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	 In Industry 4.0, the applicability of wireless communication is superior to that of wired 
communication because of the mobility, lower cost, and faster internet deployment.  Wireless 
local area networks (WLANs), such as Bluetooth low energy (BLE) and Wi-Fi, have the 
advantages of a high bandwidth and transmission speed.  However, they have drawbacks, such 
as their limited transmission distances and the high likelihood of interference from other floors.  
Therefore, the applicability of wireless teleoperated control in complex factory environments 
is limited when a WLAN is used.  The objective of the present study was to develop a portable 
long range (LoRa)-based teleoperation controller (PLTC) to solve this problem.  LoRa is a low-
power wide-area network (LPWAN) technology, which is a suitable approach to communication 
for PLTCs owing to its physical characteristics of long distance and low frequency.  
Accordingly, we designed an intuitive teleoperation controller with an inertial measurement 
unit (IMU) sensor and processed the attitude signal using a complementary filter to operate a 
robotic arm stably.  The IMU is an effective and generally applicable sensor for measuring the 
attitude of devices.  Finally, we integrated a LoRa module and a robotic arm to realize long-
distance teleoperation control in a harsh factory environment.  The results of this study provide 
a useful reference for controller development and sensor applications for Industry 4.0.

1.	 Introduction
	
	 In the Industry 4.0 architecture, the communication layer defines the communication 
protocol and is responsible for the transmission of data and files.  As the number of production 
systems operating in a network environment continues to increase, it is sometimes necessary 
to overcome the problem of long-distance communication.(1)  The application concepts of 
cyber-​​physical systems, Internet of Things, and Internet of Services, which involve the 
transmission of information through a network, are designed to achieve factory digitization and 
automation.  The overall structure of an intelligent factory is intended to increase the production 
efficiency of the manufacturing industry.  To allow a larger number of sensors, devices, and 
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components to transmit and share information,(2–4) deploying a sound and applicable network 
environment in the factory is important.
	 In traditional factories, wired communication systems are often used to implement industrial 
monitoring and control systems.  However, rerouting the wires in a harsh factory environment 
or in a flexible manufacturing operation environment is expensive and difficult.  Moreover, it 
typically requires complex manufacturing operations and maintenance.  Therefore, for future 
Industry 4.0 factories, flexible system maintenance is necessary.(5)  Wired communication 
systems enable stable and fast control of production equipment in the factory, and compared 
with wireless communication systems, they have higher deployment costs.  Additionally, the 
flexibility of the equipment operation is limited; the equipment cannot be flexibly and agilely 
deployed for production processes.  Therefore, a wireless communication control system that 
is suitable for a complex factory environment and can overcome these drawbacks is needed.  
The proposed control method is suitable for use in factory environments with complex 
electromagnetic environments and multiple compartments.
	 The 2.4 GHz frequency band is the most widely used band in the wireless local area network 
(WLAN) environment in the industrial, scientific, medical, and other fields.  It is the most 
mainstream wireless network band but has the problems of insufficient coverage and high 
energy consumption.  It also has the disadvantages of mutual interference and packet loss(6) 
in the same working space.  Long range (LoRa) has better anti-interference, a wide range, 
high penetration, low power consumption, and low-throughput communication,(7) making it 
more suitable for applications involving a complex electromagnetic environment and multiple 
compartments.  
	 Sensors are the foundation of IoT applications.  By using an inertial measurement unit 
(IMU) sensor, a user can control a robotic arm more intuitively.(8–10)  An IMU consists of two 
types of three-axis inertial sensors, i.e., accelerometers and gyroscopes, encapsulated in a 
polychlorinated biphenyl (PCB) semiconductor, which can be used to estimate the attitude of 
the device by estimating the relationship between the device direction and the gravity vector.(11)  
We used an MPU-6050 sensor with a three-axis accelerometer and a gyroscope to provide the 
input signal of the robotic-arm controller for teleoperation control.  Additionally, the original 
data provided by the IMU was filtered by a complementary filter to enhance the stability of the 
robotic-arm movement.
	 In this study, a lightweight portable LoRa-based teleoperation controller (PLTC) was 
designed, which combines the advantages of long-distance communication and anti-interference 
with LoRa wireless communication technology to enable the use of an IMU in complex factory 
environments.  The operator can teleoperate the robotic arm in a complex environment.  We 
experimentally verified the suitability of this device as a wireless teleoperation solution for 
Industry 4.0.

