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	 Railway track fasteners are used to fasten the railway track onto the crosstie and improve 
the train’s stability and safety.  Automatic detection systems have been developed for track 
safety.  Most of these systems deployed line scan sensors to capture high-quality track images.  
These sensors can capture high-resolution images, but they are also expensive.  In addition, 
the recognition kernels range from traditional computer vision to deep learning methods.  In 
this study, we set up a track fastener sensing device on a flat track car by using general sport 
cameras and LED lamps to capture images of track fasteners.  You Only Look Once (Yolo) v3 is 
also used instead of earlier convolution neural networks (CNNs) for defect inspection.  A cloud 
server is built for users to queue their captured fastener videos to the first buffer for upload, 
and uploaded videos can be queued to a second buffer for defective track fastener detection.  
The trained Yolo v3 neural network classification module is encapsulated as a web application 
interface (API) for performing the task.  In experiments, track fastener videos along a total of 
70 km of track were captured with a resolution of 1920 × 1080 at a speed of up to 35 km/h.  Six 
normal and four defective fastener types were defined for inspection.  We split the dataset into 
80% for training and 20% for testing.  The average precision rates for normal and defective 
fasteners were 83 and 89%, respectively.  Finally, the coordinates of defective fasteners were 
interpolated from GPS positions recorded by a sport camera.  The nearest hectometer stake and 
the offset of each defective fastener were calculated to assist track workers to find the defective 
fasteners and fix them.

1.	 Introduction

	 A general rail track shown in Fig. 1(a) is a transportation structure composed of ballast, 
crossties, rails, and fasteners for a train to run on.(1)  Fasteners fasten the rails onto the crossties, 
fixing them when they are subjected to vertical, longitudinal, and lateral forces.  The rail 
fastening system has the functions of buffering the lower structure, distributing the weight, 
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resisting the disturbance of the rail, and absorbing the sound, so that the rails can be fixed on 
the track stably.  The incorrect functioning of fasteners may cause train derailment.(2)

	 To ensure the normal operation of its railroad, Taiwan Railway Company relies heavily on 
the human visual inspection of the fasteners by workers on a track maintenance vehicle.  The 
inspection and maintenance operations are scheduled at night when there is no train access.  
However, the results of visual inspection may be limited by the speed of the maintenance 
vehicle and the view angle.  In addition, long-term visual work may cause fatigue and the failure 
to detect problems.  To reduce the workload of staff and ensure the accuracy of inspection, it 
is necessary to leverage automatic inspection technology to provide more effective solutions.  
Breakthroughs in deep learning technology have made it possible for computers to learn using 
neural networks to simulate human thinking, which resulted in rapid advances in computer 
vision.  Although AI may be able to solve many real-world problems, it depends heavily on 
training data.  The more good data available for AI training, the more likely AI will provide 
good judgment.  Therefore, this study is conducted to develop a new method for collecting track 
images and to choose an appropriate deep learning model for track inspection.
	 The first step is to set up an image-sensing device for rail fasteners (including two sport 
cameras and their supporting frames) on a flat car as shown in Fig. 1(b).  A GoPro sport camera 
is selected instead of an expensive line scan image sensor for most track inspection systems 
owing to its many advantages, such as its compactness, durability, robustness to vibration, 
and responsiveness.  To capture images at night, lamps are mounted on the flat car as low as 
possible to ensure sufficient brightness for imaging.
	 As to the convolution neural network (CNN) model, You Only Look Once (Yolo) v3 
is chosen owing to its superior performance to Single Shot MultiBox Detector (SSD),(3) 
Faster-RCNN,(4) and RetinaNet.(5)  Yolo v3 is trained and tested using the collected images of 
rail fasteners that have been labeled to obtain the detection rates for both normal and defective 
fasteners.  The most time-consuming part was labeling the images.  We labelled images of 
70 km of rails captured by GoPro with a resolution of 1920 × 1080 at 60 frames per second (fps).  
To prove the effectiveness of the system, we found 45950 fasteners that could be searched for by 
using GPS positions extracted from GoPro images.  The nearest hectometer stake and the offset 
of the detected fastener were calculated to assist track maintenance workers.
	 This paper is an improved and extended version of our preliminary work cited in Ref. 6.  
Here, we give a complete and detailed description of our proposed solution.  Moreover, 

