detailed information is shown in Table 1.

Fig. 8.	 (Color online) Hardware architecture.

Table 1 
(Color online) Classes and quantity of the dataset.
Dataset name Number of pictures Class Number of bounding boxes

Forward object 546

Person 200
Bicycle 200

Motorcycle 300
Car 300
Bus 200

Truck 200

Night forward object 159
Person 100

Motorcycle 200
Car 200

Lane-mark 1045

Go straight 200
Turn left 200

Turn right 200
Go straight left 200

Go straight right 200
Motorcycle waiting 

zone 200

Slow 200
Crosswalk 200

Yellow mesh 200
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4.3	 Anchor box setting

	 K-means was used to calculate three sets of concentrated anchor box data.  The results were 
scaled to 13 × 13 pixels, so that the size of the anchor box matched that of the last layer of the 
network.  The experimental results are shown in Table 2, and the schematics of the prior anchor 
are shown in Figs. 9–11.

Table 2 
(Color online) Anchor box setting.

Dataset name Anchor box Width (pixel) Height (pixel)

Forward object

Anchor box 1 	 1.02 	 0.83
Anchor box 2 	 1.6 	 1.12
Anchor box 3 	 2.7 	 2.08
Anchor box 4 	 2.02 	 4.2
Anchor box 5 	 0.71 	 0.53
Anchor box 6 	 0.68 	 1.6
Anchor box 7 	 1.05 	 2.18
Anchor box 8 	 0.46 	 1.13
Anchor box 9 	 4.15 	 3.61
Anchor box 10 	 0.29 	 0.66

Night forward object

Anchor box 1 	 0.62 	 1.69
Anchor box 2 	 1.28 	 0.86
Anchor box 3 	 0.33 	 0.96
Anchor box 4 	 2.88 	 4.97
Anchor box 5 	 2.23 	 1.66
Anchor box 6 	 0.74 	 0.51

Lane-mark

Anchor box 1 	 3.07 	 0.18
Anchor box 2 	 5.87 	 0.58
Anchor box 3 	 1.69 	 0.83
Anchor box 4 	 10.95 	 2.66
Anchor box 5 	 0.63 	 0.22
Anchor box 6 	 2.67 	 1.65
Anchor box 7 	 1.33 	 0.49
Anchor box 8 	 0.87 	 0.36
Anchor box 9 	 0.374 	 0.1
Anchor box 10 	 1.74 	 1.44

Fig. 9.	 (Color online) Prior anchor of forward 
object.

Fig. 10.	 (Color online) Prior anchor of night forward 
object.
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4.4	 Network model

	 Three network models based on the Tiny YOLO network were built: a forward object 
network, a night forward object network, and a ground road sign network.  For the Tiny YOLO 
network, preprocessing is necessary to resize the input image to 416 × 416 pixels.  The network 
model parameters are shown in Table 3, where Conv9(1) is the output layer of the forward object 
network, Conv9(2) is the output layer of the night forward object network, and Conv9(3) is the 
output layer of the ground road network.

Fig. 11.	 (Color online) Prior anchor of ground road sign.

Table 3 
(Color online) Parameters of network model.
Type Size / stride Filter number Input size Output size
Conv1 3×3 / 1 16 416 × 416 × 3 416 × 416 × 16
Maxp1 2×2 / 2 416 × 416 × 16 208 × 208 × 16
Conv2 3×3 / 1 32 208 × 208 × 16 208 × 208 × 32
Maxp2 2×2 / 2 208 × 208 × 32 104 × 104 × 32
Conv3 3×3 / 1 64 104 × 104 × 32 104 × 104 × 64
Maxp3 2×2 / 2 104 × 104 × 64 52 × 52 × 64
Conv4 3×3 / 1 128 52 × 52 × 64 52 × 52 × 128
Maxp4 2×2 / 2 52 × 52 × 128 26 × 26 × 128
Conv5 3×3 / 1 256 26 × 26 × 128 26 × 26 × 256
Maxp5 2×2 / 2 26 × 26 × 256 13 × 13 × 256
Conv6 3×3 / 1 512 13 × 13 × 256 13 × 13 × 512
Maxp6 2×2 / 1 13 × 13 × 512 13 × 13 × 512
Conv7 3×3 / 1 1024 13 × 13 × 512 13 × 13 × 1024
Conv8 3×3 / 1 1024 13 × 13 × 1024 13 × 13 × 1024
Conv9(1) 1×1 / 1 110 13 × 13 × 1024 13 × 13 × 110
Conv9(2) 1×1 / 1 48 13 × 13 × 1024 13 × 13 × 48
Conv9(3) 1×1 / 1 140 13 × 13 × 1024 13 × 13 × 140
Note: Conv = Convolutional, Maxp = Maxpool
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4.5	 Training process

