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	 In this paper, a registration method for extending point clouds is proposed.  The proposed 
method merges several point clouds to increase the vertical field of view (FOV).  However, the 
most popular alignment algorithm, iterative closest point (ICP), fails to extend point clouds that 
are captured with varying heights when most points are similar.  The main issue is the tyranny 
of the majority, in which ground points and wall points dominate the registration result of ICP.  
Instead of using all points of point clouds, the proposed method only uses the intensity features 
to find the transformation matrix between two point clouds and then transforms the target point 
cloud to the coordinate system of the source point cloud.  Upon merging the two point clouds, 
the vertical FOV can be extended.  In a simulation, the proposed algorithm scans the source and 
the target with fixed position and varying height using a light detection and ranging (LiDAR) 
(Velodyne VLP-16 mounted on a tripod).  The simulation result shows that the average error 
of alignment of the proposed system is less than 16 cm in a 6 × 6 m2 meeting room, and the 
average error of alignment of the proposed system using a premeasured height for compensation 
is less than 12 cm.

1.	 Introduction

	 Light detection and ranging (LiDAR) is an important method for 3D object reconstruction.  
With the drop in price, LiDARs are becoming widely used sensors and the point cloud obtained 
by LiDAR is also widely used in many state-of-the-art approaches.  Recently, the reconstruction 
of 3D objects/scenes has been an important research topic in computer vision.  In general, 
applications of 3D reconstruction can be divided into two categories: one is reconstructing scene 
environments, e.g., building interiors, street views, or natural scenes.  The other is constructing 
a single object, e.g., an item of furniture, a vehicle, or a factory product.  For digital archive 
application, the details of the interior and exterior of historical buildings have to be scanned and 
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modeled for repairing, maintenance, and restoration.  Usually, 3D scene reconstruction involves 
combining a stream of point clouds to establish a city scene.  The stream of point clouds is 
captured by a LiDAR device mounted on a mobile platform or installed on a flight device to 
build city models and rugged ground surfaces.  
	 A LiDAR device is an optical remote sensing device that uses laser light to measure the 
distance of a target.  LiDAR can measure distances with high accuracy, identify the shape of an 
object, and establish the surrounding 3D geographic information model.  It has the advantages 
of high-volume range measurement, high accuracy, high discrimination, and robustness to 
varying illumination.  Generally, the horizontal field of view (FOV) is 360 degrees, but the 
vertical FOV depends on the type of LiDAR device.  A LiDAR device with a wide vertical FOV 
and high vertical angle resolution is very expensive.  For example, the cost of a 64-layer LiDAR 
device is ten times that of a 16-layer LiDAR device.  Usually, applications of a LiDAR device 
depend on its vertical FOV and vertical angle resolution since the distance between the two 
scanning layers is large at long distances.  A sparse point cloud cannot completely present the 
appearance of an object, resulting in a decrease in the degree of recognition and an increase in 
the difficulty of subsequent data processing and analysis.
	 To increase the vertical FOV of a LiDAR device for scanning the interior of a historical 
building, several point clouds captured at a fixed position and varying heights are aligned and 
merged together to form a point cloud with a wider vertical FOV.
	 In this paper, the proposed registration method only uses intensity features to improve the 
accuracy of extending point clouds by the iterative closest point (ICP).  The proposed algorithm 
scans the source and the target with a fixed position and varying height, extracts the intensity 
features from both point clouds and then derives a better approximate transformation between 
the two point clouds by ICP.  This paper consists of five sections.  First, the motivation of this 
research is introduced.  In Sect. 2, the related works are reviewed.  The detail of the proposed 
method is given in Sect. 3.  A simulation and conclusion are given in Sects. 4 and 5, respectively.