(a) (b)

Fig. 1.	 (Color online) (a) Traditional railway showing track, ballast, crossties, and fixing mechanisms.(1) (b) Our 
flat car for fastener image sensing.
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extensive analyses are given and several additional experiments are reported.  In summary, 
the main contributions reported are as follows: (1) an innovative sensing method using general 
sport cameras installed on a flat track car that can capture images at night is proposed, (2) Yolo 
v3 is used as the track fastener recognition kernel, which is encapsulated as a thread and works 
synchronously with the upload thread to achieve high throughput in a cloud service system, and (3) 
a virtual detection circle (VDC) is also proposed for track workers to quickly locate defective 
fasteners and their offsets via a hectometer stack.  The rest of this paper is organized as follows.  
In Sect. 2, we introduce related studies on automatic railway inspection.  In Sect. 3, we discuss 
the proposed categories of fasteners and the Yolo v3 model adopted for fastener classification.  
In Sect. 4, we give an overview of the system and the details of the implementation, and present 
the experimental results and analysis of the recognition system.  In Sect. 5, we conclude this 
study.

2.	 Automatic Track Inspection Technologies

	 Liu(7) designed a high-speed image capture system that automatically changes the sampling 
rate of a line-scan camera so that the image resolution of the detected object can be fixed; the 
wood crosstie positioning system can transmit the detected position of crossties to a computer 
terminal for engineers to check.  Chen et al.(8) proposed a railway monitoring technology for 
a mass rapid transit system and discussed the real-time identification of rail fasteners from 
images.  The relative positions of the rail and crosstie to a fastener are used as the basis to 
locate the area of the fastener.  Because of the need to detect the rail from the whole image, the 
execution time of a field-programmable gate array (FPGA) for rail positioning is long owing 
to the complicated algorithm, which is mainly composed of a gray pixels processing unit, a rail 
positioning unit, and a synchronous dynamic random access memory.
	 The Pavemetrics’ laser rail inspection system (LRAIL)(9) of Canada is a recently introduced 
full-scale system that can be mounted on a vehicle or locomotive.  The vehicle/detection speed 
can reach 180 km/h, and the 3D geometry can be measured at this speed while capturing high-
resolution images both during the day and at night.  A GPS with an odometer and inertia 
correction is used for automatic positioning.  The detection targets of LRAIL are wood 
crossties, concrete crossties, fastener inspection, and damage to the rail surface.
	 Molina Camargo et al.(10) collated the most common causes of derailment between 1998 and 
2009.  After their analysis, the turnout parts near track forks were selected for inspection by 
using machine vision with a camera.  The precision rate of the anchors was only 80%, but the 
recall rate was 100%.  However, their approach was based on traditional pattern recognition 
methods.
	 Feng et al.(11) proposed a probabilistic structure topic model (STM) for modeling fasteners.  
They trained fastener models using a collection of intact fastener samples.  The likelihood 
was used to measure the similarity between a test fastener and a model.  They found that worn 
fasteners had a lower likelihood than intact ones.  The fasteners were classified into three levels 
on the basis of their likelihood in descending order.  The intact fasteners were classified into the 
high level, partly worn or damaged fasteners were classified into the middle level, and severely 
worn or missing fasteners were ranked into the low level.
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	 Ladola et al.(12) designed an automatic railway track fault detection system using infrared 
sensors to detect cracks.  Fault locations were recorded by GPS and transmitted using the 
global system for mobile communication (GSM) short message service (SMS).  Ritika et al.(13) 
proposed a prototype system that combines cameras and GPS to capture rail images and record 
positions.  The camera was carefully designed to withstand the effects of train movement 
and provide stable images at a speed of about 30 fps.  By advanced image analysis and deep 
learning techniques, the track signals in these camera images were detected and their locations 
were stored in a database.  The railway signal detection system was tested with 150 km of track 
and 247 signal routes, and the overall accuracy was 94.7%.
	 Karakose et al.(14) proposed a computer-vision-based monitoring method for the detection 
