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	 The stress–strain curves of as-received shape memory alloys (SMAs), which are often used 
as sensors or/and actuators, vary among cyclic loadings.  This phenomenon is caused by an 
irreversible process induced by the martensite transformation.  To reproduce it mathematically, 
the one-dimensional phase transformation model previously proposed by the present author 
and his coworkers is developed.  Specifically, new phases composed of the austenitic phase 
and the residual martensitic phase are introduced.  To verify the validity of the model, cyclic 
tensile loading tests of as-received superelastic SMA wires are carried out and the measured 
stress–strain curves are compared with those obtained by calculation.  The result shows that the 
present model can reproduce the variation of the stress–strain curve for the first several cycles 
with reasonable accuracy.

1.	 Introduction

	 Since shape memory alloys (SMAs) provide unique properties such as the shape memory 
effect and superelasticity, they have been applied to commercial products and studied to 
develop new applications in a wide range of fields such as aerospace, medicine, and home 
electronics.(1,2)  In the applications, SMAs play the role of sensors or/and actuators as well as 
structural elements.  For example, a water temperature regulator in a shower faucet comprises 
an SMA spring, a bias stainless spring, a knob compressing the bias spring for temperature 
adjustment, and inlet valves for hot and cold water.  The length and stiffness of the SMA spring 
change with the water temperature.  Accordingly, the inlet valves move so that the mixed water 
temperature approaches a set temperature.  Although SMAs are or will be applied to many 
products, their deformation behaviors are complicated since such properties are based on a 
phase transformation and are nonlinear, showing hysteresis.  To understand the mechanism 
of the complicated deformation behaviors and to design optimized products including 
SMAs, fundamental experimental data and mathematical models are necessary and many 
experimental and theoretical studies have already been carried out.(1–13)  From experiments, 
it is well known that the properties of as-received SMAs vary with increasing number of 
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loading cycles because stress-induced martensitic phases resulting from a transformation 
during the loading process cannot completely reverse-transform into the austenitic phase 
after unloading.  The irreversibility of the process is due to the accumulation of dislocations, 
mismatches of grain boundaries, and other factors during the phase transformation.  This 
martensite-transformation-induced plasticity (MTRIP) is one of the most important phenomena 
in the application of SMAs to products, because SMAs are usually used under cyclic loading in 
applications.(8–10)

	 Several types of constitutive models have been proposed in previous studies.(11–13)  However, 
most of them cannot describe the effects of MTRIP.  To incorporate such effects into the 
constitutive models, Tanaka and coworkers assumed that the deformation behaviors were 
governed by macroscopic constitutive equations that did not include MTRIP, although local 
values for the stress, strain, and volume fraction of the martensitic phase were substituted 
into the equations.(14,15)  The local values included the effects of the residual stress, the 
residual strain, and the volume fraction of the residual martensitic phase.  The residual stress 
was assumed to be an exponential function of time while the transformations took place 
and approached a limiting value with increasing time.  The evolutions of the residual strain 
and the volume fraction were assumed to be functions of the residual stress.  Lexcellent and 
Bourbon introduced the instantaneous fraction of the residual martensitic phase as a variable, 
which was assumed to be a function of the martensitic fraction accumulated only during the 
martensite transformation and to approach a limiting value.(16)  The specific free energy was 
assumed to vary with the instantaneous residual martensitic fraction, and accordingly, the 
transformation stresses also varied.  Abeyaratne and Kim assumed that the residual stress at 
some location in a specimen increases with the number of times that the location has undergone 
each transformation.(17)  Bo and Lagoudas introduced the accumulated volume fraction of the 
detwinned martensite.(18)  The plastic strain was assumed to be a function of the accumulated 
detwinned martensitic volume fraction.  The back stress was assumed to be a function of the 
plastic stress and the detwinned martensitic volume fraction, and the drag stress was assumed 
to be a function of the total martensitic volume fraction and the accumulated total martensitic 
volume fraction.  Naito et al. introduced the residual martensitic phase connected in parallel 
to the austenitic phase in their one-dimensional model to consider the residual stress in the 
austenitic phase.(19)  The volume fraction of the residual martensitic phase relative to the 
austenitic phase was assumed to increase with the number of loading cycles.  Auricchio et al. 
assumed that the martensitic transformation stress decreased and the volume fraction of the 
residual martensitic phase increased with the accumulated martensitic volume fraction during 
the martensitic transformation and that the reverse transformation temperature increased 
with the accumulated martensitic volume fraction during the reverse transformation, and they 
approached limiting values.(20)