2.	 Architecture 

	 Figure 1 shows the architecture of the system designed and developed in this study with 
the PLTC.  It can teleoperate the robot arm in different spaces to perform prespecified actions 
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to simulate control of the production equipment in a factory.  Figure 2 shows the system 
architecture, which is divided into the PLTC and robotic arm.  The system contains four 
modules: an IMU, a microcontroller, a LoRa module, and a motor.  The microcontroller module 
in the PLTC captures the attitude signal from the IMU, filters pitch and roll signals to stabilize 
the control signal, and transmits the control command via the LoRa module.  When the robotic 
arm receives the signal, the data are converted into a motor control command for the actuator.  
	 Figure 3 shows the flow of the system, which was developed using unified modeling 
language (UML).  The flow is mainly divided into two parts: the PLTC and the robotic arm.  
The flow of the PLTC commences when the system is switched on.  First, the LoRa modules of 
the PLTC and robotic arm are set to Tx and Rx modes, respectively.  Secondly, the PLTC reads 

Fig. 1.	 (Color online) Portable LoRa-based teleoperation controller.

Fig. 2.	 System architecture.
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the accelerometer and gyroscope measurements from the IMU sensor to calculate the pitch and 
roll attitude angles and stabilize the control command via the complementary filter (described 
in Sect. 2.2.2).  Next, the LoRa module transmits the packets of the control command to the 
robotic arm for teleoperation.  On the other hand, the initialization of the motor position, the 
packet analysis of the control command, and the motor actuator are performed sequentially on 
the robotic arm.

2.1	 IMU module

	 The IMU sensor allows the user to intuitively teleoperate the robotic arm by changing the 
attitude of the controller.  In the IMU sensor, a capacitor made of a ceramic base material 
sintered at a high temperature forms the operating circuits with an MPU-6050 sensor.  These 
electronic components are encapsulated in a PCB semiconductor with a size of 4 × 4 × 0.9 mm3 
in accordance with the standards set by the Joint Electron Device Engineering Council (JEDEC).  
This type of sensor and the PCB are very suitable for portable devices owing to their small size 
and light weight, respectively.
	 In this study, the MPU-6050 sensor mounted on the IMU was employed to measure the 
attitude data with a 400 kHz sampling rate, which is sent to the microcontroller unit through 
an I2C interface.  The pitch and roll of the PLTC were calculated in the microcontroller unit 
by using the physical components of acceleration and angular acceleration measured from the 
accelerometer and gyroscope in the IMU, which provided signals for controlling the robotic 
arm.

Fig. 3.	 Flow of the system.
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2.2	 Microcontroller module

	 In this architecture, we use the Arduino Uno microcontroller board for data collection, 
preprocessing, filtering, motor actuation, and data transmission owing to its open-source, easy-
development, and low-cost characteristics.  Although its computing ability is lower than that of 
a Raspberry Pi, it satisfied the computation, control, and implementation requirements of the 
experiments in this study.

