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 Semantic sensor web (SSW) technologies from the sensor web enablement (SWE) standard 
of open geospatial consortium (OGC) are useful for surveillance in disaster situations.  In SSW, 
the characteristics of sensors are represented as a semantic sensor network (SSN) ontology, 
which enables semantic interpretation and situation learning.  For efficient disaster surveillance, 
various sensors are deployed over a large-scale geographic area.  Furthermore, mobile devices 
carried by citizens can be recruited during emergencies.  However, the heterogeneity of the 
recruited devices results in the need for additional processing of data attributes.  To overcome 
the shortage of resources during an emergency, a biologically inspired learning scheme can 
be adopted.  The scheme is based on the spike rates of each sensor, thus ignoring much of the 
information by calculating the relative timing between individual signals shared, and integrated 
semantic ontologies help deduce information from temporal and spatial contexts.  Our approach 
focuses on the asynchronous and spiking nature of sensors and extracts relevant temporal 
features in spatial dynamics.  We propose a scheme utilizing spike-timing-dependent plasticity 
(STDP) to process the vast number of signals sent from newly recruited sensors, which factors 
in the relative timing of signals.  To achieve higher reasoning efficiency, mechanisms behind 
brain synaptic plasticity, specifically, latent inhibition, long-term depression, and long-term 
potentiation observed in the STDP learning rule are applied.  These mechanisms enable a more 
suitable response inference under time-critical circumstances.

1. Introduction

 For cooperation between surveillance organizations, semantic sensor web (SSW) 
technologies from the sensor web enablement (SWE)(1) standard have been proposed, which 
is the general standard enacted at the open geospatial consortium (OGC).(2)  In SSW, the 
characteristics of sensors are represented as a semantic sensor network (SSN)(3) ontology.  This 
enables semantic interpretation and situation learning.  The works in Refs. 4–6 utilized the 
SSN ontology in monitoring or surveillance.  For efficient disaster surveillance, various sensors 
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are deployed over a large-scale geographic area.(7,8)  Furthermore, mobile devices carried 
by citizens can be recruited during an emergency.(9,10)  Such mobile devices are augmented 
to compensate the blind regions where the sensors are broken, and rectify their estimation 
accordingly.  However, as the number of sensors increases, event signals generated from the 
sensors can contain redundant information.  Also, the heterogeneity of the recruited devices 
means that the additional processing of diverse formats is required.  Such processing requires 
time, energy, and high computational power in addition to reasoning cost.  Although the 
integration of sensor data reinforces information, unrestricted random reception of sensor data 
can cause harm in time-critical circumstances.  To efficiently use limited resources during an 
emergency, a biologically inspired learning scheme can be adopted.  The scheme is based on 
the spike rates of each sensor, thus ignoring much of the information by calculating the relative 
timing between individual signals.
 Shared and integrated semantic ontologies help deduce information from temporal and 
spatial contexts.  Our approach focuses on the asynchronous spiking nature of sensors and 
extracts relevant temporal features as seen in the processing of a neuron.  We propose a scheme 
using spike-timing-dependent plasticity (STDP)(11–13) to process the large number of signals 
sent from newly recruited sensors, which factors in the relative timing of signals.  The previous 
work utilizing citizen sensors did not filter or factor the signals using a biological plasticity 
mechanism.  Here, we introduce a new approach that can extract and weigh ontology from a 
specified data set using the STDP criterion.  
 To achieve higher reasoning efficiency, mechanisms behind brain synaptic plasticity are 
adopted.  Latent inhibition (LI), long-term depression (LTD), and long-term potentiation 
(LTP) observed in the STDP learning rule are applied in the reasoning process of ontologies, 
generating a faster and better response.  
 The rest of the paper is organized as follows: In Sect. 2, we introduce SWE and STDP in 
relation to the proposed strategy.  Then the problem caused by human sensor recruitment is 
defined.  We continue with the adoption of our approach in the reasoning domain.  In Sect. 3, 
we describe the experiments and give analysis results.  In Sect. 4, we present our conclusions.