	 These models could closely reproduce the deformation behaviors of as-received SMAs 
under cyclic loadings with a constant strain amplitude or constant temperature amplitude 
by adequately determining the material constants related to the cyclic effect.  However, 
these models except for Abeyaratne and Kim’s model(17) could not reasonably reproduce the 
deformation behaviors under cyclic loadings with varying amplitude.  Abeyaratne and Kim 
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reproduced such behaviors by considering a bar with a movable phase boundary between 
two phases, although this approach cannot reproduce the deformation behaviors of an SMA 
including more than two mixed phases.
	 The present author and his coworkers(21–25) have also proposed constitutive models with an 
energy-based transformation criterion.  To understand the physical background of the nonlinear 
deformation during the phase transformation, a grain-based micromechanical constitutive model 
was first presented.(21)  By increasing the number of grains to infinity in the micromechanical 
model, a lumped parameter model, referred to as the one-dimensional phase transformation 
model, was obtained.(22)  Moreover, this model was extended so as to be able to describe 
tension–compression asymmetric behavior and tension–torsion behavior.(23–25)  The features 
of this model are as follows: (1) more than two phases/variants can be taken into account, (2) 
the rate-dependent effect can be described, and (3) it can be used for quantitative analysis.  
However, this model could not reproduce the cyclic effects including MTRIP.  
	 In this paper, this one-dimensional phase transformation model that can treat more than 
two phases and be used for quantitative analysis is extended so as to be able to describe cyclic 
effects including MTRIP.  In Sect. 2, the features of the variation of the stress–strain curve 
under cyclic loadings are observed.  The one-dimensional phase transformation model is 
explained and extended in Sect. 3.  The validity of the extended model is shown by comparing 
the deformation behavior reproduced by the model with measured results in Sect. 4.  In 
Appendix, a transformation criterion and a constitutive equation are derived.

2.	 Experiment

	 Figures 1(a) and 1(b) show quasistatic stress–strain curves of an as-received TiNi-SMA wire  
of 0.75 mm diameter (Kantoc, material code EF3256).  This cyclic test was performed with 
a fatigue test machine (Shimadzu EHF-FB10kN-10LA).  In Fig. 1(a), the wire was stretched 

Fig. 1.	 (Color online) (a) Complete transformation cycles and (b) strain cycles with increasing return strain in 
stress–strain curves for the first few strain cycles of an as-received SMA wire.

(a) (b)
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until the martensitic transformation was completed for all cycles.  In Fig. 1(b), the return point 
of strain was 4% in the first cycle and 6% in the second cycle, and the transformation was 
completed in the third cycle.  Hereafter, the return point of strain during the cyclic loading 
and unloading process at which the sign of the strain rate changes from positive to negative is 
referred to as the return strain.
	 It is seen from Figs. 1(a) and 1(b) that the features of the stress–strain curves during the first 
few cycles are as follows: With increasing number of cycles, (1) the martensitic transformation 
stress decreases, (2) the area of the hysteresis loop decreases, and (3) the residual strain 
increases.  In addition, (4) as the return strain gradually increases during the cyclic loadings, the 
martensitic transformation stress increases in steps to the past return strains in the stress–strain 
curve.