2.	 Related Works

	 Many algorithms(1–5) for 3D reconstruction have been proposed.  The key to 3D 
reconstruction is aligning several point clouds with partial overlapping into a common 
coordinate system.  The major task of alignment is to find the optimal transformation between 
the point clouds.  By merging several aligned point clouds, the 3D environment or the 3D object 
can be reconstructed.  Depending on the searching schemes used in alignment, the existing 
methods can be categorized into global-registration-based methods and local-registration-
based methods.  The global-registration-based methods use all points in the source to find 
the corresponding points in the target and then compute the approximate transformation 
matrix.  In Ref. 1, Cordón et al. used the evolution algorithm to find the transformation and 
the gene algorithm used by Silva et al.(2)  The disadvantage of this type of method is that its 
computational cost is too high.  Another kind of local registration method is more commonly 
used in most studies and it usually uses the features of a 3D model, e.g., curves or planes, to 
find the corresponding features.(3–5)
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	 However, the most popular method for alignment, the ICP algorithm, has several varieties.  
Some ICP-based approaches(6,7) use corresponding point pairs to find the transformation.  
Others(8–17) use corresponding features, e.g., planes or curves, to find the transformation of 3D 
scenes or other features between the reference and the source.  Thus, ICP can be categorized 
into both the above types.
	 ICP is reviewed as follows.  The ICP algorithm,(6) proposed in 1992 by Besl and McKay, 
consists of several steps: finding the closest point in the data shape for each point in the model 
shape, then estimating the rotation and translation by a mean squared error (MSE) cost function 
and transforming the data shape with respect to the obtained rotation and translation.  Finally, 
the best result of alignment is obtained by iterating the above process until the transformation is 
negligible.  
	 Let A(xj, yj, zj) be a point in A with m points and B(xk, yk, zk) be a point in B with n points.  
The MSE is defined as the summation of the Euclidean distances of the closest point with 
respect to all points in A.
	 When deriving the transformation, the cross-covariance matrix (CCM), the mean product of 
the closest point vectors, is used.  CCM is defined as follows:
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	 A quaternion matrix Q is defined as

	 TT

( )

( ) ( )CCM C

trace CCM r

tr CM race CCM I

 
=  

−  × +
Q ,	 (3)

where I is the identity matrix and [ ]23 31 12P P P=r  is a row vector.  Let [ ]1 2 3 4q q q q=q  
be an eigenvector of Q.  Using the quaternion representation of rotation, the rotation matrix can 
be written as
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	 Therefore, the translation vector is
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	 After an iteration of ICP, MSE is recalculated to determine whether the next iteration is 
necessary.  If the change of MSE is negligible, the optimal transformation is obtained and then 
ICP stops.  

3.	 Alignment Using Intensity Features

	 ICP, as reviewed in the previous section, tends to align large parts of two point clouds with 
high similarity.  However, the points of the ground and the wall dominate the registration result 
owing to the tyranny of the majority.  Thus, ICP cannot be used for merging another point cloud 
with a similar extra part to extend the original point cloud.  Instead of using all points of point 
clouds, the proposed method only uses the intensity features for ICP.  
	 The proposed algorithm, as shown in Fig. 1, consists of five steps: (1) scanning the source 
point cloud with the initial position and height, (2) scanning the target point cloud with fixed 
position and different heights, (3) extracting the intensity features from both point clouds, (4) 
deriving the transformation matrix between the two point clouds by ICP, and (5) transforming 
the target point cloud into the coordinate system of the source point cloud and extending the 
source point cloud.  The detail of the proposed algorithm is introduced in this section.

Fig. 1.	 (Color) The proposed algorithm consists of five steps: (1) scanning the source point cloud, (2) scanning the 
target point cloud with different heights, (3) extracting the intensity features, (4) deriving the transformation matrix 
by ICP, and (5) transforming the target point cloud and extending the source point cloud.
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3.1	 Scanning the source point cloud and the target point cloud

	 The goal of this paper is to extend the vertical FOV of a point cloud by merging several point 
clouds.  The source point cloud and target point cloud are individually captured in the first 
and second steps.  In the second step, the position of the LiDAR device is fixed but its height 
is increased to scan the extra area.  Since the laser of the LiDAR device is invisible, the exact 
scanned position is unknown.  Therefore, two black patterns are put up on two non-coplanar 
walls for separate calibration.  In contrast to the white walls, for which the intensity of reflected 
light is strong, the black patterns made of a nonwoven fabric have low reflection and are easy to 
extract in point clouds with intensity information.  The first scanned point cloud is shown in Fig. 2, 
in which blue represents stronger intensity and red represents weaker intensity.
	 Note that if the two patterns are put on the same wall, the obtained transformation is 
singular.  In other words, the translation vector and rotation matrix between the two point 
clouds are uncertain.  Thus, the feature blocks are put up on two non-coplanar walls.

3.2	 Extracting the intensity features

	 In general, when a LIDAR device captures a scanned scene, the raw data includes the 
distances and signal intensity values of scanned points.  The reflection intensity will depend 
on the material of the object.  When the laser light hits a smooth and nontransparent plane, 
the intensity of the reflection is greater than that on a plane with a matte surface.  Therefore, 
if some blocks with low-reflectivity materials are set in one scene, the characteristics of the 
scanned data are used as features for better calibration.
	 In our experiments, the non-woven fabric is used as the feature block when scanning and 
the range of reflection intensity values is measured in advance.  The feature size used for 
scene scanning is 30 × 30 cm2.  Because the intensity value of the feature points is much 
lower than that of the surrounding points, the calibration pattern can be easily extracted by the 
predetermined thresholds.  The classification of points can be expressed as

	 i CPP S∈ , if Imin ≤ IPi ≤ Imax,	 (6)

where SCP is the point set of the calibration pattern and Imax and Imin are the predetermined 
intensity thresholds.  The point cloud data filtered by the intensity threshold will leave some 
noise points with similar intensity values.  The noise points are removed by an outlier removal 
method.  The result is shown in Fig. 3.