	 Most of the network training was based on the loss function as the end of training.  When 
the loss function reached a certain value, or when the loss curve flattened, the network training 
stopped.  The loss curves of the three groups of network used in this study are shown in Fig. 12.

4.6	 Recognition results and AR

	 The system speed used in the FCW and lane-mark recognition experiments was 20 fps.  
The results of the daytime FCW, nighttime FCW, and lane-mark recognition experiments are 
respectively shown in Figs. 13–15.  In this study, the training dataset and trained network model 
were used to implement mAP-related experiments, and the experimental results are shown in 
Table 4.

Fig. 12.	 (Color online) Network Loss curves.

Fig. 13.	 (Color online) Daytime FCW.

Fig. 14.	 (Color online) Nighttime FCW.

Fig. 15.	 (Color online) Lane-mark Recognition.
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Fig. 16.	 (Color online) AR test results.

Table 4
(Color online) Experimental results.

Class Precision Recall AP mAP

Forward object

Motorcycle 	 0.9321 	 0.87 	 0.8445

	 0.8167

Car 	 0.974 	 0.8733 	 0.8644
Bus 	 0.9775 	 0.87 	 0.8581

Bicycle 	 0.9379 	 0.83 	 0.8121
Truck 	 0.9828 	 0.855 	 0.8505
Person 	 0.8882 	 0.715 	 0.6709

Night forward 
object

Car 	 0.9794 	 0.95 	 0.9416
	 0.806Motorcycle 	 0.8757 	 0.81 	 0.7443

Person 	 0.8636 	 0.76 	 0.732

Lane-mark

Turn left 	 0.7892 	 0.805 	 0.7423

	 0.8028

Go straight 	 0.7376 	 0.745 	 0.6237
Crosswalk 	 0.78 	 0.78 	 0.7131
Motorcycle 

waiting zone 	 0.92 	 0.92 	 0.8979

Go straight right 	 0.9792 	 0.945 	 0.9430
Turn right 	 0.8032 	 0.755 	 0.686

Slow 	 0.9459 	 0.875 	 0.8491
Yellow mesh 	 0.9838 	 0.91 	 0.9099

Go straight left 	 0.9514 	 0.88 	 0.8603

	 The results from the computer calculations were transmitted to the network via Screenleap 
and connected to the page with the smart glasses to obtain the current driving image and data 
from the two systems (Fig. 16).

5.	 Conclusion

	 The system proposed in this study has two parts with different functions: one is a FCW 
system and the other is for lane-mark recognition.  In these experiments, the data used for 
training for both forward object and ground RSR were 10 anchor box datasets separately 
determined by K-means.  The two sets of anchor boxes and datasets of the two systems were 
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used to train the forward object network and lane-mark network models.  A third forward 
object network model was trained for application at night.  The anchor box was set to 6, and 
this improved the performance of nighttime recognition.  A camera was used to capture the 
image of the vehicle ahead and was used to predict the type and position of the forward object 
and the ground road signs using the three trained network models.  The FCW system issues a 
driver alert if an object is determined to be too close to the camera.  The results of the FCW and 
lane-mark recognition systems were transmitted to BT-350 smart glasses through the Internet 
by an implementation of AR technology; this gave the driver a view of the road ahead with 
information about possible hazards and warnings of danger to enhance safety.
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