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	 In this work, we study the loop detection problem for mobile robots in the process of 
simultaneous localization and mapping.  In a complex environment, the accuracy and recall rate 
of loop detection will decrease significantly because of the lack of prominent environmental 
state information.  The proposed method combines light fidelity (Li-Fi), used for sensing the 
position of mobile robots, with laser ranging technology to recognize the location that the 
robot has been aware of during the period of locating and mapping.  A shortest link processing 
mechanism for Li-Fi calibration is proposed to select data, thus smoothing the system.  Using an 
extended Kalman filter, we construct virtual consistent state components of Li-Fi information.  
Scans are enriched by providing more environmental information in this method.  A distance-
region model is designed to reduce the amount of calculation appropriately in the process of 
scan matching.  The transformation between frames is reconstructed using a weight distribution 
from the data of laser and photoelectric sensors to reduce the error of data association.  To 
reduce the impact of Li-Fi link occlusion, we set up a pause mechanism during the period of 
fusing information in the process of scan-to-map matching.  Results of experiments in corridors 
and offices show that the proposed method can detect key frames, effectively suppress pose 
drift, improve the accuracy, and guarantee a satisfactory recall rate of loop closure detection.

1.	 Introduction

	 In robotic localization, as mobile robots explore the environment, they use sensors to acquire 
information about the state of the environment, so as to model the environment and build 
and update maps.(1)  This process, named simultaneous localization and mapping (SLAM), 
is the foundation and key in the field of robotics to solve the tasks of exploration, detection, 
positioning, and navigation in different environments.  Depending on the sensors used, SLAM 
is divided into laser SLAM and visual SLAM.  Two-dimensional (2D) laser SLAM, which is 
divided into filter-based and graph-based optimization SLAM(2,3) depending on the solution 
method, is more suitable than visual SLAM for indoor mobile robots owing to its relatively 
mature algorithms for localization, mapping, and navigation.  
	 The task of laser SLAM is to estimate the position and pose of the main body of the 
robot in motion, and to build a map of the surrounding environment.  Accurate mapping 
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requires accurate positioning, which in turn requires an accurate map.(4)  During the period 
of loop closure detection in SLAM, the mobile robot judges whether its current position has 
been described in the created map from the sensor information, which involves global data 
association.  Loop closure detection is such an important task that the correct closed-loop 
information can be used to modify the cumulative error of an odometer and to solve the problem 
of pose drift.  Incorrect loop closure detection will not only affect the accuracy of the results, 
but may also lead to the failure of convergence or converge to incorrect results in optimization.(5)  

Meanwhile, it is difficult to use loop closure detection when mapping an unknown environment, 
particularly in the following indoor environments:

•	 Degraded environments where the data association error increases owing to the lack of 
available environmental information, such as a long corridor with no obvious feature points, 
which aggravates the difficulty of loop closure detection.

•	 Complex environments with many similar objects such as tables, chairs, and corners.  This is 
because similar observations do not necessarily come from the same scene, which may cause 
perceptual ambiguity.  When estimating the probability of observations coming from the 
same place, the amount of data to be processed will multiply increasingly, which increases 
the difficulty of building a detailed map of such an environment.

	 To solve the above problems, mobile robots are required to sense more reliable and accurate 
environmental information.  In fact, the surroundings of a robot are unpredictable, but the 
degree of uncertainty is in a certain range.  In addition, the amount of information perceived by 
sensors is limited.  Therefore, from the data of a single sensor, it is difficult for a mobile robot 
to clearly sense its exact location and the surrounding environment, especially in the above 
listed environments.  In this regard, many scholars have studied the SLAM method based on 
multisensor fusion.  Castellanos et al.(6) proposed a multisensor fusion scheme that emphasized 
the idea of individual compatibility and joint compatibility of measurement data at the landmark 
level, but the selection of landmarks was closely related to environmental characteristics.  
Vasconcelos et al.(7) presented a fusion method involving a camera and a laser ranging sensor, 
and studied the method of parameter calibration between the two sensors, although the method 
required a large amount of calculation.  
	 In recent years, LEDs have been widely used in lighting because of their long life, high 
brightness, and fast response.  Light fidelity (Li-Fi) is a hot communication technology based 
on LEDs, which achieves communication by controlling the fast switching of LEDs.  An indoor 
positioning system based on Li-Fi can achieve high-precision positioning indoors without 
electromagnetic wave communication.  Many papers published worldwide have reported indoor 
positioning technology based on Li-Fi.(8,9)  An indoor visible light positioning system based on 
the received signal strength (RSS) has low complexity, is easy to implement, has a low cost, and 
can locate the position of a robot.(10)  Combined with laser SLAM, such a system can reduce the 
occurrence of perceptual ambiguity and the amount of data association.
	 This paper presents a system combining Li-Fi with 2D lidar SLAM for loop detection 
in real time based on indoor light calibration.  To our knowledge, this system is one of the 
few applications fusing Li-Fi-based calibration with SLAM for mobile robots.  The main 
contributions of this paper are as follows:
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•	 A shortest link processing mechanism for Li-Fi information based on the receiver, which 
is of vital importance to our method, is proposed to select a certain amount of data and 
smooth the system.  The number of links is determined from the received signal through 
experiments.