3.3	 Deriving the transformation by ICP

	 Let the extracted calibration pattern of the source point cloud be SCP1 with m points and the 
extracted calibration pattern of the target point cloud be SCP2 with n points.  These two point 
sets are the input of ICP instead of two whole point clouds.
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Fig. 3.	 (Color) Result of calibration patterns filtered 
by intensity.

	 After carrying out the procedure introduced in Sect. 2.3, the optimal transformation 
translation vector T and rotation matrix R can be derived.  Trapping at local minima is a big 
issue in ICP and it happens when the initial point clouds are markedly different.  If some 
known information can be used to roughly adjust the two point clouds first, a better result can 
be achieved.  Therefore, the offset of height can be added to the points of the target point cloud 
before ICP to obtain a suitable initial position.

3.4	 Transforming and extending point clouds

	 After obtaining the translation vector and rotation matrix between the two point clouds 
by ICP in the previous subsection, the target point cloud PT can be transformed into the same 
coordinate system as the source.  The new position of PT can be calculated by

	 ( ) ( )TT iP P i′ ⋅= +R T ,	 (7)
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where PT(i) is a point of the target point cloud and ( ) ( )TT iP P i′ ⋅= +R T is the new position of the point in the 
coordinate system of the source point cloud.  Then, the extended point cloud is obtained by 
deleting the overlapping points of the transformed point clouds.

4.	 Experimental Results and Analysis

	 The proposed algorithm is simulated by using data captured by a Velodyne VLP-16 LiDAR 
device mounted on a tripod, as shown in Fig. 4.  A Bosch DLE 40 laser rangefinder is also used 

Fig. 2.	 (Color) T he black pat t e r ns made by 
nonwoven fabric have low reflection and the patterns 
are “highlighted”.
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to measure the differences in height.  The test environment is a meeting room, which is shown 
in Figs. 5(a) and 5(b).
	 In Fig. 6, the points marked in white are the source point cloud and the points marked in 
red are the target point cloud.  To show the true relationship between the two point clouds, the 
measured height is added to the origin of the target.  Thus, the red point cloud is considered as 
the ground truth.  In the first experiment, ICP is used for aligning the two whole point clouds.  
In Fig. 7, since the ground and the wall dominate the alignment, the extra part of the target is 
misaligned with the top of the source point cloud.  The result of the proposed algorithm using 
ICP with only the intensity feature block is shown in Fig. 8.  The position of the extra part of the 
target is maintained when aligning.  Another simulation was carried out using the pre-known 
height, which was added as compensation to the coordinates of the points of the target point 
cloud before ICP.  The result is shown in Fig. 9.

Fig. 4.	 (Color online) A Velodyne VLP-16 LiDAR device mounted on a tripod (a) and a Bosch DLE 40 laser 
rangefinder (b).

Fig. 5.	 (Color online) Test environment. (a) Front view. (b) Rear view.

(a)

(b)

(a) (b)
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5.	 Conclusions

	 Since ICP depends on the similarity of the larger parts, e.g., the ground and the wall, the 
alignment sometimes is incorrect because of the tyranny of the majority.  In this paper, an ICP-
based registration method only using intensity features is proposed for increasing the vertical 
FOV of point clouds.  The proposed algorithm scans the source and the target with fixed 
position and varying height, extracts the intensity features from both point clouds, and then 
derives a better approximate transformation between the two point clouds by ICP.
	 In simulations, the average error of alignment of the proposed system is less than 16 cm in 
a 6 × 6 m2 room.  An improved method using the premeasured height is also tested, where the 
premeasured height is added to the coordinates of the points of the target point cloud before ICP 
to improve the performance of the proposed algorithm.  The average error of alignment of the 
proposed system using the premeasured height is less than 12 cm in a 6 × 6 m2 room.

Fig. 9.	 (Color) Result of the proposed algorithm 
with a pre-known height. The position of the extra 
part of the target is maintained when aligning.

Fig. 6.	 (Color) Two point clouds are shown in the 
same coordinate system. The source and the target are 
in white and red respectively.

Fig. 7.	 (Color) Misalignment result of two whole 
point clouds obtained by ICP. The extra part of the 
target is misaligned with the top of the source point 
cloud.

Fig. 8.	 (Color) Result of the proposed algorithm. 
The position of the extra par t of the target is 
maintained when aligning.
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