3.	 Constitutive Model

	 Figure 2 shows a schematic of the stress–strain relation for the first few cycles of tensile 
loading and unloading, where the lattices represent schematics of crystal structures at several 
states.  The residual martensitic phase is considered in addition to the austenitic phase and the 
martensitic phase.  During the first loading (State 0 to State 3), the austenitic phase transforms 
into the martensitic phase when the stress increases beyond the martensitic transformation 
stress.  However, during the first unloading (State 3 to State 5), not all the martensitic phase 
can return to the austenitic phase and some of the martensitic phase remains due to dislocation 
or mismatch between grains.  During the subsequent second loading (State 5 to State 7), the 
returned austenitic phase transforms into the martensitic phase again.  The transformation 
stress for the second loading is lower than that of the first loading owing to the residual stress 
generated by the residual martensitic phase inside the austenitic phase.  Then, during the second 
unloading (State 7 to State 8), more martensitic phase remains and the residual strain increases, 
although the increment of the residual strain decreases.

Fig. 2.	 (Color online) Variation of stress–strain curves for the first few strain cycles and schematics of 
corresponding crystal structures at the indicated states.
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	 To include the effect of the residual martensitic phase, mixed phases comprising the 
austenitic phase and the residual martensitic phase generated in the first cycle, the second cycle, 
and the ith cycle are introduced, which are referred to as the AR1-, AR2-, and ARi-phases, 
respectively.  Table 1 shows the correspondence between the crystal structures shown in Fig. 2 
and those of the present model.  The mixed phase in State 5 is assumed to be the AR1-phase and 
the mixed phase in State 8 is assumed to be the AR2-phase, where the AR2-phase has more of 
the residual martensitic phase than the AR1-phase.  The correspondences between the crystal 
structures shown in Fig. 2 and those of the present model in States 4, 6, 7, and 9 are also listed 
in Table 1.  Regarding the properties of the ARi-phase, the residual strain of the ARi-phase 
increases and the transformation stress from the austenitic phase to the ARi-phase decreases as 
the number of cycles i of the ARi-phase increases.
	 Figure 3 shows the transformation rule of the one-dimensional phase transformation model 
for the present model including the ARi-phases.  Here, an SMA bar specimen is considered 
and the specimen is assumed to consist of the austenitic phase represented by symbol A, the 
martensitic phase represented by symbol M, and the mixed phases represented by symbols AR1 
and AR2.  The required transformation energy (RTE) is defined as the energy required for the 
phase transformation caused by the interaction between grains or phases.  It is assumed that 

Fig. 3.	 (Color online) Phase transformation rule of the one-dimensional phase transformation model.

Table 1
(Color online) Relationship between schematic crystal structures in Fig. 2 and those in the present model.

Model State
5 8 4 6 7 9

Fig. 2

Present

AR1 phase AR2 phase
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infinitesimal virtual grains are sorted in order of RTE, so that RTE takes the minimum value at 
the bottom of the bar and the maximum value at the top.  The order of these grains is assumed 
to be unchanged irrespective of the phases before and after the transformation.  Accordingly, 
each phase transformation proceeds from the lower part to the upper part of the bar.
	 First, the whole specimen is assumed to be in the A-phase [Fig. 3(a)].  When a tensile force is 
applied to the bar and the stress value increases beyond a certain critical value, a transformation from 
the A-phase to the M-phase takes place from the bottom, at which the RTE takes the minimum 
value [Figs. 3(b) and 3(c)].  Then, when the tensile force is unloaded, the transformation from 
the M-phase to the AR1-phase takes place from the bottom [Fig. 3(d)].  Next, when the tensile 
force is applied again after the force is completely unloaded [Fig. 3(e)], the transformation from 
the AR1-phase to the M-phase and then the transformation from the A-phase to the M-phase 
take place at the lowest boundary of the RTE for each transformation [Fig. 3(f)].  Finally, when 
the tensile force is unloaded, the M-phase transformed from the AR1-phase transforms to the 
AR2-phase, and the M-phase that has not yet transformed to the AR1-phase transforms to the 
AR1-phase.  The transformations occur in the sequence of A-phase, M-phase, AR1-phase, 
M-phase, AR2-phase, M-phase, and so on.
	 When the length of the bar is normalized, the sum of the normalized regions in the same 
phase corresponds to the volume fraction of the phase.  Hence, the ordinate is referred to as the 
volume fraction coordinate (VFC).
	 According to this assumption, the transformation criterion from the α-phase to the β-phase is 
formulated as (see Appendix)(22–25)