•	 A probability model of the Li-Fi-based measurement information is established to make the 
calibration more accurate, and an extended Kalman filter (EKF) is used to construct virtual 
consistent state components.  The Li-Fi-based information is used as particular criteria 
in the loop closure detection.  In the iterative solution of data association, we use weights 
proportional to the probability to reconstruct the robot pose.

•	 We report a distance-region model based on scan matching to accelerate the sequential and 
global association, which guarantees that our algorithm performs with no extra calculation 
while fusing the information based on laser and photoelectric sensors.  

2.	 Li-Fi Positioning Model Based on White LED

	 The indoor positioning system based on white LED communication technology consists of 
LEDs with transmitters installed on the ceiling and a receiver.  Let the coded information of 
the LEDs at the transmitter be 

ixT  = (xi, yi, i) [(xi, yi) are the coordinates of LED i = 1, 2, 3, ... ], 
which is given according to the inherent size of the environmental structure.  In the process 
of positioning, the transmitter transmits coding information 

ixT  through each LED, and the 
receiver obtains reference information through photoelectric conversion and intensity detection 
technology.  Owing to the relatively small size of LEDs compared with the transmission 
distance of actual light signals, LEDs are often analyzed as Lambertian.  Some existing indoor 
visible light communication systems based on RSS only consider direct links.  As a result, the 
positioning accuracy of the algorithm is 3–10 cm after simple correction.(10)  In this paper, an 
RSS positioning algorithm is used to increase the real-time performance in SLAM despite its 
low complexity.
	 Let the emission angle of an LED be α, the distance between the LED and a photodiode 
be di, and the angle between a direct light signal and the photodiode normal be β.  The direct 
channel model describes the optical signal transmission characteristics between the transmitter 
and the receiver, and its transmission function i

LOSH  is
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where A is the effective photosensitive area of the photodiode, Ts(β) is the gain of the optical 
filter, G(β) is the gain of the condensing lens, and mt and mr are the Lambert constants.
	 Let the power of the light signal received by the receiver be Pr and the radiation power of a 
single LED be i

tP .  The relationship between the received power and the radiation power without 
considering the multipath effect can be expressed as 
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	 To reduce the negative impact of the intersymbol interference in visible light communication 
caused by multiple indoor reference points, it is necessary to introduce code division multiple 
access (CDMA)(11) technology to recover light intensity attenuation information and the ID 
of different LEDs from the overlapped signal.  Through Eqs. (1) and (2), we can deduce the 
distance between each LED and the receiver.  The equation is as follows:

	 ( )( )T 2 2
i t i tx x x x id h− − = −T R T R E ,	 (3)

where ( ), ,
tx e ex y t=R  = (xe, ye, t), E = (1, 1, 0)T, h is the vertical distance between the receiver and the LED 

plane, t is the observation time, (xe, ye) are the estimated coordinates of the receiver, and the 
calculation formula defined in this paper is as follows:
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where { }max 1, , , ,
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≤

=  Ω , n = 1, 2, 3, ..., and Linkn is the number of Li-Fi links, which is 

determined by the robot surroundings.  The purpose is to select a certain amount of Li-Fi data.