2.2.1	 Attitude acquisition

	 The attitudinal raw data of the PLTC is measured by the IMU sensor.  Figure 1 also shows 
the coordinate system of the PLTC, where roll corresponds to the x-axis, pitch corresponds to 
the y-axis, and yaw corresponds to the z-axis.  We used the attitude estimation method from a 
previous work(12) as a basic technology and defined the rotation matrix R as follows:
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where Rγ, Rρ, and Rφ represent the rotation matrices for roll, pitch, and yaw, respectively.  
Additionally, to calculate the angle of rotation, the measured value of the gravitational 
acceleration (Ga) perpendicular to the ground is converted into a tilt angle, and the direction 
of the gravitational acceleration is an extension of the z-axis direction.(13)  Thus, the rotation 
matrix can be rewritten as
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	 The gravitational acceleration value (Gar) read by the accelerometer is normalized to obtain
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	 Then, by applying Eq. (3) to the pitch (ρ) and roll (γ), Eq. (2) can be changed to
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	 Here, 2
_ar xG , 2

_ar yG , and 2
_ar zG  denote the values read by the accelerometer for the x, y, and z 

components of the three axes, respectively.  Equation (4) is re-expressed as
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	 Finally, we determine the angles of pitch and roll, ρ and γ, respectively:
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	 In accordance with a previous work,(14) the angle of orientation is calculated using the gyro 
value measured by the IMU and Eq. (9):

	 .
131
gyro

angleg dt
ω =  

 ∫ 	 (9)

	 Here, ωgyro represents the angular velocity measured from the gyroscope of the IMU.  
Specifically, ωgyro is divided by 131 to convert the diameter into the angle.  Finally, the angle of 
orientation (gangle) is calculated by integrating the measured intervals (dt).  With this technology, 
the IMU module measures the attitude of the PLTC and calculates the angle of the attitude via 
the microcontroller module by the method provided in this section as a control command for 
teleoperating the robotic arm.

2.2.2	 Complementary filter

	 The attitude of the PLTC measured by the IMU sensor will be affected by the cumulative 
error and noise generated by the sensor, causing attitude estimation errors and oscillations.  
Thus, the calculated pitch and roll signals must be processed and cannot be immediately used as 
a control command for the robotic arm.  Therefore, it is necessary to address this shortcoming.
	 Generally, data processing with appropriate filters can stabilize the measurement signals 
from an IMU.  Kalman(15–18) and complementary filters(19–23) are two widely used filters.  In 
a previous work,(24) an experimental comparison of both filters found that they can obtain 
smooth and accurate signals regardless of dynamic or static experiments.  The Kalman filter 
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is one of the most widely used filters because of its optimality, tractability, and robustness.  
However, it implicitly requires complex matrix calculations.  Therefore, it will be difficult to 
use Kalman filters on devices with limited computational capabilities.  On the other hand, the 
complementary filter, which is easy to implement, can be more stable and accurate than the 
Kalman filter in some cases as long as the parameters of the complementary filter are adjusted 
optimally.  The PLTC proposed in this study is expected to achieve arm control with limited 
computing resources.  Therefore, complementary filters with lower implementation complexity 
and lower computational requirements are used.
	 The microcontroller calculates the angular velocity and acceleration of the current attitude 
from the measured angle and calculates the angular acceleration via the accelerometer and 
gyroscope in the IMU.  When the IMU is in intense motion while the PLTC is operating, the 
accelerometer is disturbed by non-gravitational acceleration; thus, the calculated attitude is 
unreliable.  At this time, the result can be corrected by the gyroscope, and thus the accelerometer 
and the gyroscope can compensate for each other.(19)  We referred to a previous work(24) to 
implement the complementary filter to sense the tilt angle.  The complementary filter operates 
in a similar manner to a low-pass filter to estimate data from the accelerometer, only allowing 
long-term changes to pass through and filtering out short-term fluctuations.  Additionally, after 
the gyroscope output data are integrated, data processing is performed by a high-pass filter to 
inhibit long-term changes caused by the gyroscope, and the direction can be determined after 
the two estimated data are integrated by the all-pass filter.  The complementary filter exhibits 
the advantages of both the accelerometer and the gyroscope.  In the short term, the data of the 
gyroscope are used to ensure that the data of attitude is accurate and unaffected by external 
forces.  In the long term, the data of the accelerometer are used to prevent data-drift cumulative 
error.  Figure 4 shows the flow of the complementary filter.
	 Equation (10) gives the mathematical model of the complementary filter:(24)

