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	 In Taipei, over 45% of the energy used in buildings is for air-conditioning systems.  In 
particular, multiple chiller systems consume about 70% of the energy in an air-conditioning 
system.  Consequently, optimal chiller loading (OCL)  or energy saving of a building is a vital 
issue.  In this paper, we report a newly developed heuristic algorithm to solve OCL problems.  
A digital flow meter and a digital meter are installed to calculate the energy efficiency of a 
chiller.  The exploration and exploitation of chiller loading can be efficiently improved without 
increasing the number of iterations by adopting the proposed modified artificial bee colony 
(MABC) algorithm.  To demonstrate the performance of the proposed algorithm, it has been 
analyzed in comparison with other optimization methods.  The result shows that the proposed 
algorithm can obtain a similar or better solution than previous algorithms.  Therefore, it is a 
promising approach for solving the OCL problem.

1.	 Introduction

	 The electricity consumption of chillers in Taipei accounts for over 70% of total 
air-conditioning energy use.(1)  Multiple chillers commonly operate in parallel, wherein each 
chiller can either operate independently or serve as a backup so that stable standby freezing 
capacity and highly flexible maintenance scheduling in the field can be provided by controlling  
the operation of  scheduling modes among the chillers.(1)  Since a multiple chiller system may be 
composed of different types of chillers with various characteristics, allocating the appropriate 
number of operating chillers and operation control points to ensure efficiency is a key to 
reducing the energy use of air-conditioning systems.
	 In recent years, there have been many studies globally on the optimal chiller loading (OCL) 
of multiple chiller systems.  Chang proposed the branch and bound method,(2) Lagrangian 
multiplier method, genetic algorithm (GA), and evolution strategy (ES) to solve the load 
optimization problem of multiple chiller systems.(3–5)  Ardakani et al. proposed the use of 
particle swarm optimization (PSO), an evolutionary algorithm based on the social behaviors of 
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bird flocks, to solve the problem of OCL, and they proved that PSO is more efficient than binary 
GA and real GA in solving the problem of OCL.(6)  Lee et al. applied differential evolution (DE) 
to solve the problem of OCL.(7)  Coelho et al. proposed the use of the differential cuckoo search 
approach (DCSA) to improve the original cuckoo search approach (CSA), and obtained superior 
performance in OCL to that for GA, PSO, and DE.(8)  Recently, Zheng et al. have applied 
invasive weed optimization (IWO) and the theory of artificial fish swarm algorithms (AFSAs) 
to OCL with better results than those obtained with evolutionary theories such as PSO, DE, and 
ES.(9,10)

	 The artificial bee colony (ABC) algorithm is an evolutionary algorithm proposed by 
Karaboga in 2005, which simulates the honey-collecting behavior of bees.(11)  Compared with 
other evolutionary algorithms, the ABC algorithm has the advantages of a simpler concept 
and fewer control parameters, and it is superior in general numerical optimization problems.  
Although the ABC algorithm has many advantages, there are still some common problems with 
general evolutionary algorithms.  When solving high-dimensional optimization problems, they 
are prone to falling into local optimal solutions, meaning that such algorithms lack global search 
capability.(12)

	 The function of a chiller is to move heat from one location to another.  It is very common to 
use water or a water/glycol solution to transfer heat to and from the chiller, which may require 
the process chiller to have a reservoir and pumping system.  An overview of a chiller system 
is shown in Fig. 1.  The traditional chiller control method is based on constant flow control.  A 
newer control method is to adjust the flow according to the chiller loading.  Therefore, in this 
research, a digital flow meter and a digital meter are used to obtain the operating parameters 
of the chiller and calculate the chiller loading as the optimal control.  In this paper, a modified 
artificial bee colony (MABC) algorithm is proposed to solve the problem of OCL.  A newly 
developed bee colony self-information exchange mechanism is integrated into the ABC 
algorithm, which can effectively improve the algorithm by giving it improved search ability in 
its global diversity and local depth while also improving the execution efficiency and results of 
the global evolution method.

