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	 In this study, we propose a gesture recognition method using e-textile sensors and involving 
the pressing of numeric keys from “0” to “9”.  An e-textile sensor comprises a double-layer 
structure with complementary resistance characteristics, and it is attached to the garment to 
obtain a resistance signal.  For gesture recognition, we tested dynamic time warping (DTW), 
machine learning, long short-term memory (LSTM), and bidirectional LSTM (BiLSTM).  
Before applying each machine learning technique, we performed normalization and resized 
the data to ensure that they are of the same length.  A total of 120 iterations were performed 
for each gesture for a single subject.  The results indicate that the lowest gesture classification 
accuracy for DTW was 74.2%, followed by 78.8 and 91.6% for LSTM and BiLSTM, 
respectively.

1.	 Introduction

	 Gesture recognition technology involves interpreting a user’s gestures on the basis of 
the flexion and extension of fingers, elbows, and knees, and their interaction with objects.  
Gesture recognition has several applications, including human–computer interface (HCI),(1–7) 
medicine,(8–11) and virtual reality.(12)  Various sensors such as magnetometers, accelerometers, 
and gyroscopes are used for gesture recognition.  Ma et al. attached a permanent magnet and 
a noncontact magnetic sensor to the fingers and wrist to calculate the position and orientation 
of the magnet and recognize hand posture.(1)  Kim et al. classified the state of the fingers 
by installing acceleration, gyroscope, and geomagnetic sensors in data gloves.(4)  Lee et al. 
attached an inertial measurement unit to the wrist and recognized gestures on the basis of 
mouse manipulation.(5)

	 Flexible and stretchable sensors that can be integrated into clothes and do not interfere 
with joint motions are required.  Recently, e-textile sensors that show resistive characteristics 
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while maintaining the lightness, flexibility, and stretch ability of textiles have been applied to 
gesture recognition.(6–12)  e-textile sensors detect biological signals and joint motions without 
compromising comfort.  Gesture recognition based on e-textile uses the changes in electrical 
properties according to the flexion and extension of joints during gesture motions.  Han et al. 
recognized six types of mouse gestures for an HCI with dynamic time warping (DTW).(6)  
Aleotti and Caselli used an e-textile-based data glove for the recognition of hand motion for a 
virtual reality desktop system.(12)

	 In this study, we propose a keyboard gesture recognition method using e-textile sensors for 
an HCI.  To perform keyboard gestures, 10 proprietary keyboard buttons simulating numerical 
keys from “0” to “9” were fabricated and placed on flat surfaces.  For keyboard gesture 
recognition, the use of simple DTW(2,3,6) and computation-intensive deep learning algorithms 
such as long short-term memory (LSTM)(13,14) and bidirectional LSTM (BiLSTM) has been 
attempted.  These algorithms were applied to 1200 gesture motions, and their accuracies were 
evaluated.

2.	 Materials and Methods

2.1	 e-textile sensor and data acquisition

	 In our previous study,(6) conductive fibers (0.80 mm thickness, EeonTex™ NW170-
PI-20, Eeonyx Corp., United States) and stainless steel seals (28 Ω/ft, DEV-11791, Sparkfun 
Electronics, United States) were used to fabricate an electronic fiber sensor.  The fabricated 
sensor was attached to both sides of a double-sided tape (cat. # 2240, 24 mm width, 2 mm 
thickness, 3M, United States), yielding each sensor pair in a double-layer structure.  The data 
acquisition system comprised three double-layer e-textile sensors, a current source that supplies 
constant current to the sensors, a buffer (voltage follower) that converts the output of the sensor 
into a low impedance voltage, and an analog-to-digital-converter (ADC) to quantize the voltage 
into a digital value.  A microcontroller unit calculates the resistance of the sensor from the 
digital value and transmits it to a PC at 100 Hz.  The PC collects the sensor data and saves them 
for analysis.