	 ( ) ( )1angle cf angle gyro cf AccC t Cθ θ ω θ= × + ×∆ + − × ,	 (10)

where θangle represents the tilt angle of pitch or roll and Ccf is the filter coefficient of the 
complementary filter and ranges from 0 to 1.  In accordance with a previous work,(24) we set Ccf 
as 0.96.  ωgyro represents the angular velocity of the gyroscope.  Δt represents the integration 
interval (time).  θAcc represents the angle of the accelerometer.  Using this mathematical model, 

 Fig. 4.	 Flow of the complementary filter.
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the angle of the filtered pitch and roll can be calculated as the control command of the robotic 
arm.

2.2.3	 Motor actuator

	 Figure 5 shows the actuator integrated with the robotic arm.  The actuator integrates LoRa 
and the microcontroller into a box fabricated using a three-dimensional printer.  The Arduino 
Uno microcontroller in the box receives the attitude information through LoRa for motor control 
using the half-duplex UART protocol.

2.3	 LoRa module

	 LoRa wireless communication technology exhibits advantages including long-distance 
communication, low cost, strong penetration, low power consumption, and anti-interference.  
The controller developed in the study uses an IL-LoRa 1272 module to transmit the attitude 
control information to the robotic arm and control the robotic arm.  According to the official 
specifications, the IL-LoRa 1272 module can transmit data over 15 km in the suburbs, and 
the data-transmission distance in dense urban areas is decreased to 2–5 km.(25)  However, an 
excessive controller size should be avoided to keep the dexterity of the PLTC.  To increase 
the applicability of the device, a lightweight module with a short antenna was used.  Figure 
6 shows the actual size of the LoRa module.  Although the short-antenna version had a short 
transmission distance, the characteristics of the LoRa-based communication satisfy the 
transmission requirements for a general factory environment.  

2.4	 Robotic arm

	 In this study, a robotic arm with four degrees of freedom was constructed from four 
Dynamixel AX-12A servo motors manufactured by ROBOTIS as shown in Fig. 7.  The 
Dynamixel series of motors are smart modular actuators with reduction gears and provide an 

Fig. 5.	 (Color online) Integration of the robotic arm.
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operating angle of 300° and a rotational angle with a resolution of 0.29°.  The state of a motor 
can be tracked using its servo system, such as the speed, temperature, position, and loading.(26)  
These features allow the user to easily control the motor.
	 This robotic arm integrated by an intelligent motor is suitable for simulating factory 
equipment in Industry 4.0.  In this study, specific motions of the robotic arm are predefined into 
the PLTC, and the robotic arm is wirelessly teleoperated by LoRa wireless communication over 
a long distance.  
	 The architecture is used to verify the potential of the proposed PLTC in Industry 4.0.  
Three experiments were performed to verify the applicability of the complementary filter, the 
advantages of LoRa teleoperation, and the performance of robotic arm control through the 
proposed PLTC.

3.	 Experiments 

	 We conducted three experiments to verify the applicability of the proposed PLTC to Industry 4.0.  
First, the effect of the complementary filter that stabilizes the control signal was verified.  
Secondly, transmission characteristics experiments of a simulated factory environment for LoRa 
and Bluetooth low energy (BLE) were performed to verify that LoRa is suitable for Industry 
4.0.  Finally, we examined whether the PLTC actually controls the robotic arm to complete the 
specified actions to verify the overall architecture.  

3.1	 Experiment design

	 In this study, three experiments were conducted to verify the performance of the PLTC.  In 
the first experiment, to verify the stability of the controller, we compared the performance of 
Butterworth, Kalman, and complementary filters.  As shown in Fig. 8, the MPU-6050 sensor 
was mounted on the motor to present the movement attitude of the IMU objectively.  The motor 
performed a rotation from 0 to 180° as a ground truth for the experiment.  Furthermore, the 
sampling data were used to facilitate further analysis of the pitch and roll generated by the IMU 
and the filters.