	 ( ) ( )( ) [ ]2
1

1 1 1
2

s s T T z
E E β α β α α β α β α
β α

σ σ ε ε Ψ↔ →
 

− + − + − − =  
 

.	 (1)

σ, Eα, εα, sα, T, and Tα↔β denote the stress, the Young’s modulus of the α-phase, the intrinsic 
strain due to the difference in the crystal structure between the α-phase and a reference phase, 
the entropy of the α-phase, the material temperature, and the ideal transformation temperature 
between the α-phase and β-phase without dissipation due to the internal friction, respectively.  
Ψα→β is the RTE for the transformation from the α-phase to the β-phase, and zα1 denotes the 
minimum value of the VFC in the α-phase as shown in Fig. 3.  The transformation criterion 
means that during the transformation process, the thermomechanical driving energy of the left-
hand side is equal to the RTE.  The relationship between Ψα→β and zα1 was found empirically to 
be approximated by the following formula:

	 [ ] ( )11 1
1 1, 2, 1, 2,1 zz

c  c   z a b a αα
α β α α β α β α β α β α βΨ Ψ Ψ − −−
→ → → → → →

 = + − +  
,	 (2)

where Ψc1,α→β, Ψc2,α→β, a1,α→β, bα→β, and a2,α→β are material constants.
	 In this paper, an isothermal condition is considered.  The strain under an isothermal 
condition is assumed to be the sum of the elastic strain and the intrinsic strain:
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where ε and zα denote the strain and the volume fraction of the α-phase, respectively.

4.	 Results and Discussion

4.1	 Validation of the proposed model

	 To show the validity of the present model, the stress–strain curves shown in Figs. 1(a) and 
1(b) are reproduced.  An isothermal condition is assumed.  The material and environmental 
constants are listed in Table 2.
	 Figures 4(a) and 4(b) show a comparison of the variation of the stress–strain curves for the 
first few strain cycles between the experiment and calculation.  Symbols represent measured 

Table 2
Material and environmental constants.
α Eα [GPa] εα (sM ‒ sα)(T ‒ Tα↔M) [MJ/m3]
A 71 0 ‒31.5
M 25 0.043    —
AR1 67 0.001 ‒29.35
AR2 63 0.003 ‒27.1

α→β Ψc1,α→β
[MJ/m3]

Ψc2,α→β
[MJ/m3] a1,α→β a2,α→β bα→β

A→M 0 6.0 1.0 × 1050 1.0 × 1050 1.0
M→AR1 0 5.2 1.0 × 1020 1.0 × 1050 1.0
AR1→M 0 5.5 1.0 × 1050 1.0 × 1050 1.0
M→AR2 0 4.8 1.0 × 1020 1.0 × 1050 1.0
AR2→M 0 5.0 1.0 × 1030 1.0 × 1050 1.0

(a) (b)