3.	 Probabilistic Model and Notation

	 In this paper, the error δt is regarded as Gaussian white noise, and δt has a multivariate 
Gaussian distribution with mean 0 and variance Qt.  The EKF assumes that the measurement 
probability is controlled by the nonlinear function h(Pr, xt) (Li-Fi measurement function): 

	 ( ),1 ,t r tth P= +xz δ .	 (5)

	 By linearizing h(Pr) around the current state ˆtx  using a first-order Taylor approximation, the 
measurement probability p(zt,1|xt) based on Li-Fi has the following expression:
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where δt = zt − h(Pr, ˆtx ) – Jt(xt – ˆtx ).  The matrices Jt are the Jacobians of the function h 
evaluated at the current state ˆtx ,
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	 Suppose that Sref, i = {pn, n = 1, ..., Nj}, also named the reference frame, is a set of Nj point 
measurements acquired at a previous sensor location Rref, and Snew, i = {qm, m = 1, ..., Mj}, 
named the target frame, is another set of Mj point measurements acquired at the current sensor 
location Rnew (pn, qm ∈ R2).  Let the homogeneous matrix Tj = (xj, yj, θj) ∈ R2 × [0, 2π] ( j = 1, 2) 
be the relative transformation between two adjacent frames.  The goal is to register the two 
frames of point cloud data or the current scanning point with the established map by computing 
the coordinate transformation relation Tj.(12)  

	 The calculation method of the laser measurement probability is as follows: when querying, 
the laser sensor generates a series of measurement values,(1) and K is used to express the number 
of measurement values in a measurement zt, namely,

	 { }1, , K
t t t=z z z

,	 (8)

where K
tz  is used to represent an independent measurement (a ranging value).  Owing to 

the mutual independence between the measured values, the probability of measurement 
p(zt,2|xt, m) is
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4.	 Loop Closure Detection Based on Light Calibration

4.1	 System architecture

	 In Sects. 2 and 3, we respectively described the shortest link processing mechanism and the 
probability model based on Li-Fi.  These modules are the foundation for the data processing in 
lidar SLAM based on Li-Fi.  Our aim is to use these measures to improve the system, whose 
whole process is shown in Fig. 1.

Fig. 1.	 Architecture of proposed Li-Fi-based SLAM.
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	 Through the sensors, a laser, and a photoelectric sensor, mobile robots sense point 
measurements from their surroundings, and the information acquired from the photoelectric 
sensor is calibrated.  The uncertainty of the system is calculated using the probabilistic model.  
The rest of this system provides two key components.  First, an algorithm is used for the scan 
matching of two contiguous frames to establish data correspondence and to compute the robot 
pose according to the probability estimation.  A distance-region model is proposed to accelerate 
this process.  Second, a scan-to-map method based on Li-Fi calibration is presented for 
matching between the current frame and a map.  The calibration serves as a sign of loop closure 
in the process, which is determined by the closing mechanism.  In the following, we discuss the 
process of scan matching and the scan-to-map method, covering the distance-region model and 
the pause mechanism in detail.

4.2	 Scan matching of two adjacent frames

	 The quality signal Q returned by the lidar reflects the reliability of ranging results.  
When the actual measurement distance of the lidar exceeds a certain value L, the quality Q 
will decline, and the ranging information will become basically unreliable.  To reduce the 
measurement error, it is necessary to filter the cloud data of each frame and discard the low-
quality data points.  This process can be carried out by our method based on the distance-region 
model.
	 The iterative closest point (ICP) is a classical method of spatial point registration.(13)  In this 
paper, the ICP framework is used to match 2D Euclidean spatial point sets.  In accordance with 
the general framework, our method performs the following two steps to register the point set 
through iteration, so as to preprocess the data for loop detection.

Step 1: Establishing data correspondence between frames
	 The correspondence between data sets of frames is established by the nearest-neighbor 
principle, and the general method of solving this problem is to compare the data one by one, 
with the time complexity relatively high.  In addition, the light calibration via Li-Fi can probably 
be fused without increasing the calculation burden.  We propose the distance-region model 
shown in Fig. 2 to speed up the search of the nearest point and the data preprocessing in the 
loop detection, and to improve the real-time mapping performance of laser SLAM when the 
information dimension of the data frame increases, thus smoothing the system.
1)	 By registering data points based on Li-Fi information, the Li-Fi-based transformation matrix 

T1 is computed.  Since the light source information is calibrated manually, the projection 
information of the light source is relatively accurate.  In addition, the robot receives the same 
signal from the same light source, and the errors caused by measurement, signal processing, 
and calculation are reflected in the Li-Fi probability model.  As a result, the homogeneous 
transformation of the Li-Fi data frame based on the measurement probability is accurate, and 
the Li-Fi-based transformation matrix T1 is solved using Eq. (13).  

