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	 In an e-learning environment in which a teacher cannot interact directly with a student, it 
can be difficult to ascertain a student’s difficulty with a subject.  In this study, machine learning 
was used to estimate the level of difficulty of problems experienced by a student to ensure 
that problems of appropriate difficulty are provided.  JINS MEME smart eyewear was used to 
measure the head movements of students and their results were used to estimate the subjective 
difficulty that they experienced.  Our experimental tests demonstrate the F1-scores of machine 
learning for 10 users who were given calculation, kanji (Chinese characters), and programming 
problems.  The feature importance scores of the random forest (RF) were calculated, and the 
dependence of F1-score on the type of user was examined.  It was found that the mean of the 
yaw angle was the most important feature in all cases, indicating that the horizontal rotation of 
the head may depend on the difficulty of the problem.

1.	 Introduction

	 In order for classes to progress in a flexible manner, teachers in classrooms should be 
able to easily understand the subjective level of difficulty a student has with a certain topic.  
Generally, in one-on-one classes, teachers can adjust the level of difficulty on the basis of a 
student’s facial expressions and gestures, allowing classes to proceed according to the student’s 
ability.  However, learning environments such as e-learning and remote classrooms can make it 
relatively difficult for instructors to accurately determine difficulty levels.
	 Learning through web-based teaching materials such as e-learning videos has been 
introduced in several educational fields in recent years.  However, analyzing the situation of 
students is a difficult task for the teachers.  For this reason, e-learning requires the ability of the 
student to effectively understand the context.  Ohkawauchi et al.(1) investigated the estimation 
of subjective difficulty experienced by students in the case of lecture videos for e-learning 
and demonstrated that actions such as pausing and rewinding are correlated with subjective 
difficulty.  Nakamura et al.(2) studied the estimation of the subjective difficulty of students 
during e-learning using a camera to obtain facial characteristics (such as face tilt angles, 
gaze positions, and whisper time) from images of students’ faces.  The level of subjective 
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difficulty was estimated using a support vector machine (SVM).  Studies on the estimation of 
student behaviors and the state of web-based lectures and e-learning resources have also been 
conducted.(3–15)  These studies estimated the level of subjective difficulty by measuring eye 
movements, which were less affected than other phenomena by differences between individuals.(3,4)  
Shigeta et al.(3) studied the level of subjective difficulty of English listening by analyzing data 
collected by estimating eye movements.  The data were gathered using the Freeview software 
developed by Takei Kikai Kogyo Co., Ltd. The results indicated significant differences in eye 
movement speed, gaze time, and number of blinks among learners.  Okoso et al.(4) studied the 
subjective difficulty of English words in English documents using a deep learning approach in 
combination with gaze information measured using a Tobii eye tracker.  Hence, it is possible 
to provide a word-based exam appropriate for the level of understanding of an individual.  
However, in both these studies,(3,4) a dedicated device was required to measure eye movements, 
which can only be measured when the person is seated in front of a personal computer.  
Therefore, in the present paper, we consider the use of a wearable device that is not limited to 
use only in front of a computer, removing the necessity for a camera.  The purpose of this study 
was to use machine learning techniques to measure the head movements of students using a 
glasses-type wearable device to estimate the subjective difficulty they experienced.

2.	 Materials and Methods

2.1	 JINS MEME

	 JINS MEME smart eyewear was used in this study as it has nearly the same design and feel 
as ordinary glasses.  There are three types of JINS MEME eyewear: (1) MT, which can measure 
acceleration and angular velocity; (2) ES_R, which can measure electrooculogram raw data in 
addition to acceleration and angular velocity; and (3) ES, in which the installed sensor is the 
same as that of ES_R but no raw electrooculogram data can be collected.  ES can measure the 
speed and strength of blinks using the JINS MEME application programming interface (API).
	 Studies using JINS MEME have been conducted.(16–18)  Ogawa et al.(16) studied the 
estimation of workload by measuring blink data and utterance data when practicing a video 
game (Tetris) by varying the workload.  Nagao et al.(17) studied the various states of students 
when they are learning, such as listening or note taking.  In a study of subjective difficulty 
estimation using JINS MEME, Mori et al.(18) considered four-choice questions on English 
vocabulary: in their study, to construct a system that supports efficient self-study, JINS MEME 
and the chest-mounted device myBeat, which can measure characteristics such as heart rate 
and RR interval (RRI), were used for subjective difficulty estimation; the time required for 
answering was added to the information obtained from JINS MEME ES_R and myBeat, and 
estimation was performed on the basis of these features.
	 In the present study, ES was adopted to verify the possibility of estimating difficulty from 
converted data from the JINS MEME API instead of raw data.  Each sensor value of the ES can 
be recorded at a sampling frequency of 20 Hz using an application connected to an iOS or an 
Android device via Bluetooth.
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2.2	 Machine learning