Fig. 4.	 (Color online) (a) Complete transformation cycles and (b) strain cycles with increasing return strain 
showing comparison of stress–strain curves for the first few strain cycles between experiment and calculation.
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data and lines are predictions.  It is seen from Fig. 4(a) that the prediction can effectively capture 
the slopes of the elastic regions, the residual strain, and the reduction of the transformation 
stress by determining the material constants so that the predicted curves for the three cycles 
agree with the measured curves.  This result shows that the constitutive equations are reasonable 
for describing the deformation behaviors including the phase transformation and the hysteresis.  
It is also seen from Fig. 4(b) that the prediction can capture the steplike increase in the 
transformation stress for the strain cycles with increasing return strain.  However, the predicted 
reverse transformation stresses during the unloading are lower than those in the experiment.  
Accordingly, the assumed RTE is larger than the actual value.  A reason for this difference is 
considered to be as follows.  The energy required for the nucleation of the austenitic phase from 
the complete martensitic state is larger than that for expanding the austenitic region.  The stress–
strain curves during the unloading in Fig. 4(a) start with the nucleation of the austenitic phase, 
while those in Fig. 4(b) start with the development of the austenitic region.  Since the material 
constants were determined so as to fit Fig. 4(a), the predicted reverse-transformation stresses 
are lower than those in the experiment in Fig. 4(b).  The present model cannot distinguish this 
difference at the state when the transformation starts.
	 In this paper the evolution of the material constants for the mixed phases was not formulated 
and the material constants were given for each phase.  A function that approaches a limiting 
value with increasing number of cycles can be adopted to the evolution function, such as an 
exponential function or an inverse proportional function.  The form and values of coefficients 
of the function depend on the composition of the SMA and the thermomechanical treatment.

4.2	 Validation of RTE function

	 The form of the RTE function is verified.  From Eqs. (1) and (3), the formulae used to 
calculate the RTE and the volume fraction obtained from the experimental data under an 
isothermal condition can be obtained as

	 ( ) ( )( )21 1 1
2A M M A M A A M
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	 Open circles in Fig. 5 represent the martensite volume fraction–RTE relationship obtained 
from the first loading in Fig. 1(a).  The RTE is 0 at the martensite volume fraction of 0, increases 
steeply, then plateaus at approximately 6.0 MJ/m3, and finally increases steeply again.  From this 
graph, the material constants in the RTE function shown in Eq. (2) are estimated.  In this case, 
we can assume Ψc1,A→M = 0 and Ψc2,A→M = 6.0 MJ/m3.  Assuming bA→M = 1, the combination 
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of (a1,A→M, a2,A→M) can be estimated easily through a trial-and-error approach.  The curves 
in Fig. 5 are examples of approximation curves in the form of Eq. (2) having (a1,A→M, a2,A→M) 
of (1050, 1050), (1010, 105), and (105, 102).  a1,A→M and a2,A→M are related to the curvature of 
the left and right parts of the RTE curve, respectively.  In this case, the measured data can be 
approximated best for (a1,A→M, a2,A→M) = (1050, 1050).  The inverse function of the RTE is a 
cumulative distribution function.  The derivative of the cumulative distribution function is a 
probability density function.  Figure 6 shows the discrete probability density function, that is, a 
histogram, with a bin width of 1 MJ/m3.  It is seen that when larger values are given to a1,A→M 
and a2,A→M, the kurtosis of the frequency increases.

5.	 Conclusions

	 The one-dimensional phase transformation model of SMAs, which are often used as sensors 
or/and actuators, proposed by the present author and his coworkers was extended so as to be 

Fig. 5.	 (Color online) Validation of RTE function for (α1,A→M, α2,A→M).

Fig. 6.	 (Color online) Frequency of RTE calculated from (a) the experimental data and (b) the example functions 
RTE1, RTE2, and RTE3.