Fig. 1.	 Chiller operation.
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	 The structure of this paper is as follows.  Section 2 describes in detail the problem of OCL, 
its target functions, and its constraints.  Section 3 describes the evolution mechanism and 
characteristics of the MABC algorithm.  Section 4 gives a comparison of sample results and 
Sect. 5 contains the conclusions.

2.	 Multiple Chiller Systems

	 Multiple chiller systems are widely used in the air-conditioning systems of many large 
buildings, which can provide greater operation flexibility than commonly used single chiller 
systems.  A multiple chiller system is formed by connecting at least two chillers in parallel, 
wherein each chiller can independently supply a different refrigeration ton (RT) freezing 
capacity and operate efficiently according to different or similar performance curves of the 
chiller to provide diverse RT demand in the field.  The architecture of a multiple chiller system 
is shown in Fig. 2.
	 Generally, the maximum peak load demand is taken as the maximum capacity in the design 
of chillers.  However, owing to the relationship between the actual field demand and seasonal 
changes, the maximum peak load is usually only during the peak power consumption in 
summer, while most of the time the chiller operates under the partial load condition, resulting in 
excessive design volume and energy consumption.  The partial load rate (PLR) relationship of a 
chiller can be expressed as

	   
  

Chiller loadPLR
Chiller rated load

= .	 (1)

	 The power consumption of a chiller is related to PLR to a certain extent.  The power 
consumption equations of the chillers established in Ref. 8 are given by Eqs. (2) and (3).  

	 2
i i i i i iP a b PLR c PLR= + × + × 	  (2)

Fig. 2.	 (Color online) Architecture of a multiple chiller system.
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	 Equation (2) is used in the power consumption model of the example chiller.  The 
coefficients ai, bi, and ci in the equation define the relationship between the power consumption 
and PLR of each chiller in the analysis example, similarly to in the literature.(8)  The upper and 
lower limits of the PLR range from 0.0 to 1.0.
	 The objective of the overall OCL optimization is to find the partial load of each chiller in the 
multiple chiller system according to the demand of the field freezing load to minimize power 
consumption.  Therefore, the target function for OCL optimization is defined as

	
1

n

Function i
i

Obj Minimize P
=

= ∑ ,	 (3)

where parameter i refers to the ith chiller, n refers to the total number of chillers in the whole 
multiple chiller system, and Pi refers to the power consumption (unit: kW) of the ith chiller.  The 
objective of the equation is to find the lowest possible total power consumption of the multiple 
chiller system.
	 The OCL problem is solved with two constraints.(8)  The first constraint is that the total 
output value of frozen tons must equal the demand of frozen tons in the field, which is 
expressed as 

	
1

n

i i
i

PLR Q CL
=

× =∑ ,	 (4)

where Qi refers to the rated RT capacity of the ith chiller and CL is the total number of RTs 
required in the field.
	 The second restriction is that the PLR of each chiller cannot be lower than 30%,(8) which is 
expressed as

	 0.3iPLR ≥ .	 (5)

3.	 MABC Algorithm

	 The purpose of developing the MABC algorithm is to improve the search efficiency and 
diversity of the optimal solution of the original ABC algorithm.  However, an optimization 
algorithm with high convergence speed usually has the disadvantage of premature convergence.  
In contrast, if the algorithm has a high search diversity, it needs more iterations to reach the 
optimal solution with relatively high accuracy.(13–15)

3.1	 ABC algorithm

	 The ABC algorithm is an evolutionary algorithm that simulates the honey-collecting 
behavior of bees.(11)  There are three different types of bees in the overall calculation mode and 
three different characteristics of bees: employed bees, onlooker bees, and scout bees.  Employed 
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bees are responsible for searching for nectar sources, onlooker bees search for nectar sources 
according to information provided by employed bees, and scout bees begin random searches 
when the food sources have not been updated for a period of time.  
	 Executing the algorithm begins with setting the parameters required by the bee colony 
algorithm, including the number of employed bees (SN), the maximum number of iterations 
(MaxGen), the cumulative number of unimproved times (limit), and randomly generated 
food sources within the design range.  The best solution is searched for through the employed 
bee searching mechanism.  The food sources found by the employed bees are then sent to 
the onlooker bees for collecting.  If a certain food source cannot be updated after repeated 
iterations, the food source will be abandoned and the scout bee detecting mechanism will be 
started to restart random searching.  The whole algorithm repeats itself until the MaxGen is 
reached.

