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	 Pedestrian detection based on vision sensors is a hot and difficult issue in the field of 
autonomous driving.  The large amount of data processing leads to high requirements for the 
robustness and real-time performance of the employed algorithm.  The aggregate channel 
feature (ACF) algorithm is one of the widely recognized fast pedestrian detection algorithms, 
but there are many missed detections when the target is occluded or small.  In response to 
this problem, we propose a pedestrian detection algorithm based on a combination of a five-
layer convolutional neural network structure and an AdaBoost classifier (CNN–AdaBoost).  
The model was trained using Caltech and INRIA datasets, and detection experiments were 
performed using collected videos.  The results show that the error detection rate of the proposed 
algorithm is greatly reduced compared with that of the ACF algorithm, but the detection speed 
is basically unchanged.  Compared with the locally decorrelated channel features (LDCF) 
algorithm, the proposed algorithm achieves similar detection accuracy but the detection 
efficiency is greatly improved.

1.	 Introduction

	 Vision sensors can provide high-resolution color information, which can more accurately 
reflect the details of complex changes in light.  Therefore, pedestrian detection based on 
vision sensors has wide application in many fields such as the military, traffic, and security 
fields.  Because a pedestrian has the characteristics of scale, motion, and pose variation, and 
the appearance is easily influenced by factors, such as clothes, sunlight, shielding, and viewing 
angle, pedestrian detection is a difficult and hot issue with major challenges.  
	 The key factor restricting the application of pedestrian detection methods in intelligent 
driving is the large amount of data processing, leading to high requirements for the robustness 
and real-time performance of the employed algorithm.  Currently, the basic pedestrian detection 
methods can be divided into two categories from the perspective of the feature acquisition 
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method:(1,2) one is the traditional machine learning method based on artificial features, and 
the other is the deep learning method based on convolutional neural network (CNN) features.  
The basic framework of traditional machine learning methods includes feature extraction and 
classifiers.  Features here mainly include the histogram of the oriented gradient (HOG),(3) local 
binary pattern (LBP),(4) deformable part model (DPM),(5) and aggregate channel feature (ACF).(6)  
Classifiers include the support vector machine (SVM), decision tree (DT), random forest (RF), 
and AdaBoost.  The basic framework of deep learning methods includes a deep CNN and a 
classifier, which uses the deep CNN for feature extraction, and in typical structures such as 
GoogleNet, ZFNet, AlexNet, VGGNet, and ResNet, the classifier is generally an ordinary fully 
connected neural network.  R-CNN, YOLO, and other deep learning detection frameworks 
have better pedestrian detection performance than traditional machine learning,(7,8) but the 
training of their models requires hardware with high computing power and massive datasets.  
The training is time-consuming, and it is difficult to perform training tasks using ordinary PCs.  
Morevoer, large datasets are not easy to obtain.  Owing to the lack of a theoretical foundation, 
the design of a network’s hyperparameters is also a considerable challenge.  For target detection 
with a small dataset, traditional machine learning methods are usually better than deep learning.  
The ACF algorithm proposed by Dollar et al. is one of the widely recognized fast pedestrian 
detection algorithms.(6)  The ACF algorithm is based on integral channel features (ICF),(9) and 
an AdaBoost classifier composed of 2048 two-layer DTs is used in the algorithm.  The locally 
decorrelated channel features (LDCF) algorithm is based on the ACF algorithm and uses linear 
discriminant analysis (LDA) to obtain the final LDCF features.(10)  The weak classifier used 
is a DT with a depth of five layers, and the total number of cascaded weak classifiers is 4096.  
The missed detection rate of the LDCF algorithm tested on the Caltech dataset reached 29.8%, 
about 16.2% less than that of the ACF algorithm.  However, its missed detection rate was still 
large, especially when there were small or occluded pedestrian targets in the test.  Ma and Gao 
proposed a combination of the LDCF algorithm and a CNN,(11) with the LDCF algorithm used 
to obtain region proposals, then the CNN used to extract features, and an SVM used to classify 
the extracted features.  Zhang et al. used a region proposal network (RPN) in a faster R-CNN to 
extract region proposals,(12) and then used boosted forests to classify features.  Mao et al. added 
a VGG-16 network on the front end of a faster R-CNN to obtain additional channel features.(13)  
Ouyang and Wang proposed the joint deep method,(14) which uses an SVM as the first-level 
detector and a CNN to further determine its detection results.  The above method uses a deep 
CNN to improve the detection accuracy, but also requires a large number of datasets and long-
term training.  The real-time performance of algorithms also requires advanced hardware 
support.
	 On the basis of the above research, the combination of a deep CNN and traditional machine 
learning to improve the performance of pedestrian detection is currently the most popular 
technical route.  However, a problem with this approach is how to effectively reduce the depth 
of the CNN while improving the detection accuracy in order to reduce the dependence of the 
algorithm on the dataset and hardware.  In response to this problem, we propose a pedestrian 
detection method (CNN–AdaBoost) based on an AdaBoost classifier combined with a CNN 
feature extractor.  First, we refer to the fast R-CNN framework to improve the detection 
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efficiency.(15)  In view of the high miss rate of the AdaBoost classifier in the ACF algorithm, we 
propose a negative sample retrieval strategy to improve it.  Second, we design a five-layer CNN, 
which is used as a feature extractor to improve the detection rate of small pedestrian targets.  
The rest of the paper is organized as follows.  In Sect. 2.1, we introduce the overall framework, 
detection, and training process, and then in Sect. 2.2, we introduce the negative sample retrieval 
strategy and the structure of the five-layer CNN.  The experimental results are given in Sect. 3.  
Conclusions are given in Sect. 4.