2. Surveillance Management Framework

2.1 SSN web enablement

 Semantic technologies for sensor networks improve semantic interoperability and integration 
in surveillance.(14)  This allows sensors and the resulting data to be organized and managed 
through high-level interfaces.  The sensor ontologies provide a framework for describing 
sensors and reasoning agents.  The framework conforms to the OGC standards.  The World 
Wide Web Consortium (W3C) initiated the Semantic Sensor Networks Incubator Group (SSN-XG) 
to develop the SSN ontology.  SSN ontology models sensor devices, systems, processes, and 
observations.  This incubator group was later transitioned into the Semantic Sensor Networks 
Community Group (SSN-CG).  The SSN ontology enables the expressive representation of 
sensors, sensor observations, and knowledge of the environment.  
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 Furthermore, SSW has been proposed for SSN ontology application in the SWE of OGC.  
A sensor web can be seen as a sensor network based on the Internet web service.  In SSW, 
SSN ontology describes the abilities and properties of the sensors.  It enables the semantic 
compatibility necessary for the syntactic interoperation of sensors and analytic inference of 
agents.
 Figure 1 shows an overview of the SSN classes and properties from an observation 
perspective.(3)  For better response inference, produced signals should be applicable in data 
analyzers and should be combined with others in real time.  With the rapid spread of events, 
the coordination of rights, restrictions, and responsibilities between people and data are also 
constantly subjected to changes.  For the real-time adaptation, rapid application of SSN ontology 
is needed.
 The objective of semantic operations is to provide an interpretation of the information.  The 
use of semantic measures of similarity is related to reasoning.  The level of semantic similarity 
between concepts should be measured to help reasoning.
 Several approaches evaluating the semantic similarity among concepts are surveyed in Ref. 1.  
Some approaches are based on measuring the shortest path length between concept nodes.  One 
limitation of these approaches is that they only consider the relationship between concept nodes 
without giving them a different weight based on their importance.  
 In this paper, we evaluate semantic similarity in weighted ontology introducing the weight of 
each node, which is based on the timing of each event and defined in Sect. 2.2.
 Although the proposed approach can be applied to any metric of similarity, the Wu and 
Palmer (WP) metric(15) is adopted in the study.  The WP metric calculates the conceptual 
similarity by considering the depths of two terms along with the depth of the least common 

Fig. 1. (Color online) Overview of the SSN classes and properties.
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subsumer (LCS).  Assuming that the LCS of two concepts x and y is the most specific concept 
that is an ancestor of both x and y, ConSimWP calculates the semantic similarity between the 
concept nodes C1 and C2 as follows:
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where N1, N2, and N3 are distances from the LCS.  
 We define a modified WP metric that considers the weighted ontology based on STDP.  We 
named it the WPSTDP.  The weighted ontology accommodates a weighted graph structure as 
shown in Fig. 2.
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 WPSTDP takes into account the edge weight from the importance weight of the concept 
node.  The new metric is expressed by Eq. (2).  A weight w that expresses the importance of each 
event of the ontology is assigned, with [0,1]w∈ .  The values iw∑  and jw∑  are the weights of 
the two items C1 and C2 respectively.  To increase the similarity value for an important concept, 
the complement of the weight, (1 )iw−∑ , for C1 and C2 is used in Eq. (2).  Instead of a constant 
edge weight as in the WP metric, the proposed weighted ontology improves the accuracy of the 
conceptual similarity.  This produces a substantial change in the ranking of items made during 
the response inference.
 To define each node mapped with a weighted edge, importance is calculated following an 
STDP criterion.  It gives a higher weight in LTP and a lower weight in LTD as shown in Sect. 2.2.

Fig. 2. (Color online) Concept of similarity measure.
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2.2 Citizen sensor reasoning

 Refined citizen sensor data enable a disaster surveillance system to cover blind regions 
where the sensors are broken, and cover the malfunctioning sensors.(16–18)  However, the 
increased amount of data and the heterogeneity of the recruited devices result in an additional 
computational cost.
 With this in mind, the STDP conceptual model is adopted.  From the asynchronous and 
spiking nature of these sensors, temporally correlated features are extracted.  Dynamic event-
based sensor signals are factored in using STDP.  Sequences of individual signals construct 
moving traces.  Learning rules temporally correlate patterns from a sensor’s signals.  Signals 
are generated from the sensors in response to relative changes in a disaster.  However, event 
signals that did not recently contribute to the post-signal activation are depressed.  
 To prevent sensory overload, a generic human brain uses LI to filter out repetitive 
unimportant events.  LI is a mental process in which an individual does not create any meaning 
with a given stimulus.  A common example of LI is when a person ignores a constantly 
repeating stimulus and automatically deems it insignificant or irrelevant.  Without LI, an 
individual loses concentration directed towards a specific task.  The application of LI to 
surveillance helps filter out a number of unimportant SNS signals.  This is similar to the way 
the human brain achieves new information.
 Furthermore, the STDP learning rule is implemented and follows the processes of human 
learning.  This rule was found in biological neurons and is widely used in both computational 
neuroscience and machine learning.  The process in the learning algorithm can be classified 
into self-organization and reinforcement learning.  Self-organization is the gradual convergence 
of the neuron from a given stimulus to a specific pattern.  As an advanced example of self-
organization, in STDP, a synapse is strengthened or weakened.  In STDP, the presynaptic spikes 
occurring immediately before the current postsynaptic spike strengthen the interconnecting 
synapses (LTP); otherwise, the synapses are weakened (LTD).
 The mechanisms of LTP and LTD observed in the brain are applied in the reasoning process 
of ontologies.  The mechanisms generate information for strengthening or weakening features 
acquired by dynamically controlling the weight for context recognition.  
 The weight change Δwj of a concept node j depends on the relative timing between pre-
signal arrivals and post-signal responses.  Let us name the pre-signal arrival times of node j as 

f
jt , where f = 1, 2, 3, ...  counts the pre-signals.  Similarly, n

it  with n = 1, 2, 3, ...  labels the times 
of the post-signals.  The total weight change Δwj induced by pairs of pre- and post-signals of 
alarming events is then
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where F(Δt) denotes the STDP functions given in Eqs. (4) and (5) and illustrated in Fig. 3.  
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 ( ) exp( / )F t A t τ+ +∆ = ∆  for Δt > 0 (4)