3.1.1	 Food source renewal mechanism of employed bees

	 A location randomly generated in the solution space is adopted for each employed bee, and 
the cost value of each food source location needs to be calculated.  The formula for searching 
the food source location of each employed bee is

	 ( ), 1 , , ,1 .i G i G i G k GV X r X X+ = + × −  	 (6)

	 Vi,G+1 is the new food source selected by the employed bee, Xi,G is the original food source 
where the employed bee is located, Xk,G is the food source where another randomly selected 
employed bee is located, and r1 is a real value randomly set from −1.0 to 1.0 according to the 
reference variable.(11)  After the location of the new food source is calculated, the cost values of 
the two food source locations Vi,G+1 and Xi,G are compared.  If the cost value of the new food 
source is higher than that of the original food source, the new food source is selected; otherwise, 
the location of the original food source is retained.

3.1.2	 Food source renewal mechanism of onlooker bees

	 After the food source locations of all employed bees are updated through the mechanism 
in Sect. 3.1.1, the rotating method is used to select the food source locations searched by the 
employed bees as the initial searching locations of onlooker bees.  The calculation formula of 
the rotating method is

	 ,

1

i
i j SN

nn

fitP
fit

=

=
∑

,	 (7)

where Pi is the probability that the ith food source location is selected and fiti is the cost value 
calculated for the ith food source location.  The rotating method is performed by using Pij 
calculated by Eq. (7) to generate the location where the onlooker bee searches for new food 
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sources, which is calculated by Eq. (6).  After the onlooker bee calculates the new food source 
location, the cost values of the new and original food source locations are compared, and the 
location with the higher cost value will be selected for the onlooker bee.

3.1.3	 Food source renewal mechanism of scout bees

	 When any employed bee’s food source location has not been updated continuously for more 
than the number of iterations in the initially set limit, the food source renewal mechanism of 
scout bees restarts.  These bees abandon the food source location and randomly generate a new 
food source location in the design space for the employed bee.

3.2	 MABC algorithm

	 The original ABC algorithm has good convergence characteristics in the calculation strategy, 
but with regard to search breadth, it only relies on the mechanism of scout bees for continuously 
unimproved food source locations.  Hence, it is easy for the algorithm to fall into a regional 
optimal solution when searching for multiple variables to optimize the problem.  Therefore, 
in this study, we developed the MABC, which includes two new mechanisms to improve the 
search breadth and speed of multiple variables for optimization of the problem.

3.2.1	 Updated mechanism of optimal food source location

	 The food source updating mechanism of the traditional ABC algorithm, such as Eq. (6), 
uses another randomly selected food source location for subtraction from its own food source 
location for calculation.  The search speed for the best solution of Eq. (6) is low and close to that 
of a random search.  If the selected food source location is far from the global best solution, the 
calculated cost value of the new food source location may not be improved.  In this study, we 
take the mutation mechanism of the DE(16–19) method and modify it by replacing the original 
Eq. (6) to improve the search speed of the ABC algorithm.  The vector search mechanism of the 
original DE method is expressed by

	 ( ), 1 , , ,i G best G i G k GV X F X X+ = + × − .	 (8)

	 In the mutation formula of the DE method, different individuals Xi,j and Xk,j are randomly 
selected from individuals 1 to P in the population, which are subtracted to obtain a vector 
difference, multiplied by the weight value F, and finally added to the best target vector Xbest,j 
in the current generation to obtain the interference vector Vi,G+1 of the next generation.  In this 
newly proposed mechanism, the food source searching mechanism is expressed by