(a) (b)
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able to describe cyclic deformation behaviors including the martensite-transformation-induced 
plasticity observed in experiments.  The features of SMAs are as follows: with increasing 
number of cycles, (1) the martensitic transformation stress decreases, (2) the area of the 
hysteresis loop decreases, and (3) the residual strain increases.  In addition, (4) the martensitic 
transformation stress increases in a steplike manner with increasing return strain during the 
cyclic loadings.  To describe such features, mixed phases of the residual martensitic phase and 
austenitic phase were introduced into the model.  A comparison of the predicted stress–strain 
curves with the measured data showed the validity of the model.  However, the predicted curves 
are slightly different from those obtained by the experiment when the transformations are not 
completed, because the energy required to expand the region of a phase is assumed to be the 
same as that for the nucleation of the phase in the present model.  The consideration of this 
difference in the model remains as a future challenge.
	 A three-dimensional finite element analysis of deformation behaviors of SMA elements 
could be performed, but its calculation would be time-consuming.  Moreover, in most 
applications, the SMA elements are in the form of a wire, coil, or tube, so only one-directional 
movement need be considered.  Therefore, the lumped parameter models in this paper are still 
useful, especially when calculations must be performed for many combinations of parameter 
values at an early stage of product design.
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Appendix

	 In this Appendix, Eq. (1) is derived brief ly.  From the first and second laws of 
thermodynamics, the Clausius–Duhem inequality can be obtained as

	 ( ) grad: 0q TTs u
T

ρ ⋅
+ − − ≥  σ ε ,	 (A1)

where σ, ε, ρ, T, s, u, and q denote the stress tensor, the strain tensor, the density of the material, 
the temperature, the entropy per unit mass, the internal energy per unit mass, and the heat 
flux transmitting across a unit area, respectively.  The overdot denotes the time derivative.  
Assuming that the deformation is infinitesimal, the total strain  can be given by a sum of the 
thermoelastic strain εe and the transformation strain εtr as

	 ε = εe + εtr,	 (A2)

where the thermoelastic strain comprises the elastic strain and the thermal strain.  The Gibbs 
free energy per unit mass is assumed to be given by a function of stress, temperature, and 
internal variables Z as

	 ( ) 1, ,  : eZ
ρ

= = − −G G T u Tsσ σ ε .	 (A3)

	 Substituting Eqs. (A2) and (A3) into Eq. (A1), we have

	 grad: : 0tr e qZ
Z

G G G Ts T
T T

ρ ρ∂ ∂ ∂ ⋅     − + − + − + ≥     ∂ ∂ ∂     
 

 σ ε ε σ
σ

.	 (A4)

	 For thermoelastic deformation in a uniform temperature field, Eq. (A4) yields

	 : 0e G Gs T
T

ρ ∂ ∂   − + − + =   ∂ ∂   


ε σ
σ

.	 (A5)

	 Since Eq. (A5) must be satisfied for any σ  and T, we obtain the following thermoelastic 
constitutive equations and state equation:

	 e Gρ ∂
= −

∂
ε

σ
,	 (A6)

	 Gs
T
∂

= −
∂

.	 (A7)
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	 Substituting Eqs. (A6) and (A7) into Eq. (A4), we obtain

	
grad: 0tr qZ

Z
G T

T
ρ ∂ ⋅ − + ≥ ∂ 



σ ε .	 (A8)

	 The internal variables εtr and Z can be obtained from their evolution equations.  
	 A specific form of the Gibbs free energy is obtained as follows.  Hooke’s law of a 
homogeneous isotropic elastic body taking thermal expansion into account is given by

	 ( ) ( )1tr T rT T
E E
ν ν α+

= − + + −e I Iε σ σ ,	 (A9)

where ν, E, I, αT, and Tr denote Poisson’s ratio, the longitudinal elastic modulus, the identity 
tensor, the linear coefficient of thermal expansion, and the reference temperature, respectively.  
Substituting Eq. (A9) into Eq. (A6) and considering Eq. (A7) and ( )/pC T s T= ∂ ∂ σ  for reversible 
deformation, we obtain