2.	 CNN–AdaBoost Detection Algorithm

2.1	 Basic framework of the algorithm

	 The overall architecture of the CNN–AdaBoost algorithm proposed in this paper is shown 
in Fig. 1.  It mainly includes four parts: a fast feature pyramid part, a region proposal selection 
part, a CNN feature extraction part, and a feature processing part.
	 In the detection phase, a color image is first calculated through a fast feature pyramid with 
multiscale AFC features.  The region proposal section in the upper branch of Fig. 1 uses a fixed-
size sliding window (the red rectangular frame on the fast feature pyramids picture in Fig. 1) 
to extract the ACF features layer by layer from the bottom to the top of the feature pyramid.  
The ACF features are expanded into a feature vector, and the target and non-targets are filtered 
step by step through an AdaBoost classifier.  For the non-targets, we use a negative sample 
retrieval strategy to make the position of each non-target a candidate region again.  This will 
not affect the overall detection efficiency of the AdaBoost classifier and, at the same time, it can 
effectively reduce its false detection rate.  The CNN feature extraction part in the lower branch 
of Fig. 1 extracts the L color space features (the green rectangular frame in the fast feature 
pyramids picture in Fig. 1) of the LUV color space layer by layer from the bottom to the top 
of the pyramid, and the features extracted by the CNN have better expressive power for small 
targets than ACF features.  The task of region of interest (ROI) feature extraction is to obtain 
the data of the feature map in the corresponding position of the proposal region, and finally, the 
feature is classified by the fully connected layer and Softmax.

Fig. 1.	 (Color online) Overall architecture of the CNN–AdaBoost algorithm.
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	 In the training phase, AdaBoost and the CNN are trained separately using conventional 
methods.  AdaBoost is trained using ACF features, and the CNN is trained using L color space 
features.