of faulty tracks.  Such a method is being increasingly used in railway systems.  The railway 
condition monitoring process obtained image data, and analysis was carried out with the aid 
of a computer.  In their study, a camera was placed on top of the train to take images of the 
tracks in front of the train.  Edge detection and feature extraction were applied to the images to 
determine the tracks.  The distance between the tracks was used to determine whether there was 
a fault.  The experimental results show that the computer-vision-based method was effective and 
reliable.
	 Gibert et al.(15) proposed a multidetector to locate the track and fasteners simultaneously.  
Their design was a full CNN that was trained with 10 classes of materials and produced feature 
maps with 10 different channels.  Their goal was to simultaneously detect the most likely 
fastener location within each predefined region of interest (ROI), then classify such detections 
into one of the three basic conditions: background, broken fastener, and undamaged fastener.  
Then, class labels were assigned for each fastener type (PR clip, e-clip, fast-clip, c-clip, and 
j-clip).
	 Wei et al.(16) proposed a fastener defect detection and identification method using 
Dense-SIFT features.  They also trained VGG16, a very deep convolution network, for fastener 
defect detection and recognition.  Their results demonstrated that it is possible to detect 
defective fasteners with a CNN.  Finally, Faster R-CNN was used for fastener defect detection 
to improve the detection rate and efficiency.
	 Chen et al.(17) applied deep convolutional neural networks (DCNNs) in the defect detection 
of fasteners.  Their system cascaded three DCNN-based detection stages in a coarse-to-fine 
manner, including two detectors to sequentially localize the cantilever joints and their fasteners 
and a classifier to diagnose the fasteners’ defects.  They concluded that SSD and Faster R-CNN 
perform better than Yolo(18) and DPM in terms of accuracy.  However, the Yolo network had a 
much higher detection speed and a shorter training time.
	 In this paper, we proposed the use of a DCNN for rail track fastener detection.  We tested 
R-CNN, Faster R-CNN, SSD, and Yolo v3.  Yolo v3(19) was finally selected owing to its superior 
performance.  Furthermore, both normal and defective fasteners are counted as one type of 
fastener.  One advantage of such classification is that the classification task could be finished 
within only one stage, thus greatly reducing the training and prediction times.  Six normal and 
four defective fastener types were defined for inspection.
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3.	 Proposed System Architecture

	 Because most inspection activities are conducted at night, we use a high-speed video 
camcorder with night vision (or adequate supplementary lighting) to achieve the purpose of 
this study.  The captured images along with their GPS positions can be transmitted offline 
to the back-end deep-learning-based AI server for defective fastener identification.  The 
system architecture shown in Fig. 2 is divided into a front-end control system running on a 
flat track car and a back-end cloud server for storage and classification.  To ease the operation 
of the former system for track workers, we designed it as an offline subsystem owing to the 
unreliability of wireless network communication in rural areas.  
	 The front-end control system mainly sets up the recording and storage function of the videos, 
and at the same time provides a manual operation interface for video recording and viewing.  
The image-sensing device is set to operate with a resolution of 1920 × 1080 at 60 fps during 
recording.  It is expected to work continuously for at least 5 h.  In addition to recording fastener 
images, some necessary data such as time, speed, and GPS position are also recorded.  The 
recorded video is then uploaded offline to the back-end server for storage and deep-learning-
based defective fastener identification.
	 There are four request modes in the back-end server: video upload, fastener classification, 
fastener enquiry, and fastener positioning.  When connecting to the server, it is necessary to 
have enough input/output throughputs to complete fastener classification within a reasonable 
time.  Two buffers are used to guarantee a fluent workflow despite the inherent large size of 
video data and long classification time.  The fastener enquiry mode provides users with the 
results of previous analyses to assist judgment.  After the uploaded video is classified, the 
results can be queried by the captured date/time and fastener type.  The identified defective 
fasteners can also be displayed on Google Maps by utilizing their GPS coordinates.

