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	 In this study, an electronic nose is used to record breathing data from healthy and pneumonia 
patients.  The electronic nose records resistance data using a microarray of 11 sensors made 
of a metal oxide semiconductor.  The recorded data are fed to an artificial neural network 
(ANN), which is used to train a model for the detection of infections.  Initially, five patients’ 
data are used to construct the ANN model.  Then, another two patients’ data are used to test 
the accuracy of the model.  In this preliminary study, the ANN achieved good results, showing 
that it can be further developed into an efficient online pneumonia detection system in the near 
future.  

1.	 Introduction

	 The intensive care unit (ICU) is an important part of medical treatment in hospitals and can 
also save the lives of critical patients.  Generally, these patients have a poor survival rate except 
when they are correctly diagnosed.  To reduce the mortality rate, patients have to receive many 
invasive examinations and treatments.  Although these methods can keep a patient alive, they 
also allow bacteria to invade the patient’s body.  Nowadays, many patients easily get ventilator-
associated pneumonia (VAP).  The mortality rate of VAP(1) lies between 20 and 60%(2,3) 
and can be even higher.  The whole detection process takes at least five days and requires 
the culture and identification of species of bacteria causing the disease.  During this period, 
medical doctors cannot treat the patient owing to the lack of a diagnosis.  Unfortunately, some 
patients might die without a true diagnosis while waiting for the laboratory outcome.  Even for 
patients who survive, the bacteria continuously multiply during the waiting period, increasing 
the difficulty in treatment.  Therefore, changing the standard operating procedure into online 
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pneumonia detection, without drawing blood or taking a chest X-ray or sputum culture, is more 
efficient and safer.
	 In general, nitrogen (N2), oxygen (O2), water vapor, and carbon dioxide (CO2) are produced 
from breathing.  A total of 1259 volatile organic compounds (VOCs)(4–8) can be produced by 
human metabolism activities.  These VOCs circulate throughout the body in the blood.  It is 
usually unclear whether empirical antibiotics are effective in the first five days of admission.  A 
fast detection system can be developed using a sensor system that detects bacterial species.  The 
sensor data can be analyzed to identify whether the patient has pneumonia without the need for 
a period of culture development, which can allow a physician to select suitable antibiotics in a 
short time and reduce the mortality rate.
	 Identifying whether a patient has pneumonia is the first step in this study.  Although a 
culture of phlegm or blood can be used to identify the species of bacteria, at least five days are 
required to identify the type of bacterium and the consequences of medication allergy testing.  
This period of cultivation is crucial to patients, and patients should also be treated during this 
period.  However, twenty bacteria can cause pneumonia.(9)  Therefore, only the judgments of 
doctors can be used to treat patients when cultivating bacteria.
	 Because bacteria produce VOCs when metabolizing, it is important to analyze the spectrum 
of cultured pneumonia bacteria and collect VOCs from exhaled breathing gas.  An electronic 
nose with 11 sensors(10) can provide a variety of resistances from exhaled VOCs.  Using the 11 
resistances as the input and the types of cultured bacteria identified in hospitals as the output, 
an artificial neural network (ANN) model(11–14) can be established.  Therefore, the main goal of 
this study is to collect patients’ breath gases data and build an ANN model to predict whether a 
patient has pneumonia in real time.

2.	 Pneumonia Detection System

	 The development of a pneumonia detection system must be supported by a large amount 
of data.  Data from 11 metal oxide semiconductor (MOS)-type sensors with materials such as 
tin oxide(15–17) and tungsten trioxide, and pneumonia VOC information have been converted 
into numerical data that represent the relationship between the resistance and the VOC.  By 
comparing the varied resistance from each sensor, data should be selected carefully before 
training an ANN.  Further details on how to build the system are given in the following 
sections.