	 ( ), 1 , , ,1i G best G i G k GV X r X X+ = + × − .	 (9)
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Here, Xbest,G is the food source location with the highest cost value searched for by all employed 
bees or onlooker bees at present, Vi,G+1 is the new food source searched for by the employed 
bee, Xi,G is the original food source where the employed bee is located, Xk,G is the food source 
location of another randomly selected employed bee, and r1 is a random real value between −1.0 
and 1.0.  Equation (9) is used to replace Eq. (7) of the ABC algorithm to search for new food 
source locations, greatly improving the convergence speed of the algorithm.  

3.2.2	 Information exchange mechanism of onlooker bees

	 The search-diversifying mechanism of the original ABC algorithm has no other way to 
improve the search diversity of the algorithm except to randomly generate new locations for 
food source locations where the cost values have not been improved for several iterations.  To 
solve this problem, we propose a new information exchange mechanism for onlooker bees.  
After the implementation of the mechanism for onlooker bees, new food source information 
generated from onlooker bees or original employed bees is adopted to improve the search 
diversity for the optimal solution.  This is expressed by

	
, 1 , 1

, 1 ,

if  _

if _

1, 2, ..., ,

,

,
ji G ji G

ji G ji G

U V R R set

U X R R set

j D

+ +

+

= ≤

= >

=

	 (10)

where D is the total number of design variables at the food source location of the onlooker bee, 
Vji,G+1 is the jth variable at the food source location of the onlooker bee calculated through Eq. (9), 
Xji,G is the jth variable at the food source location of the employed bee originally selected 
through the rotating method, and Uji,G+1 is the jth variable value at the new onlooker bee food 
source calculated through Eq. (10).  R is a random real value between 0.0 and 1.0 and is equal to 
the information exchange probability of the onlooker bee.  Through the information exchange 
mechanism for onlooker bees, the search breadth of the ABC algorithm can be effectively 
improved.  The overall architecture of the MABC algorithm is shown in Fig. 3.  

4.	 Results and Discussion

	 This example is a multiple chiller system composed of six chillers.  The purpose is to 
calculate the combination of the six chillers giving minimum power consumption for different 
RT requirements.  The analysis example has five different field RT requirements: 6858 (90%), 
6477 (85%), 6096 (80%), 5717 (75%), and 5334 (70%).  The power consumption of the chillers 
in analysis example 1 is given by Eq. (2).  The rated RTs and power consumption parameters 
(ai, bi, ci) that each chiller can provide are shown in Table 1, and Table 2 shows a comparison of 
the optimization results of the search in this study with those in the literature.(6,8,9,20)  
	 Figure 4 is a convergence performance chart of the MABC algorithm toward the optimal 
solution for different refrigeration requirements.  The optimal solution for all different studied 
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Table 1
Power consumption coeff icient and rated RT 
information in analysis example.
Chiller ai bi ci Rated RT
1 399.345 −122.12 206.30 1280
2 287.116 80.04 700.48 1280
3 −120.505 1525.99 −502.14 1280
4 −19.121 898.76 −98.15 1280
5 −95.029 1202.39 −352.16 1280
6 191.75 224.86 524.04 1280

Table 2
Comparison of the results of the method in this study with those in the literature.