Fig. 2.	 (Color online) The proposed system architecture includes a front-end client and a storage/classification 
server.
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3.1	 Sensing method

	 We adopt a flat car as the main vehicle, which is cheap and easy to produce compared with 
a train coach.  The designed flat car shown in Fig. 1(a) follows the current specifications of 
Taiwan rails.  It is powered by a train locomotive, and its robustness has been proved in many 
tests on the side railway near Dajia Station.  The flat car can run at nearly 50 km/h and still 
capture high-quality images during the daytime.  If the expected operating environment for 
fastener inspection is on a train with a speed of 120 km/h and a resolution of 0.5 m/image is 
required, then a frame sensing rate of 67 images per second is the lower bound.  Therefore, 
if the speed of the maintenance vehicle is only about 30 km/h at night, the high-speed video 
camera can clearly satisfy this requirement.  A high-speed video camera of more than 60 fps 
is enough to obtain the railway track images.  In addition, taking into account the external 
environment, the high-speed video camera should be waterproof and shockproof, and should 
ideally be operated by remote control.  
	 We selected GoPro Hero7 Black as the video camera, which is a popular sport video 
camera, especially for its 4K high quality, light weight, and ease of use with water and dust 
resistance.  Therefore, its suitability for railway fastener inspection was assessed.  In addition 
to its excellent antivibration ability, GoPro has a wide field of vision and GPS positioning.  The 
camera also provides support for real-time streaming, Python application interface (API), and 
other functions, but more importantly, a variety of optional accessories allow it to be clipped 
onto a train maintenance vehicle or flat car according to our needs.
	 GoPro is fixed on an aluminum frame and is adjustable as shown in Fig. 3(a).  It remained 
firmly attached to the frame after several field tests.  However, thermal shutdown occurred 
during long 4K recordings.  We solved this problem by unplugging the battery and using an 
external power supply, which allowed GoPro to operate for more than 4 h.

3.2	 Lighting

	 When choosing the lighting equipment, we considered the brightness of the light.  To 
obtain similar clear images in daylight, we first selected 10 W engineering-edition white LED 
searchlights.  It was found that the brightness of the 10 W LED searchlights was insufficient 

(a) (b) (c)

Fig. 3.	 (Color online) (a) Cameras and lamps fixed on aluminum frames. (b) Lighting by 2 × 10 W LED lamps. (c) 
Lighting by 2 × 200 W LED lamps at lower positions.
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[Fig. 3(b)], so 200 W LEDs were used instead.  Figure 3(c) shows the improved clarity of images 
when using two 200 W LEDs and lowering the lamps close to the track for brighter imaging.
	 The lamps can be adjusted to verify the effects at different lighting positions.  Because 
there are trains running on the main track every day, the surface of the track is smooth with a 
mirrorlike finish.  If the light is directly illuminated over the track, it may be difficult to obtain 
a clear picture of the rail fastener owing to the reflection.  In addition, lighting from the left 
or right side will cause a shadow, meaning that the position of the lamps should be adjusted 
repeatedly.  To facilitate the adjustment of lamps according to the actual situation, the bracket 
adopted was an aluminum extrusion frame, which allowed the optimal positioning so that the 
left and right brightness values were consistent, resulting in minimum shadow.
	 Regarding the power supply, the original intention was to use the power supply from the 
train.  However, in view of the power load and the safety of the wire connection, we decided to 
use the power supply of a generator with an uninterruptible power supply system.  The voltage-
stabilizing function of the uninterruptible power supply system can ensure high-quality power 
for lighting, GoPro, and other equipment.