Fig. 6.	 (Color online) IL-LoRa 1272 module. Fig. 7.	 (Color online) Robotic arm. 
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	 We then conducted a transmission performance experiment on the wireless communication 
technology to evaluate the transmission restrictions of LoRa for the teleoperating robotic arm.  
We investigated the maximum transmission distance of LoRa and compared it with that of a 
low-power BLE module [HM-10 board(27)].  This experiment was conducted in an open space 
by sending 300 packets at specific time intervals (named time windows) from the PLTC to the 
robotic arm at different distances.  The purpose was to determine the optimal transmission of 
LoRa and BLE with the lowest packet-loss rate to avoid signal jamming.
	 Finally, a simulation of the factory robotic arm’s tasks was conducted by the PLTC to 
teleoperate the robotic arm, and maneuvers were performed using predefined IMU data.  The 
PLTC and robotic arm were placed at separate locations.  Subsequently, the teleoperation ability 
of the PLTC while constantly sending signals to the robotic arm was verified.  Figure 9 shows 
the predefined sequential motions 1 to 5 of the robotic arm.  Motions 1, 3, and 5 are the initial 
positions of the robotic arm.  On the other hand, motions 2 and 4 simulate the factory arm 
gripping items in different positions.  These five motions were counted as one teleoperating 
motion, and 20 motions were counted as one round.  The motion achievement rate of the robotic 
arm controlled by the PLTC was verified for three rounds in each position.
	 Figure 10 illustrates the configuration of the experiment.  A multiple-compartment building 
was used to simulate the complex environment of a factory.  The robotic arm receiving control 

Fig. 8.	 (Color online) Set-up of filter experiments. 

Fig. 9.	 (Color online) Flow of motion control.
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commands from testing points 1 to 4 was located at the bottom-left corner on the 2nd floor.  
Among the four testing points in the building, test point 3 had the longest signal-blocking 
distance.  Additionally, test point 4 was on the 3rd floor and the remaining points were on the 
2nd floor.  During the experiment, wireless signals were likely to penetrate the concrete wall of 
the building, which was 48 cm thick, as well as the 74.5-cm-thick floor.  The configurations of 
the testing points are shown in Table 1.

3.2	 Experimental results

	  Figures 11 and 12 show the experimental results of the filtering effect compared with the 
ground truth.  From the error of the filters, it can be observed that the output of the Butterworth 
filter has the greatest oscillation and the maximum range of error.  In addition, the signal of the 
pitch processed by the Butterworth filter is significantly unstable, so the pitch data were further 
analyzed, as discussed in the next section.  However, the performance of the easily implemented 
complementary filter was comparable to that of the high-performance Kalman filter.
	 To discuss the performance of the filters more objectively, the error among the filters 
calculated with the ground truth are shown in Fig. 13.  The signal filtered by the Butterworth 
filter is unstable, indicating that the signal is unstable as a control command.  On the other 
hand, although the Kalman filter exhibits the most stable and smoothest filtered signal, the 
overall error is slightly higher than that of the complementary filter.  

Fig. 10.	 (Color online) Configuration of the testing points for LoRa.

Table 1
Experimental environment parameters.

Testing 
points

Air line 
distance (m)

Number of
penetrating walls

Number of 
penetrating floors Floor

1 21.21 5 N/A 2
2 36.26 6 N/A 2
3 50.65 4 N/A 2
4 72.62 4 1 3
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	 The actual angles of the pitch processed by the filters recorded from 0 to 180° in the 
experiment are shown in Fig. 14.  It can be seen that the Butterworth filter is less stable than 
the other filters and is clearly unable to stabilize the control signal.  Furthermore, the degrees of 
the complementary and Kalman filters were slightly lower than the ground truth for up to 300 

Fig. 12.	 Error comparison of the filters with regard to roll. (a) Butterworth, (b) Kalman, and (c) complementary 
filters. 

Fig. 11.	 Error comparison of the filters with regard to pitch: (a) Butterworth, (b) Kalman, and (c) complementary 
filters.