 ( ) exp( / )F t A t τ− −∆ = − −∆  for Δt < 0 (5)

 The width of the learning window is specified by τ, which is known to be 10–20 ms, 
where τ+ and τ− determine the ranges of pre- to post-signal interspike intervals over which 
strengthening and weakening occur.  A+ and A− determine the maximum amounts of 
modification, which occur when Δt is close to zero.  The parameters A+ and A− may depend on 
the current value of the weight wj.  Only the ratio A+/A− is relevant.  For stability, A+/A− must 
be balanced.  This ratio is generally assumed to be slightly smaller than unity to lessen the 
potentiation.  This is because if LTD is stronger than LTP, A+ < A−, and it would result in more 
rapidly converged reasoning.  

3. Simulation Results

 In this section, we will demonstrate how the learning scheme we propose can be used 
to extract overlapping features.  To evaluate the efficiency of our system, we developed a 
simulated environment using MATLAB.  The STDP rule was implemented as the learning 
algorithm, which is widely used in machine learning.  Only signals followed by a pre-signal 
were activated, while others were depressed.  These activated signals were strongly potentiated 
according to Eq. (1).  
 In this event-driven simulator, signal sequences were created by a Poisson process at various 
rates, in which the inter-arrival time follows an exponential distribution of rate λ.  Each signal 
sequence represents the event trajectory of synapses, which were shown as a function of the 
firing rate.  Plasticity typically requires 60 to 100 pre-post spike pairs.  We compared more than 

Fig. 3. (Color online) STDP model.
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300 spike pairs that had the shortest time interval between the pre-post spikes.  In STDP, LTP 
occurs when presynaptic spikes precede postsynaptic spikes by 0–20 ms defined as positive 
Δt, while LTD is induced when postsynaptic spikes lead the presynaptic spike by 20–100 ms 
defined as negative Δt.(12)  The specific characteristics of the experiment were modified 
according to the suggested environment in Ref. 12.  When deciding the intercepts for x and y 
in Fig. 3, A+ was decided as 20 ms and the A−/A+ ratio was decided as 1.25 to induce a higher 
effect.  This made the synaptic weakening through STDP more apparent than the synaptic 
strengthening.  Moreover, for the calculation of F(Δt) in Eqs. (4) and (5), τ+ = 20 ms and 
τ− = 20 ms were defined according to the general assumption.
 The semantic similarities were measured according to both the WP metric and the WPSTDP 
metric.  On the basis of the previous WP metric, ConSimWP drawn from Eq. (1) is calculated.  
Likewise, the newly proposed ConSimWPSTDP drawn from Eq. (2) is calculated on the basis of 
the WPSTDP metric.  To compare each calculated similarity, N3 (shown in Fig. 2) was given 
as a constant.  In the experimental result shown in Fig. 4, the constant designated for N3 was 
5 (N3 = 5).  Simulation resulted in producing a set of keywords for the reasoning system, and 
these were sorted according to their similarities.  The output of reasoning was a set of ontology 
items with higher similarity values.  
 Figure 4 shows the trend of calculated variations of similarities.  Following the STDP rule, 
when LTP was applied, the similarity increased by 20–30% in general.  In other cases, LTD was 
applied resulting in decreased similarity.  Increased or decreased similarity values elaborate the 
ontology search result and improve the inference procedure efficiency.

Fig. 4. (Color online) Comparison between similarity calculations.
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4. Conclusion

 Semantic technologies with SSN ontology can improve interoperability between sensors.  
In this paper, we present a semantic web-based framework to facilitate disaster management 
using sensors.  The framework provides the collection, sharing, access, usage, and management 
of data organized spatially.  The result of this project shows that effective and efficient 
disaster management can be achieved, particularly regarding the inference of responses.  The 
ConSimWPSTDP processing conducted prior to the inference procedure enhances it, resulting in 
better outcomes.  
 Also, by using a citizen sensor with proper filtering by STDP, the surveillance network 
can control the situation more easily and deduce better responses in emergency situations.  
Disaster response through better coordination of the involved agents improves the reasoning 
process, having all of the information available, accessible, and interoperable for use.  The SSN 
ontologies act as a useful assistive framework for the development of a web-based inference 
system.
 In this paper, we introduced the unsupervised learning scheme capable of extracting 
temporally overlapping features, using the STDP learning rule.  This scheme extracts features 
directly from data and is also practical.  The size of the reasoning-related data can be markedly 
reduced by using LI and LTD.  The results of this paper showed high efficiency of dynamic 
citizen sensors.  It could be used as a pre-processing layer for an intelligent inference agent, 
where the extracted features could be automatically labeled and higher-level object tracking can 
be performed.  
 The methodology and the model developed through this research can also be used in daily 
security other than disastrous events.  Spatial data and related timing have been proved to be 
crucial for collaborative decision-making.  Analysis based on their relative timing elaborates the 
inference procedure and produces better security responses.
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