3.3	 Classification kernel

	 From the development of R-CNN, Fast R-CNN, and Faster R-CNN to Yolo, Yolo’s attractive 
feature is direct end-to-end rather than multiple stages for object detection.  It predicts all 
information about the target object, including the bounding box coordinate location of the 
object, the confidence value of the contained object, and the category to which the object 
belongs, using the whole picture as the input.  Yolo v1(18) was fast enough to achieve real-time 
identification but not accurate enough to predict the position and precision of small objects.  
Some of the problems of Yolo v1 were solved in Yolo v2 by introducing an anchor box in Faster 
R-CNN.  Yolo v3(19) shown in Fig. 4 does not have any major improvements, but includes 
refinements based on ideas from other studies, greatly improving its performance.
	 The advantages of Yolo v3 are its light weight and high efficiency of identification.  
However, training the neural network model requires a large number of samples.  The number of 
samples determines the generalization ability and accuracy of neural network models.  As much 
training data as possible of both normal and faulty samples are needed.  We found that Yolo 
outperforms other object recognition neural network models in terms of its relative efficiency 
and accuracy.

3.4	 Back-end classification server

	 The front end receives/displays images from GoPro and packages them to the back end for 
classification.  Regarding the back-end server, if there are not enough GPUs, there will be a wait 
of at least half a day whenever a large amount of data arrives.  For real-world applications, it is 
recommended to use two or more RTX2080Ti cards installed at the back end as an appropriate 
balance between efficiency and cost.
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	 Our first task is to encapsulate all the required classification-related modules into a Python 
class.  In this study, the pretrained Yolo v3 model is serialized into a pickle object.  Thus, in the 
initial method of the Python class, we load the pretrained model.  This object can then be used 
for prediction via a web application.
	 Our second task is to adopt Flask to expose “classify_fastener” and “train_fastener” as 
REST APIs.(20)  Both are mapped to invoke the classifier class and the appropriate methods 
within it.  The returned objects from both APIs are JavaScript Object Notation (JSON) objects 
of the results from the machine learning model.  These REST APIs that we created can be wired 
into our web application.

3.5	 Defective fastener positioning

	 The most commonly used positioning method is GPS.  However, there are SN interference 
code problems with the commercial GPS signal, so the positioning error is generally 15–20 m.  
Although the positioning error can be reduced to about 10 m through the AGPS, the distance 
between the two tracks of the railway is 1.067 m, so there will be considerable error owing to 
the positioning accuracy of the GPS.
	 A photograph or video taken with GoPro contains GPS information that can be parsed 
directly using GoPro Mobile apps.  The GPS data is embedded in an MP4 file called GPX,(21) 
as shown in Fig. 5(a), which is currently the most commonly used format.  The so-called GPX 
format stores GPS information in XML format.  Using GoPro-captured images, the resulting 
GPS data, with an error of about 5 m, has almost sufficient accuracy for practical usage.
	 We propose the use of a hectometer stake as the center of the VDC to decrease the 
positioning error.  At present, there are such stakes at 100 m intervals along the railway.  When 

Fig. 4.	 Yolo v3 neural network model.(19)
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the maintenance vehicle passes through these VDCs, its GPS location can be determined.  
Using the GPS position (xf, yf) of the fault fastener, the nearest 100 m stake (xh, yh) can be found 
and then track workers move by a distance of  (xf – xh, yf – yh) to the fastener.  Figure 5(b) shows 
an image of a detected defective e-clip in the upper-left part, which is displayed on the map as 
a blue pin, where the gray pins are hectometer stakes.  Workers can easily find the defective 
e-clip via the VDCs as shown in red circles.