2)	 Using the matrix T1, the current laser point cloud data is mapped and transformed to obtain 
the virtual frame, and the data in the virtual frame is preprocessed by a spatially adjacent 
sequence:
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	 { }T
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	 where the function f transforms the data points in Snew,i to the reference frame coordinate 
system through the homogeneous transformation between frames,
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	 Adding a reference frame data set to the virtual frame, we obtain the new set

	 { }T T
, , , , 1, 2, , , 1, 2, ,l

inv
fus l f l f l l L l L′ ′ ′ ′= = = S q q p p .	 (12)

In Fig. 2(b), the first row represents inv
newS  and the second row represents inv

fusS .  When solving 
the nearest-neighbor relationship, we can search from the current data center to both ends of 
the data axis using the distance-region model.

Step 2: Solving the relative transformation 
	 By considering the correspondence established in the previous step, the objective is to 
compute the homogeneous transformation that makes the corresponding points match to the 
maximum extent.  The sum of the squares of the distances between the corresponding points is 
minimized by changing the transformation matrix, whose formal description is 
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Fig. 2.	 (a) Model of robot and environment and (b) distance-region model. The figure shows the representation of 
the virtual frame inv

newS  and fusion frame inv
fusS .  The open circles represent the data in inv

newS , the triangles represent 
the data in the reference frame, and the filled circles represent light calibration information.

(a) (b)
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	 Since laser-based and Li-Fi-based point cloud data are measured by different sensors, it 
is difficult to achieve their optimal registration at the same time.  Therefore, we first use Li-
Fi-based data point registration to obtain T1, and then use T1 to construct a virtual frame to 
accelerate the solution of the relative transformation T2 of laser-based point cloud data.  To 
balance the laser-based point cloud information and Li-Fi-based information, we use the 
probability estimation of the measurement model to distribute the weights of T1 and T2, and 
then reconstruct the transformation Tk between frames,

	 ( )1 21k k k
prop propw w= + −T T T ,	 (14)

where k is the iteration number and wprop is the probabilities-based weight coefficient expressed 
as 

	 ( ) ( )
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prop j t, j t, t j t t t
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w = p | d p | dρ ρ
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=

 
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where ρj is a normalization coefficient ensuring that the sum of the probabilities of all zt,j is one.  
Through the above two steps, there is convergence for the relative transformation.

4.3	 Matching of current frame to map

	 A submap is built according to the matching between the current frame and the map.  Figure 
1 depicts the whole process.  Map updating meets the characteristics of a low frequency and 
realtime.  Therefore, the specific process of matching between the current frame and the map is 
as follows:
(1)	Transform the current frame fusion data from the body coordinate system to the world 

coordinate system.
(2)	Call the set of the current frame Snew,i and carry out the intersection operation with the 

position set SM of the map.  If Snew,i ∩ SM = Snew,i and the number of elements in the set is 
not less than Linkn (which means that the Li-Fi link of the current frame is unobstructed; 
otherwise, it means that the intersection operation is meaningless and the registration should 
only be based on the laser point cloud data), then implement step (3).  Otherwise, carry out 
the step of matching between the next frame and the map.

(3)	Establish the data correspondence between the current frame and the map, then solve the 
relative transformation.  In this process, if the sum of the squares of the distances between 
corresponding points is less than a threshold, the current frame will be defined as the 
looping frame.