(a)

(b)

(c)

(a)

(b)

(c)
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items of data, but then reverted back to the ground truth immediately.  In addition, the filtered 
waveforms of the complementary and Kalman filters almost overlapped, so the two filters had 
similar performance.  Therefore, the PLTC in this study can not only meet the requirements 
of control stability via the complementary filter, but also reduce the computational load of the 
microcontroller.
	 In the transmission performance experiment, the packet loss rate of LoRa was 1.43% at 621.33 m, 
compared with 5.67% at 65 m for BLE.  When the range exceeded these distances, the packet 
loss was more significant.  These distances can be used as the maximum transmission distances 
in experimental design.
	 After the results for the transmission-distance limitation were obtained through experiments, 
an experiment was performed in an indoor environment to simulate the transmission efficiency 
in a factory.  To match the transmission-distance limit of BLE, we conducted the experiment in 

Fig. 13.	 Comparison of the error among the filters with regard to pitch.

Fig. 14.	 (Color online) Comparison of the actual angle with regard to pitch.
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a 60-m-long room.  The experiment indicated that BLE had the maximum stable transmission 
range.
	 Figure 15 shows the packet-loss conditions of LoRa.  The packet-loss rate remained under 
1% when the time window was set as >50 ms, indicating the stability of the data transmission.  
There was significant packet loss when the time window was <50 ms, indicating that the 
transmission speed was higher than the physical limit of LoRa and affected the stability of 
communication.  Conversely, the packet-loss rate of BLE is shown in Fig. 16.  Within the time 
window of 25–200 ms, the maximum packet-loss rate was 4.11%.  However, the packet-loss rate 
increased to 87.78% when the time window was <10 ms.  The results indicate that the packet 
transmission speed of BLE was superior to that of LoRa.  
	 Finally, the teleoperation experiment of the PLTC was performed, and the results are 
presented in Table 2.  Testing point 1 had the shortest distance, yielding the joint best motion 
achievement rate of 100%.  Testing point 4 also exhibited a motion achievement rate of 100% 

Fig. 16.	 (Color online) Packet loss rate of BLE.

Fig. 15.	 (Color online) Packet loss rate of LoRa.
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even though it had the longest total transmission distance, and the signal had to penetrate four 
walls and one floor.  This is because of the courtyard along its path.  According to the results, 
the PLTC is applicable in factories with a considerable length and multiple floors.
	 Additionally, testing point 2 had the most complex environment for transmission.  Although 
the total distance was shorter than that of testing point 3, the signal transmitted by LoRa 
had to pass through six concrete walls and two rooms with lockers, resulting in significant 
packet loss.  In summary, walls have a significant influence through the blockage of wireless 
communication.
	 The teleoperating ability of BLE for the robotic arm was evaluated under the same 
configuration.  At testing point 1, the controller was completely unable to control the robotic 
arm.  Therefore, the distance was reduced to 6, 8, and 12 m, corresponding to testing points 
A, B, and C, respectively, as shown in Fig. 17.  The results are presented in Table 3.  When the 
distance exceeded that of testing point C, we were unable to control the robotic arm.  Hence, 
BLE wireless communication is significantly affected by the distance and is completely 
inapplicable in factories with multiple floors or different spaces.

4.	 Discussion

	 Recently, LoRa technology, which possesses low-power, wide-area, and anti-interference 
abilities, has led to a novel thinking in IoT applications.  In this study, we innovatively simulated 
the complex environment in Industry 4.0 and applied LoRa to the PLTC to teleoperate the 
robotic arm intuitively.  The 2.4-GHz-band wireless networks (such as Wi-Fi and Bluetooth) 
are generally used as wireless communication technologies in factories.  These technologies 
tend to reduce communication stability as a result of distance, building compartments, and 
signal interference.  Therefore, LoRa technology is expected to be suitable for overcoming 
these disadvantages.  Although lightweight and portable controllers in factories can reduce 
deployment and maintenance costs, they also face the disadvantage of insufficient computing 
capability.  To improve the shortcomings, the PLTC stabilized the intuitive control signal 
obtained from the IMU sensor with a low computational load by using a high-efficiency 
complementary filter.
	 The objective of teleoperating the robotic arm via LoRa was achieved.  As shown in Figs. 15 
and 16, the packet-loss rate of LoRa was higher than that of BLE when the time window was set 
as 25 ms.  However, when the time window was set between 50 and 200 ms, the average packet-
loss rate of LoRa was 0.47%, which was superior to that of BLE (1.42%).  The results indicate 
that LoRa is more stable than BLE for these time windows.