4.	 Experimental Results

4.1	 GoPro setup and testing

	 After fixing GoPro on the flat car, the latter is driven by a power locomotive to and from the 
side line near Dajia Station, Taichung City, Taiwan.  The maximum speed of the flat car is 50 km/h.  
During driving, we observed that GoPro vibrated and we were concerned about the quality of 
the image.  However, the images viewed after the shooting were clearer than expected.  After 
the initial testing, it was confirmed that GoPro could be used to obtain the clear images needed 
for the study.  After that, the Dajia branch of Taiwan Rail Company carried out a long-term field 
test to determine the stability of GoPro.  It was found that GoPro could record continuously for 
more than 7 h without shutting down due to overheating.

4.2	 Fastener types and image collection

	 A large number of samples are needed for an AI identification system.  With the assistance 
of staff at Dajia Station, fastener image datasets near equilateral turnouts, double-opening 
reverse switches, and bifurcation sides of left-opening articulated turnouts of the railway were 
provided.  All fastener types could be found near these areas.  The images of fasteners were 
provided by Dajia Station; then, our research team labeled them for training and testing.  The 
experts at Dajia Station were asked to review the status of the fastener classification and to 
continuously update and collect more data.  Finally, six normal and four defective fastener types 
were defined for inspection as shown in Table 1.  There were no images for some fault fastener 
types owing to their rare occurrence.

Fig. 5.	 (Color online) (a) Example of GPX file. (b) GoPro-recorded track video file displayed using Google Maps.

(a) (b)
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AI model evaluation
	 To prepare Yolo’s training data, it was necessary to mark the bounding box of the fastener, 
which is used to locate the target object in the image, and to label its corresponding type, which 
is the annotation of the image.  For a trained Yolo model, the evaluation method mainly adopts 
common metrics of object detection, such as intersection over union (IoU) and mean average 
precision (mAP).

IoU
	 As given by Eq. (1), the intersection of the predicted result and the ground truth over the 
union is the most commonly used indicator for predicting an object.  If, for example, IoU > 0.5, 
the prediction of a bounded box is a success if its IoU is more than a half.

	 ( , ) ( ) / ( )IoU A B A B A B= ∩ ∪ 	 (1)
mAP
	 The accuracy of each category is calculated from Eq. (2) using IoU as the criterion, usually 
IoU = 0.5.  TP(c) is a true positive in class c, which means that the predicted proposal is 
consistent with the ground truth (the species is correct or the overlap is sufficiently high).  On 
the other hand, FP(c) is a false positive in class c, which means that the predicted proposal is not 
consistent with the ground truth (there is a type error or the overlap is insufficient).  Then, mAP, 
the average of all calculated accuracies over all classes, is calculated using Eq. (3).  For example, 
mAP@[0.5: 0.95] denotes the integration of all accuracies at intervals of 0.05 from 0.5 to 0.95.

	 Accuracy(c) = TP(c)/(TP(c) + FP(c))	 (2)

	
1 ( )

( ( ) ( ))c classes

TP cmAP
classes TP c FP c∈

=
+∑ 	 (3)

Field test on lateral line
	 For the field test, a short distance of railway track (near Dajia Station) within the jurisdiction 
of Taichung Railway Engineering Department was selected, and the images captured by GoPro 
Hero7 Black were used for fastener identification.  When a defective fastener was found, GoPro 
GPX was used to mark its location.  After training the Yolo v3 model with 16677 objects, we 

Table 1
(Color online) Fastener types for inspection. 

e_clip on wood 
crosstie

e_clip on concrete 
crosstie Spike Fishplate Slide-bed plate Guard rail plate

Normal

Defective NA NA
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tested it using 3294 objects.  The results showed a TP for 3114 positive samples, an FP for 378 
negative samples, and an FN for 180 positive samples.  The precision is therefore 0.89% and the 
recall rate is 0.95 as shown in Table 2.