2.2	 Recognition algorithms

	 The six e-textile sensor signals captured for the keyboard gesture are shown in Fig. 1.  In 
this figure, the rows and columns correspond to the gesture and sensors, respectively.  The 
left-most column shows the output of the first sensor for the keyboard gesture “0” to “9”.  In 
each graph, the vertical axis shows the resistance of the sensor and the horizontal axis shows 
the gesture duration.  The graph indicates that the resistance and gesture duration ranges are 
different for each sensor and gesture.  This is because the motion speeds and patterns of the 
sensor are different for each gesture.  These variations could make gesture recognition difficult 
if attempted using simple pattern recognition algorithms.
	 Therefore, the DTW and template matching techniques were applied to consider the 
variations in data length and pattern characteristics as in our previous study.(6)  We explain these 
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techniques in brief here.  The DTW technique aligns two time series signals by minimizing 
the sum of Euclidean distances between the corresponding points.  By DTW, we can align two 
time series signals of different lengths to the same length.  Furthermore, the Euclidean distance 
calculated during the warping process can be used as a measure of similarity between the two 
time-series signals.(2,3)  For the template matching technique, all time series signals for each 
gesture class are aligned to the same length by DTW and the ensemble is averaged to generate a 
template gesture time series signal that is compared with ten gesture templates with DTW.  The 
gesture template with the shortest Euclidean distance is determined as the gesture class for the 
test gesture.
	 Machine learning algorithms with a more intensive computation were also used to achieve 
a higher recognition accuracy.  To apply machine learning, the acquired data were separated 
into training, validation, and test data.  In this study, 120 keyboard gesture data were obtained 
from ten keyboards each.  The total of 1200 data were separated at rates of 70, 15, and 15% for 
training, validation, and test, respectively.  The hyperparameter was tuned while training with 
the training data and the accuracy was verified using the validation data.  The parameters of 
the model were adjusted gradually while the accuracy was verified with the validation data.  In 
addition, data preprocessing was performed to improve the learning accuracy before machine 
learning.  For data preprocessing, all data were resized to the same length and normalized in 
amplitude.
	 For the machine learning algorithm, LSTM and BiLSTM were used (MATLAB9.6, 
MathWorks, United States).  These deep neural networks show good performance for time-

Fig. 1.	 (Color online) Sensor raw data (column) for each gesture (row).
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series classification.(13,14)  LSTM is an improved version of the recurrent neural network (RNN); 
while LSTM processes input and output in sequence, BiLSTM considers the bidirectionality of 
the LSTM.  The LSTM model trains the memory cells of the RNN model concealment layer by 
adding input, erase, and output gates to erase unnecessary memories and to determine what to 
remember.  The input gate passes the sigmoid function (σ) and hyperbolic tangent function (tanh) 
to determine the amount of information stored.  In the erase gate, σ passes, and the closer the 
output value is to 0, the more information is deleted.  At the output gate, the value that passes 
σ determines the hidden state.  In the hidden state, the cell state passes the tangent tanh, which 
is computed with the output gate value to filter the value.  The values ​​that pass all the gates are 
directed to the output layer and output as the result.  BiLSTM is trained in the same manner as 
the LSTM model by considering both the forward and backward passes.
	 The overall network consisted of a sequence input layer with six features, an LSTM layer 
with 400 hidden units (or a BiLSTM layer with 200 hidden units), a fully connected layer 
with 10 classes, a softmax layer, and a classification layer in sequence (Fig. 2).  The adaptive 
momentum estimation algorithm was used as a solver.  The maximum epochs were set to 430 
for LSTM and 200 for BiLSTM, respectively.

2.3	 Experimental protocol

	 Three e-textile sensor pairs (six sensors) were attached at the same positions as in our 
previous study.(6)  The positions on the arm and shoulder indicated large joint angle changes 
during the gesture motions.  The first sensor was attached to the wrist brace, and the center 
of the sensor was worn on the olecranon.  The second sensor was attached to the center of the 
deltoid medial and the humerus when the rash guard was worn.  A third sensor was attached to 
the rash guard so that one end of the sensor is at the center of the humerus.  The rubber band 
was attached to one end of the sensor to compensate for the problem that the manufactured 
sensor is not stretched sufficiently according to the degree of bending of the joint.(6)

Fig. 2.	 Neural network with LSTM model.
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	 To perform keyboard gestures, 10 proprietary keyboard buttons simulating the numerical 
keyboard from “0” to “9” were fabricated and placed on a flat surface.  Each keyboard button 
was 7 × 7 cm2.  One push button was connected to the center of the keyboard button for the 
keyboard pressing motion, and one red LED was connected to the upper center to confirm that 
the button was pressed.  After making a total of 10 keyboard buttons corresponding to “0” to 
“9,” the keyboard was constructed by placing the keyboard buttons at intervals of 15 cm in both 
directions (Fig. 3).
	 The subject participated in the experiment while wearing a rash guard with two double-layer 
sensors and a wrist brace with one double-layer sensor.  The subject placed his or her hands at 
the center of the chest and then pressed the push buttons on the keyboard buttons corresponding 
to the numbers “0” to “9” with the right hand.  The experiment was conducted while sitting on 
a fixed chair to suppress body motions.
	 The experimental set consists of two attempts to perform ten gestures once and then 
ten gestures again.  Just before the gesture, the subject pressed a marking switch on his or 
her left hand and pressed the marking switch again after the gesture was completed.  The 
marking button signal generated at this time was used to segment keyboard gestures.  Before 
the experiment, two sets of practice experiments were conducted to ensure that the subject 
understood the procedure.  A total of 60 sets of experiments were conducted to obtain 1200 
keyboard gesture data.