2.2	 Negative sample retrieval strategy and CNN structure

	 Ohn-Bar and Trivedi showed that AdaBoost is different from the CNN, and it is difficult 
to further improve its detection performance by increasing the size of the trained pedestrian 
dataset and the depth of the DT.(16)  To maintain the depth of the ACF algorithm’s DT, a negative 
sample retrieval strategy is proposed in this paper.  The basic idea of the strategy is to reselect 
the regions that have been detected as negative samples as proposal regions using the AdaBoost 
classifier.  Specifically, a scale threshold and a rank threshold are set.  The scale threshold is 
set according to the number of layers of the fast feature pyramid.  A value smaller than the 
threshold indicates that the scale is close to the top of the pyramid, and the rank threshold is 
set according to the number of cascaded AdaBoost strong classifiers.  A value greater than the 
threshold indicates that the rank is near the end classifier.  When the scale of pyramid layers 
that the sliding window is on is less than the scale threshold and the rank of activated strong 
classifiers is greater than the rank threshold, if the result of the strong classifier is a non-
pedestrian target, the sliding window position of the non-pedestrians is used as the proposal 
region.
	 For pedestrian detection using on-board cameras, we hope to find a CNN with a simple 
structure, an easy-to-use small scale for training on ordinary PCs, and a detection speed that 
can meet real-time requirements.  Here, we employ a five-layer CNN, where the size of the 
convolution kernel is 9 × 9 and the neighborhood of the maximum pooling method is 2 × 2.  By 
adjusting the number of convolution kernels in the third layer, we obtain four different CNNs, 
After the preliminary training, a test experiment is carried out.  The training mean square 
error curve of each CNN is shown in Fig. 2 and the recognition rate is shown in Table 1.  It can 
be seen that CNN2 has the highest speed and accuracy, so CNN2 is subsequently used in this 
study.

Fig. 2.	 (Color online) Mean square error curves of four CNNs.
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3.	 Results and Discussion
	
	 The experimental hardware platform is an Intel (R) Core (TM) i3-2370M CPU (2.4 GHz, 
6 GB RAM) and the experimental software platform is the Windows 7 operating system 
with MATLAB R2015b.  The color vehicular camera used has a frame rate of 24 fps and a 
resolution of 640 × 480.  The experimental training test data is shown in Table 2.  The training 
of the AdaBoost classifier uses the Caltech training set, and the training of the CNN uses a 
combination of the Caltech training set and the INRIA training set (Table 2).  The test set uses 
the INRIA test set, Caltech test set, and collected videos.  The video test set we used is obtained 
on the campus through a color vehicular camera.  The ACF and LDCF algorithms are used for 
comparison.  
	 Figure 3 shows the miss rate–false positives per image (FPPI) curves of the Caltech test set 
and INRIA test set.  Figures 4–6 show the test results for different scenes in the video test set.  
The left column is the detection result of the ACF algorithm, the middle column is the detection 
result of the LDCF algorithm, and the right column is the detection result of the proposed 
algorithm.  It can be seen from Fig. 3 that the CNN–AdaBoost algorithm performs better on the 
Caltech dataset than on the INRIA dataset, and its detection performance for the two datasets is 
generally better than those of the ACF and LDCF algorithms.
	 In Fig. 4, the pedestrians have different sizes.  For large pedestrian targets, the three methods 
can correctly detect larger pedestrians, but the ACF algorithm misses the detection of small 
targets.  The detection of small targets by the LDCF algorithm is improved compared with 
the ACF algorithm, but when the small targets are closer, they are sometimes not detected.  
However, the proposed method can still distinguish different targets in this case.  In Fig. 5, 
there are mutually occluded targets.  The ACF and LDCF algorithms can generally detect large 
occluded targets, but in the case of small occluded targets, missed detection and false detection 
occur.  However, the proposed method can still detect the occluded targets in these cases.  There 
are deformed targets in Fig. 6.  Although all three methods can correctly detect deformed targets 
at a short distance, the ACF and LDCF algorithms generally fail to detect small deformed 
targets, while the proposed method can still detect them.  
	 The missed detection rate, the average number of false frame detections, and the detection 
efficiency are evaluated for the video set, and the results are shown in Table 3.  The ACF 

Table 1
Four CNN structures and test results on Caltech and INRIA datasets.