Table 2 
Motion achievement rate of PLTC with LoRa.

Testing 
point Round 1 Round 2 Round 3 Average 

achievement rate (%)
1 20 20 20 100
2 15 20 13 80
3 20 18 18 93.33
4 20 20 20 100
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	 According to the experimental results, the motion achievement rate of the signal sent from 
the PLTC to the robotic arm at four testing points was 93.33% under the configuration of an 
indoor environment with an average distance of 45.19 m.  The distance and motion achievement 
rate of BLE were smaller and lower than those of LoRa, respectively.  Therefore, the PLTC 
designed in this study is more applicable than BLE in complex factory environments.
	 For the IL-LoRa 1272 module, the transmission distance cannot reach the official 15 km 
owing to the indoor environment with multiple obstacles and the short antenna.  Replacing the 
IL-LoRa 1272 module by one having a longer antenna is expected to enhance the transmission 
distance of the PLTC, making it suitable for large-scale factory environments.
	 In some studies on portable teleoperation,(8,28,29) teleoperation was implemented using 
2.4 GHz wireless technology.  The applications of these studies are obviously limited by the 
communication distance.  In Ref. 28, an IMU was used to teleoperate the robotic arm.  The 
control commands were received from the accelerometer, which were processed by a first-
order low-pass filter.  However, this method lacks an effective means of solving the problem 
of transient oscillations from the accelerometer, reducing the stability of the controller.  In 
Ref. 8, a large wireless teleoperation robotic arm system that stabilizes accelerometer and 
gyroscope signals through complementary filters was proposed.  However, the robotic arm was 
actuated by a standard PC host, and this can make the device more expensive and larger.  In 
Ref. 29, distributed controllers were worn on the wrist and forefinger to respectively predict 
gestures by measuring the attitude from individual accelerometers and gyroscopes.  However, 
the teleoperation of an object by specific gestures resulted in slightly unsatisfactory intuitive 

Table 3 
Motion achievement rate of PLTC with BLE.

Testing 
point Round 1 Round 2 Round 3 Average

achievement rate (%)
A 20 20 20 100
B 20 20 20 100
C 7 7 5 31.66

Fig. 17.	 (Color online) Configurations of the testing points for BLE.
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control.  Summarizing the above points, the PLTC proposed in this study has the advantages 
of intuitive teleoperation, stability, light weight, low cost, and long-distance communication, 
demonstrating the innovative contributions of this research.

5.	 Conclusions

	 In this paper, an intuitive PLTC for teleoperating a robotic arm was proposed.  A 
complementary filter with low computational complexity was used to process the attitude 
signal of the PLTC measured from an IMU sensor, which was verified in an experiment.  The 
result showed the excellent efficiency of the complementary filter in terms of stable control 
commands through appropriate parameter setting.  On the other hand, with the integration of an 
IMU sensor and LoRa, the robotic-arm controller was capable of teleoperating a robotic arm in 
a complex building with concrete walls and floors.  The mechanism of teleoperating presented 
in this study allowed the robotic arm to achieve 93.33% of the designed movements in an 
environment with a long distance (average of 45.19 m) and obstacles.  This concept and structure 
can enhance the field of wireless communication in Industry 4.0.  Therefore, integrating the 
IMU sensor and LoRa module allows long-distance teleoperation control.  The results of this 
study provide a useful reference for the development of sensor-related applications for Industry 4.0.
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