3.	 Results and Discussion

	 After 60 sets of experiments, 120 gesture motion units were obtained for each keyboard 
gesture.  The correct and incorrect classifications for each keyboard gesture were shown in 
the confusion matrix using the DTW technique (Fig. 4).  In the confusion matrix, the rows 
represent classified gesture classes (“Output Class”) and the columns correspond to correct 
gesture classes (“Target Class”).  The classification accuracy and error for each gesture class 

Fig. 3.	 (Color online) Proprietary numeric keyboard.
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correspond to the bottom row.  The classification accuracy and error for all keyboard gestures 
correspond to the bottom-right cell.  Gestures that press the number “0” keyboard button had 
the highest accuracy of 99.2%, while gestures that press the number “7” keyboard button had 
the lowest accuracy of 33.2%.  The average accuracy for all keyboard gestures (“0” to “9”) was 
74.2%.
	 Ten keyboard gestures were trained and verified by LSTM as shown in Fig. 5.  Figure 5(a) 
shows the training accuracy (blue) and validation accuracy (black) according to the number of 
learning iterations.  Figure 5(b) shows the loss according to the number of learning iterations.  
The accuracy of training using the LSTM model was 100% and the final validation accuracy 
was 73.33%; the maximum validation accuracy was 73.89%.  The final minibatch loss was 0.0024 
and the final validation loss was 1.3044.  After the training using the LSTM model, the test data 
were tested and showed a recognition accuracy of 78.89%.
	 The result of training using the BiLSTM model, which learns forward and backward passes, 
is shown in Fig. 6.  The training accuracy was 91.67% and the final and maximum validation 
accuracy was 91.67% [Fig. 6(a)].  The final minibatch loss was 0.4612 and the final validation 
loss was 0.3107 [Fig. 6(b)].  After testing with the trained BiLSTM model, the accuracy was 
shown to be 91.67%.
	 Ten gesture recognition accuracies obtained using the three methods are shown in Table 1.  
As shown in the table, the overall keyboard accuracy of DTW was 74.2%.  When the gesture 

Fig. 4.	 (Color online) Confusion matrix for 10 keyboard gestures.
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Fig. 5.	 (Color online) Result of training using LSTM model.  (a) Train accuracy (blue) and validation accuracy (black).  
(b) Minibatch loss (red) and validation loss (black).

Fig. 6.	 (Color online) Result of training using BiLSTM model.  (a) Train accuracy (blue) and validation accuracy 
(black).  (b) Minibatch loss (red) and validation loss (black).
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was recognized by the trained LSTM model, the accuracy was 78.89%, which is slightly higher 
than that of the DTW technique.  The gesture recognition accuracy obtained using BiLSTM 
was the highest (91.67%).  In particular, the recognition rates for gesture “7” were determined to 
be 33.3 and 50.0% in DTW and LSTM, respectively, but 86.6% in BiLSTM.

4.	 Conclusions

	 We proposed a method of recognizing keyboard gestures for an HCI using e-textile sensors.  
Each e-textile sensor comprised a double-layer structure showing complementary resistance 
characteristics.  Constant current sources, ADCs, MCUs, and PCs were used to acquire and 
save numeric keyboard gesture motion data from “0” to “9”.  For gesture recognition, the DTW 
technique, which is known to show excellent performance with a small amount of computation 
for dynamic signals, was used.  In addition, the computation-intensive deep neural networks 
LSTM (a higher version of RNN) and BiLSTM (bidirectional version of LSTM) were used.
	 In the case of using 1200 gesture motion data to test 10 keyboard gestures, the accuracies 
of keyboard gesture detection by DTW, LSTM, and BiLSTM were 74.2, 78.89, and 91.67%, 
respectively.  Gesture recognition technique DTW showed the lowest accuracy (74.2%); 
gesture recognition through LSTM showed a slightly improved accuracy (78.89%) over DTW.  
Keyboard gesture recognition through BiLSTM showed a significantly improved recognition 
rate compared with other methods with an accuracy of 91.67%.  The minibatch loss for BiLSTM 
was 0.4612, which is higher than that of LSTM (0.0024).  However, the validation losses of 
the BiLSTM and LSTM were 0.33107 and 1.3044, respectively.  Since the BiLSTM model has 
a lower validation loss than the LSTM model, the hyperparameter was adjusted to show an 
excellent network.
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Table 1
Recognition accuracy for each gesture.
Gesture DTW LSTM BiLSTM
0 99.2 90.9 98.3
1 84.2 64.7 80.5
2 61.7 80.0 94.1
3 74.2 84.6 90.0
4 78.3 64.7 82.5
5 72.5 74.0 89.1
6 86.7 84.8 92.5
7 33.3 50.0 86.6
8 70.0 95.0 95.8
9 81.7 90.9 95.8
Overall 74.2 78.9 91.7
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