Input 64 × 32
L of the LUV color space

Layer 1 Conv layer (convolution kernel) 3rd-order tensor C: 6 × 9 × 9
Layer 2 Pooling layer (maximum pooling) matrix P: 2 × 2
Layer 3 C: 5 × 9 × 9 C: 12 × 9 × 9 C: 18 × 9 × 9 C: 27 × 9 × 9
Layer 4 P: 2 × 2
FC layer (dimensions of feature) 100 240 360 540

Rate of detection (%) INRIA 93.74 95.12 94.05 94.75
Caltech 79.92 80.6 80.37 80.22

CNN CNN1 CNN2 CNN3 CNN4
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Fig. 3.	 (Color online) Miss rate–FPPI curves. (a) Miss rate–FPPI curve of Caltech test set. (b) Miss rate–FPPI 
curve of INRIA test set.

Fig. 4.	 (Color online) Video sequences of pedestrians with different scales. (a) ACF. (b) LDCF. (c) CNN–
AdaBoost.

(a) (b)

Table 2
Training data.

Positive samples Negative samples Total number

Training set Caltech 20000 50000 70000 78700INRIA 2200 6500 8700

Test set Caltech 15000 50000 65000 72700INRIA 1200 6500 7700

(a) (b) (c)
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Fig. 5.	 (Color online) Video sequences of pedestrians with occlusion. (a) ACF. (b) LDCF. (c) CNN–AdaBoost.

Fig. 6.	 (Color online) Video sequences of pedestrians with pose variation. (a) ACF. (b) LDCF. (c) CNN–AdaBoost.

(a) (b) (c)

(a) (b) (c)
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algorithm has the highest detection speed, but the false detection rate is highest, with the 
average number of false detections per frame reaching 3.784.  The LDCF algorithm has fewest 
false detections, but the missed detection rate is higher than that of the proposed method and 
its detection efficiency is low.  The average detection time per frame is 0.1255 s.  The proposed 
CNN–AdaBoost algorithm has a lower missed detection rate than the ACF algorithm while 
maintaining a higher detection speed.  The average detection time per frame is 0.0809 s, which 
is close to the speed of the ACF algorithm.
	 From the experimental results, it is concluded that, in the proposed CNN–AdaBoost 
algorithm, the AdaBoost and CNN computations remain independent and parallel.  The CNN 
increases the algorithm complexity compared with those of the ACF and LDCF algorithms, but 
we optimized the structure of the five-layer CNN by simplifying its input data (using the fast 
pyramid algorithm in the L color space) and performing feature extraction (using the sliding 
window method of AdaBoost to obtain candidate regions and obtaining feature vectors from 
the corresponding CNN output).  These improvements enable the real-time performance of the 
algorithm.  Because the probability of misclassification of AdaBoost’s strong classifier is high 
when dealing with features near the top of the pyramid, the negative sample retrieval strategy is 
used to feed such false positives to the CNN to reidentify them, which overcomes the bottleneck 
due to the strategies used to improve the AdaBoost classifier performance (increasing the size 
of the trained pedestrian dataset and increasing the depth of the DT).  This also makes the 
algorithm more robust to complex conditions such as occlusion and deformation.

4.	 Conclusions

	 In this paper, an AdaBoost classifier is combined with a CNN to realize a novel pedestrian 
detection method (CNN–AdaBoost).  This method uses the fast feature pyramid of the ACF 
algorithm to calculate the features of each channel.  In each layer of pyramid features, the CNN 
only extracts features of the L color space.  Each proposal region is obtained through a fixed-
size sliding window in AdaBoost combined with a negative sample retrieval strategy.  This 
avoids the shortcoming of the CNN sliding window of a low efficiency of feature extraction.  
At the same time, it retains the advantage of the AdaBoost classifier of high efficiency and 
that of the CNN of strong classification performance.  The experimental results show that the 
method has superior efficiency and accuracy to the ACF and LDCF algorithms in detecting 
small pedestrian targets, which illustrates the effectiveness of the CNN–AdaBoost method.  
The proposed method uses a phased training method, which increases the burden of the model 
training phase, so further methods for improving the method will be explored in future research.

Table 3
Statistics of experimental results.
Algorithm Miss rate (%) FPPI Average detection time per frame (s)
ACF 16.032 3.784 0.0611
LDCF 14.342 0.033 0.1255
CNN–AdaBoost 12.778 0.021 0.0809
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