CL
Chiller
number

SA(20) 
Power
(kW)

PSO(6) Power
(kW)

DCSA(8) Power
(kW)

IWO(9) Power
(kW)

Modified 
ABC

Power
(kW)

i PLRi PLRi PLRi PLRi PLRi

6858
(90%)

1 0.7789

4777.03

0.8026

4739.53

0.812726

4738.575

0.8127

4738.575

0.81263

4738.575

2 0.7587 0.7799 0.749619 0.7492 0.749632
3 0.9791 0.9996 1.000000 1.000000 1.000000
4 0.9781 0.9998 1.000000 1.000000 1.000000
5 0.9820 0.9999 1.000000 1.000000 1.000000
6 0.9265 0.8183 0.838559 0.8390 0.838642

6477
(85%)

1 0.8051

4453.67

0.7606

4423.04

0.727731

4421.649

0.7275

4421.649

0.727536

4421.649

2 0.6056 0.6555 0.656132 0.6563 0.657360
3 0.9689 1.0000 1.000000 1.000000 1.000000
4 0.9941 1.0000 1.000000 1.000000 1.000000
5 0.9866 1.0000 1.000000 1.000000 1.000000
6 0.7432 0.6835 0.716524 0.7166 0.715465

6096
(80%)

1 0.5635

4178.73

0.6591

4147.69

0.642735

4143.706

0.6427

4143.706

0.643475

4143.706

2 0.5743 0.5798 0.562645 0.5628 0.562221
3 0.9675 0.9991 1.000000 1.000000 0.999999
4 0.9798 0.9979 1.000000 1.000000 0.999999
5 0.9845 0.9921 1.000000 1.000000 0.999999
6 0.7338 0.5710 0.594490 0.5944 0.594166

5717
(75%)

1 0.6140

3925.51

0.7713

3921.07

0.843697

3840.055

0.0000

3842.553

0.843108

3838.215

2 0.4429 0.7177 0.783794 0.7151 0.783339
3 0.9891 0.3000 0.000001 1.000 0.000000
4 0.8867 0.9991 1.000000 1.000 0.999999
5 0.9841 1.0000 1.000000 1.000 0.999999
6 0.5878 0.7187 0.883049 0.7933 0.882517

5334
(70%)

1 0.6265

3675.34

0.6418

3642.55

0.749969

3507.270

0.0000

3546.438

0.758496

3507.270

2 0.7403 0.6621 0.682477 0.5834  0.689122
3 0.3093 0.3301 0.000012 1.0000 0.000000
4 0.9546 0.9906 1.000000 1.0000 1.000000
5 0.9511 0.9990 1.000000 1.0000 1.000000
6 0.6250 0.5806 0.776363 0.6218 0.7608385

Fig. 3.	 (Color online) Architecture of MABC 
algorithm.
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Fig. 4.	 (Color online) Comparison of convergence speed of the MABC algorithm.

cases was found by carrying out 60 iterations, while the lowest power consumption was 
obtained by carrying out 20 iterations for the four results with field RT requirements of 6477 (85%), 
6096 (80%), 5717 (75%), and 5334 (70%), proving that the method proposed in this study can 
effectively solve the OCL problem.
	 From the results in Fig. 4, it can be seen that for the field RT requirements of 6858 (90%), 
6477 (85%), 6096 (80%), and 5334 (70%), similar power consumption results to  those in the 
literature can be obtained.  For the field RT requirement of 5717 (75%), this method can find 
better chiller power consumption results than those in the literature, proving that the MABC 
algorithm is suitable for solving the load optimization problem of multiple chillers.

5.	 Conclusions

	 The MABC algorithm proposed in this paper integrates new evolution mechanisms with two 
different characteristics of convergence speed and search diversity, simultaneously improving 
the breadth and convergence speed of the optimal solution.  In this study, we install a flow 
meter on the pipeline to calculate the load of the chiller and use this value to determine the 
efficiency of the chiller.  According to the results of the analysis example and other literature, 
the MABC algorithm is suitable for optimizing the minimum power consumption combination 
of multiple chiller systems.  Not only can solutions close to or even better than those in the 
literature be obtained, but also the convergence speed when searching for the best solution is 
also extremely high.  The results confirm that the MABC algorithm has better performance and 
stability than other methods and can be applied to similar optimization problems.  In the future, 
this research technology can be combined with some software platforms, using information 
and communication technology and Internet of Things technology to expand the application of 
energy saving.(21,22)
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