2.1	 Sensors

	 In this study, a CHS430 electronic nose [Taiwan Carbon Nanotube Technology Corporation 
(TCNT)](18–20)  is used to collect breathing data to obtain bacteria data through the detection 
of patients’ exhaled air.  It consists of 11 MOS-type sensors, each of which is used to identify 
specific gases in real time.  Typical responses of the sensors are shown in Fig. 1.  The electronic 
nose is designed to identify whether a patient has pneumonia.  The internal air sampling pump 
and advanced pattern recognition algorithm used to detect and recognize the chemical vapors 



Sensors and Materials, Vol. 32, No. 7 (2020)	 2377

require careful design to maximize the sensor performance.  Data are translated to numerical 
resistances that can be used to design the detection algorithm.  Figure 1 shows the graphical 
user interface, which provides information to the user about the collected breathing data.  It also 
shows the reflection pattern of each sensor array.  

2.2	 Data source

	 In this study, an electronic nose is used to collect the exhaled breathing data from patients 
who have already been infected with pneumonia on their first day at Taipei Medical University 
Hospital (TMUH).  The study had full prior approval by an institutional review board and 
written informed consent was obtained from all the patients.  The process of recording 
breathing data by the electronic nose was divided into several stages, as shown in Table 1, by 
controlling the sequence of pumps, solenoid valves, and sensors.  Also, the process was labeled 
with the following flags: Flag 0: purging sample chamber prior to measuring baseline readings; 
Flag 1: drawing sample into sample chamber, Flag 2: resting phase between sample drawing 
and purging; Flag 3: purging sample chamber by pumping through sample intake hose; and Flag 
4: turning off the power.

Fig. 1.	 (Color online) Reflection pattern of each sensor in array.
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2.3	 Data preprocessing

	 The steps of recording the breathing data by the electronic nose are labeled Flags 0–4.  The 
electronic nose recorded one reading every 10 min.  Since the resistances are used to identify 
the status of the gas, Flags 1 and 2 are the most important processes, which show the changes in 
resistance and saturation, as shown in Fig. 2.  Data from Flags 1 and 2 are used for the analysis 
in this study.  Therefore, for selecting data, Flags 1 and 2 were selected as the best sensing area 
of this process for ANN model training as the input data.  Then, bacteria data were labeled 
as “infected” and “non-infected” patient data according to the type of cultured bacterium 
identified in hospitals using a binary system as the output of ANN model training.  After testing 
the accuracy of the model, the data were normalized.  To assess the sensitivity of the sensors, 
the mean absolute error (MAE) between infected and non-infected patients was calculated.

2.4	 Sensitivity analysis of sensors

	 Seven patients’ data were collected by the electronic nose.  To determine the sensitivity of 
the sensors, we calculated the MAE between three infected and four non-infected patients.  
Figures 3(a)–3(d) show the relationship of three infected patients against each non-infected 
patient.  It can be seen that sensors 9 and 10 do not distinguish between infected and non-
infected patients.  Hence, these two sensors were removed, and we constructed the model using 
the other nine sensors.

3.	 Machine Learning

	 After preprocessing the data, the varied resistances from 11 sensors of Flags 1 and 2 
were selected as the input data of this process for ANN model training.  Then, bacteria data 
according to the type of cultured bacterium identified in hospitals were labeled as infected and 
non-infected patient data using a binary system as the output of ANN model training.  In this 
study, 0 was assigned to non-infected patients and 1 was assigned to infected patients.  The 
normalization scale was applied to testing data.  Then, these resistances from 11 sensors of 
patients’ breath VOC gases were used as input values in the ANN’s training, but here, we only 
used nine sensors because two sensors did not have any MAE differences between infection 
and non-infection according to Figs. 3(a)–3(d) results.  The basic arithmetic unit of the ANN is 
used by artificial neurons of the structure of biological neurons imitated by the human brain.  
Millions of these biological neurons are connected by links and they interact with each other.  

Table 1
Timing control sequence of pumps, solenoid valves, and sensors.

Flag 0 Flag 1 Flag 2 Flag 3 Flag 4
Pump-2 ON ON OFF ON OFF
Pump-1 ON ON ON OFF OFF
Valve OFF ON ON OFF OFF
Sensor ON ON ON ON OFF
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Fig. 2.	 (Color online) Resistance response curves of infected patients’ data. 

Fig. 3.	 (Color online) MAE between three infected and four non-infected patients (a) against first non-infected 
patient, (b) against second non-infected patient, (c) against third non-infected patient, and (d) against fourth non-
infected patient.