Field test of main line
	 The main line could not be accessed at night so we recorded videos of 70 km of track with 
lighting for this test.  A total of 38 MP4 files were recorded, each about 4 GB.  The labeling of 
all the videos took about one month and involved a total of 25 persons.  However, photographs 
that were too vague or unclear were skipped.  The filtered and labeled images were saved as our 
dataset.  Table 3 shows the testing results, which proved the feasibility of our approach.  Note 
that there were no defective spikes or defective slide-bed plates found.  Some recognition results 
are shown in Fig. 6.
	 Table 4 shows a comparison with some state-of-the-art systems described previously.  Most 
systems restrict their applications to specific rails without ballasts to gain higher accuracy.  They 
also need to locate the fastener in the image first and then classification could be performed.  
The main contribution of our study is the development of a fastener classification system with 
no limits on the rail tracks.  The collected fastener data include ballasted, no-ballasted, and 
covered, on daytime, nighttime, and rainy days.  The proposed sensing method is not only 

Table 2
Field test of lateral line.
Fastener type Precision
e_clip on wood crosstie (normal/defective) 84.82%/NA
e_clip on concrete crosstie (normal/defective) 88.27%/89.91%
e_clip covered 70.68%
Spike (normal/defective) 79.52%/NA
Fishplate (normal/defective) 84.82%/NA
Slide-bed plate (normal/defective) 86.03%/NA
Guardrail plate (normal/defective) 86.18%/NA

Table 3
Field test of main line.

Fastener type Average 
precision (%) TP FP

e_clip on wood crosstie (defective) 86.84 3481 425
e_clip on wood crosstie (defective) 85.21 184 19
e_clip on concrete crosstie (normal) 83.94 35192 7799
e_clip on concrete crosstie (defective) 72.87 737 126
e_clip covered 76.18 247 59
Spike (normal) 88.44 31 1
Spike (defective) NA NA NA
Fishplate (normal) 80.92 41 13
Fishplate (defective) 53.65 34 28
Slide-bed plate (normal) 85.10 525 56
Slide-bed plate (defective) NA NA NA
Guardrail plate (normal) 85.72 261 47
Guardrail plate (defective) 74.61 6 1
Detection count = 94522, unique truth count = 45954, precision = 0.83, recall = 0.89, F1 score = 0.86, FN = 2850, 
TP = 40724, FP = 8569, FN = 5230, average IoU = 70.27%, and (mAP@0.50) = 79.40%.
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innovative but also of low cost.  Furthermore, we provided an inspection process that positions 
the detected defective fasteners to assist workers repairing the fasteners.

5.	 Conclusions

	 This study was to conducted implement a flat track cart suitable for capturing images 
of Taiwan’s railway system and to use a high-speed video recording device for rail fastener 
inspection.  An expandable database for different types of rail fastener and their corresponding 
defects has been established, and the classification system is now in operation as a cloud 
service.  The feasibility of the system has been verified in practice.  In future works, we hope to 
integrate front-end image sensing, image processing, and back-end fastener recognition together 
as an automatic system, which is expected to be deployed for the inspection of railway lines in 
Taiwan.  The final objectives of this study include the (1) rapid deployment, (2) lower cost, and (3) 
automatic safety inspection of railways to reduce human labor.  
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Fig. 6.	 (Color online) Some test images. (a) Normal e_clips on concrete crosstie. (b) Left e_clip is missing while 
the e_clip on the right is normal.

(a) (b)

Table 4
Comparison with some state-of-the-art systems for track inspection.

Source Fastener 
types #

Sensor type
/speed

Recognition 
kernel

Accuracy
(%) Restrictions Recognition 

speed
Ref. 8 2 Line scan/NA Traditional CV NA Clean track Not real time
Ref. 9 9 Laser/180 km/h NA 99.28 Clean track Real time
Ref. 10 2 <10 km/h Traditional CV >80 Clean track Near real time
Ref. 11 6 HR Cam/262 km/h Probability mode 95.2 Align and clean Real time
Ref. 15 13 HR Cam/NA CNN + SVM 99.91 Align and clean NA
Ref. 16 4 HR Cam/NA Faster R-CNN 97.9 Align and clean 0.23 s/frame
Ours 13 SportCam/30 km/h Yolo v3 83 None Real time
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