( ) ( )( ) ( ) ( )2
0 0 0

0

1tr : tr ln
2 2 T r p

TG T T C T T T s T T
E E T
ν νρ α ρ ρ

 +
= − − − − − − − − 

 
σ σ σ σ , (A10)

where Cp is the specific heat per unit mass measured in the state of constant pressure, T0 
denotes the temperature at which the last two terms of Eq. (A10) vanish, and s0 is the entropy 
per unit mass at σ = 0 and T = T0.  
	 Here, a lumped parameter model is considered under unidirectional loading.  In this case 
Eqs. (A2), (A6), (A7), (A8), and (A10) can respectively be written as

	 ε = εe + εtr,	 (A11)

	 e Gε ρ
σ
∂

= −
∂

,	 (A12)

	 Gs
T
∂

= −
∂

,	 (A13)

	 0Z
Z

tr Gσε ρ ∂
− ≥

∂


 ,	 (A14)

	 ( ) ( ) ( )2
0 0 0

0

1 ln
2 T r p

TG T T C T T T s T T
E T

ρ σ α σ ρ ρ
 

= − − − − − − − − 
 

.	 (A15)
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	 Since an SMA is composed of the austenitic phase and variants of the martensitic phase, the 
Gibbs free energy and entropy are assumed to be their sums for each phase.

	 ( ) ( ), , , G T z z G Tα α α
α

σ σ=∑ 	 (A16)

	 0 0s z sα α
α

=∑ 	 (A17)

	 Gα is the Gibbs free energy of the α-phase and

	 ( ) ( ) ( )2
0 0 0

0

1 ln
2 T r p

TG T T C T T T s T T
E Tα α
α

ρ σ α σ ρ ρ
 

= − − − − − − − − 
 

	 (A18)

from Eq. (A15).  sα0 is the entropy of the α-phase per unit mass at T = T0 and σ = 0.  zα is the 
internal variable referred to as the volume fraction of the α-phase and satisfies the relation

	 1zα
α

=∑ .	 (A19)

“α” is “A” for the austenite phase, “M” for the martensitic phase, etc.  For simplicity, the linear 
coefficient of thermal expansion αT, the specific heat Cp, and the density ρ are assumed to take 
the same values for any phase.  The thermoelastic strain can be obtained as

	 ( )e
T r

z T T
E
α

αα
ε σ α= + −∑ ,	 (A20)

by substituting Eqs. (A16) and (A18) into Eq. (A12).  The transformation strain εtr is assumed to 
be given as

	 tr zα α
α

ε ε=∑ ,	 (A21)

where εα is the intrinsic transformation strain of phase α.  From Eqs. (A11), (A20), and (A21), 
the constitutive equation (3) can be obtained.  Substituting Eq. (A21) into Eq. (A14), we have

	 0G z
zα α
αα

σε ρ
 ∂

− ≥ ∂ 
∑  .	 (A22)

	 Although the phase transformation develops when Eq. (A22) is satisfied, more severe 
conditions than Eq. (A22) are adopted for a simpler formulation so that Eq. (A22) is satisfied for 
each phase transformation.  Accordingly, we assume the phase transformation from the α-phase 
to the β-phase proceeds when
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	 ( ) ( )( )2
0 0 0

1 1 1 0
2

s s T T z
E Eβ α β α α β
β α

σ ε ε σ ρ →

  
− + − + − − ≥      

 ,	 (A23)

where zα β→  is the volume fraction of the β-phase transformed from the α-phase.  Since 
0zα β→ ≥  for the phase transformation from the α-phase to the β-phase, we obtain 

	 ( ) ( )( )2
0 0 0

1 1 1
2

s s T T
E Eβ α β α α β
β α

σ ε ε σ ρ Ψ →
 

− + − + − − =  
 

,	 (A24)

where 0α βΨ → ≥ .  This is the phase transformation criterion of Eq. (1).  The left-hand side of 
Eq. (A24) is the driving force for the phase transformation from the α-phase to the β-phase; 

α βΨ →  in the right-hand side is the RTE from the α-phase to the β-phase.