5.	 Evaluation

	 In this section, we outline the evaluation results.  We tested the proposed method with a 
mobile robot running autonomously on real-word data.  
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	 The method was evaluated with a Komodo robot [Fig. 3(a)] equipped with a 180° HOKUYO 
laser range finder and a photoelectric sensor [Fig. 3(b)] within our university [Fig. 3(c)].  We 
replaced the lights on the ceiling with LEDs with transmitters.  Some relevant parameters of 
the sensors and LEDs are depicted in Table 1.  The environment, a symmetrical room with a 
corridor, was 10 × 10 m2 with a height of 3 m.  In addition, there were four similar columns 
and some areas on one side of the room are transparent, and the corridor was very long with a 
polished floor.
	 The first experiment evaluated the effect of the number of links of the communication on 
the positioning error.  While changing the number of effective links within the environment, 
the positioning error was measured and the result is shown in Fig. 4.  We can see that four links 
give the smallest position error based on light calibration in the experimental environment.  
Therefore, in the second experiment, we set Linkn, i.e., the number of links, to four.
	 The second experiment evaluated the global mapping performance of our method using 
the Komodo robot.  The robot traveled about 160 m around the environment with Li-Fi-based 
SLAM, as shown in Fig. 5(a).  The environment is complicated for the mobile robot because it 
is axisymmetric and there were four similar columns in the room with no reflective structure in 
some areas.
	 Figure 5 depicts the results obtained with raw odometry, our method (Li-Fi-based SLAM), 
and the pIC method(14) (a probabilistic model similar to our method).  We can see that the visual 
result of Li-Fi-based SLAM is better than that of pIC, since it can correct the odometer error 
with the light calibration.  In particular, it aligns the map where there is no frontal structure in 

Fig. 3.	 (Color online) (a) Komodo robot, (b) HOKUYO laser range finder, and (c) photoelectric sensor.

(a) (b) (c)

Table 1
Relevant parameters of the sensors and LEDs.
Photoelectric 
sensor

Field of view Detectable area
120° 1.2 cm2

LED Transmission power Half power angle
1.5 W 70°

Fig. 4.	 Position error.
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the room.  In these areas, the lidar has a modest effect and little data can be collected by itself.  
According to the results, there is no extra calculation burden for fusing information.  However, 
the mapping performance shown in Fig. 5(c), which is marked by a dotted circle, is slightly 
lower than that in Fig. 5(d).  This is because the light intensity may change with time.  On the 
whole, our method can effectively suppress pose drift.  
	 By marking the starting point and the driving path, we let the robot run with Cartographer(2) 

(a main closed-loop detection method in 2D laser SLAM), and our approach starts from the 
same point every time and then returns to the starting point.  In this way, we obtain many 
results of our approach.  Figure 6 shows the precision and recall ratios of Li-Fi-based SLAM 
and Cartographer.  With the increase in the number of judgment conditions of loop closure 
detection, the recall rate decreases.(15)  In our method, when the precision is the same, the recall 
rate from Li-Fi-based SLAM is similar or even slightly better than that of Cartographer.  This 
is because the pause mechanism can abandon Li-Fi information when the link appears to be 
covered.  At this time, the information collected from the lidar is enough.  The shortest link 
processing mechanism enables the system to collect only partial data from Li-Fi.  Thus, our 
method guarantees a satisfactory recall rate of loop closure detection while fusing the Li-Fi 
calibration.  Our method has a reliable comprehensive performance for a closed-loop detection 
system.

Fig. 5.	 Global mapping performance obtained with (a, c) Li-Fi-based SLAM, (b) raw odometry, and (d) pIC 
method.

(a) (b)

(c) (d)
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Fig. 6.	 Precision and recall ratios in the experiments within the room.

6.	 Conclusion and Future Work

	 We presented a laser SLAM loop detection method based on indoor light calibration to 
optimize a map by optimizing the robot pose.  In our method, we assume that the intensity of 
indoor light does not change with time.  Our contribution is to fuse light calibration information 
during the data frame transformation, and we propose a distance-region model to speed up the 
process of nearest-neighbor searching.  In the process, we establish a Li-Fi probabilistic model 
to describe the link connection error.  In addition, the shortest link processing mechanism and 
the pause mechanism increase the comprehensive performance of our closed-loop detection 
system.  
	 In future work, we will concentrate on an adaptive algorithm for the data acquisition of 
light links while mapping to reduce the link connection error based on Li-Fi positioning, thus 
providing the system with the shortest link processing.  By this method, the number of links 
will be finalized and the distance information relative to the sensor based on the light calibration 
information received by the robot will be more accurate, even in different environments.
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