(a) (b)

(c) (d)
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Also, the neurons can take input data and perform simple operations on the data.  The result 
of these operations is passed to other neurons.  Moreover, each link is associated with weight.  
ANNs are capable of learning due to altering weights.  After the input signal is multiplied by 
the weight, afferent artificial neurons and the weights represent the stimulation intensity of the 
input signal to neurons.  The output at each neuron is called its activation value.  Then, these 
output values connect with the next layer of the ANN.  By connecting layer by layer, a neural 
network is completed as shown in Fig. 4.  In theory, an ANN is composed of an input layer, a 
hidden layer, and an output layer.
	 First, five patients’ data (two infected patients and three non-infected patients) were used 
to train an ANN model, whereas the result of sampling phlegm and blood was the target of the 
ANN model as shown in Fig. 5.  Hence, out of the seven cases, four cases were considered for 
training, one case was considered for validation, and the other two cases were considered for 
testing.

Fig. 4.	 Structure of ANN.

 Fig. 5.	 (Color online) Structure of ANN used to predict a variety of pathogenic microorganisms.
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4.	 Results

	 The model was created using the ANN toolbox within MATLAB.  At the beginning, one 
hidden layer with random neurons was set.  Figure 6 shows the training error for the five 
patients’ data.  In the figure, the blue dots show the error, while the green line shows the 
separation between Flags 1 and 2.  The three additional red lines stand for 0.8, 0.5, and 0.2.  
Since Flag 2 is more stable than Flag 1, a reference to Flag 2 is made to identify whether the 
patient is infected.  Furthermore, Fig. 6 shows the training output values between 0 and 1 of the 
ANN model from patients 1 to 5; those of patients 1 and 3 are lower than 0.2 after the green 
line, whereas that of patient 2 is close to 0.2.  For these three patients, it can be judged that they 
do not have pneumonia.  On the other hand, those of patients 4 and 5 are higher than 0.8 with 
respect to Flag 2; hence, these two patients are infected.
	 After validation and training the ANN model, the data of two other patients (one non-
infected patient and one infected patient) were used to test the accuracy of the model.  Figure 7 
shows the testing output values between 0 and 1 of the ANN model from patients 6 and 7.  The 
predicted value of the first patient (i.e., patient 6) is less than 0.2; hence, this patient is clearly 
not infected.  However, the predicted values of the second patient (i.e., patient 7) show that this 
patient is infected with pneumonia.  The results show that the model predicts the same result as 
medical doctors in TMUH.  After the green line in patients 6 and 7 shown in Fig. 7, Flag 2 is 
stable to know whether the patient has pneumonia.  

Fig. 6.	 (Color online) Training output values between 0 and 1 of ANN model from 5 patients.
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	 To verify the consistency of these data, cross-validation was performed.  This preliminary 
study only recorded seven patients’ breathing data: four non-infected patients and three infected 
patients.  In each model, two cases were used (non-infected and infected) to test the accuracy of 
the model; as a result, three cross-validation models were generated.  Table 2 shows the result 
of each model for the same database.  Since Flag 2 is more stable than Flag 1, the average from 
Flag 2 is calculated to identify whether the patient is infected.  In these results, values larger 
than 0.8 mean that the patient is infected, whereas values less than 0.2 mean that the patient is 
not infected.  Table 2 shows that each model achieved good performance for each testing data.  
The accuracy of each model is 100%.

5.	 Conclusion 
	
	 In this study, an electronic nose constructed with 11 MOS-type sensors was used to collect 
patients’ breathing VOC gas data and build an ANN model to predict whether a patient has 

Fig. 7.	 (Color online) Testing output values between 0 and 1 of ANN model from 2 patients. 

Table 2 
Averages calculated using Flag 2.
Analytics Model 1 Model 2 Model 3
Non-infected Patient 1 −0.69 0.16 0.004
Infected Patient 2 1.37 1.05 1.03
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pneumonia in real time.  After the 5 patients were trained in this ANN model, the other 2 
patients were tested in this preliminary study with good prediction accuracy.  However, we 
will increase the amount of patients’ data in the future.  The proposed algorithm needs to be 
comprehensively evaluated on a wider database.  This may help to enhance the efficiency of the 
proposed algorithm to ensure that the model has good performance for detecting the bacteria 
with which the patient is infected.
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