	 The features used to estimate degree of difficulty have 30 dimensions (six features 
multiplied by five basic statistics).  The six features consist of head movements: means of x-, 
y-, and z-axis acceleration, roll, pitch, and yaw angle over a time window of 2 s.  The five basic 
statistics consist of mean, standard deviation, maximum value, minimum value, and median.  
A time window of 2 s is often used in studies employing acceleration sensors.  The resulting 
30-dimensional feature is standardized to have a mean of zero and a variance of one, and 
machine learning is performed using a 10-dimensional feature through principal component 
analysis (PCA).  Four methods were used: SVM, random forest (RF), decision tree (DT), and 
k-nearest neighbor (k-NN).  DT and RF were used because their classification rules are easy to 
understand and the corresponding data visualization is also convenient, and SVM can perform 
binary classification with high accuracy, as has been reported in previous studies.(2,3,18)  k-NN, 
which is the most basic classification method, was used owing to its simplicity.
	 The JINS MEME ES enables measurement of the speed and strength of a blink as well 
as the acceleration and angular velocity of the head.  First, we measured the blinks and head 
movement and used these to perform estimations using machine learning.  However, the 
number of blinks is known to generally decrease from 20 times per minute in normal activity to 
10 times a minute during reading and five times a minute when working on personal computers.  
Therefore, blinks were often not detected when the time window was 2 s.  Thus, the time 
window was set to 20 s, and the feature importance score of RF was calculated.  It was found 
that the feature of the head movement was the most important and that the number of blinks 
did not provide any useful insights.  For this reason, we excluded blink data from the features 
described in this study.

2.3	 Experimental methods

	 Studies focused on calculation problems(2) and English language problems(3,4,18) that 
estimated learners’ difficulty levels have been conducted, and JINS MEME eyewear has also 
been utilized.(18)  In this study, we considered three types of problems, namely, calculation 
problems and kanji (Chinese characters) problems, whose difficulty levels can be easily 
adjusted, and programming problems, which are likely to generate individual differences 
with regard to ability.  The calculation problems were fill-in-the-missing-number problems.  
An example of an easy calculation problem is “■ ÷ 3 = 1” and that of a difficult problem is 
“(■ − 9 / 6) = 3 ÷ 0.125”.  The kanji problems consisted of writing the corresponding kanji of 
words given in hiragana.  For the kanji problems, we used the third and seventh levels of the 
Japan Kanji Aptitude Test.  The programming problem involved the written part of a university 
entrance examination.  Figure 1 shows a view of the experiment.  We recruited 10 participants, 
all of which were males aged between 20 and 22 years.  All participants were informed of the 
purpose and content of the study and agreed to privacy protection.  Furthermore, the Research 
Ethics Board of the National Institute of Technology, Ishikawa College approved this study 
through an ethics review.  
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	 The experimental procedure for the calculation problems was as follows:
(1)	Each participant was made to sit on a chair and wear the JINS MEME eyewear.
(2)	They were asked to solve a problem within a time of 6 min.
(3)	They were then asked to take a break for 3 min.
(4)	They were then asked to solve another problem within 6 min.
(5)	After completion of the tasks, the participants were asked to state whether step (2) or step (4) 

was more difficult.  The choices were labeled as easy or difficult.
	 These steps were repeated for the kanji and programming problems.
	 The first minute of the 6-min-long test data that were recorded was excluded because the 
corresponding data were unstable.  We prepared several problems that could not be solved in 
6 min, and none of the participants were able to solve them.  The data from the second to the 
fifth minute were categorized as training data (number of data: 240), and the data from the last 
minute were categorized as test data (number of data: 60).  When data are randomly sampled 
and trained, there is the potential for data leakage; we selected our experimental method to 
avoid this problem.  The training data were examined to find the parameter that maximizes the 
score of 10-fold cross-validation (CV), and the model was trained using this parameter.  Next, 
the F1-score (also F-score or F-measure), which is a measure of a test’s accuracy, was verified to 
evaluate the estimations.  

3.	 Results

3.1	 F1-score for each user

	 The experimental data were used to evaluate the estimation for each user.  The results 
obtained are presented in Tables 1–3.  The rows in Tables 1–3 represent the users and the 
columns represent the learning methods.
	 For the calculation problem, the F1-scores were 85% with SVM, 89% with RF, 80% with DT, 
and 81% with k-NN.  However, in the case of user J, the average F1-score was 45%, which was 
lower than that of the other users.  In the case of the kanji problems, the F1-scores were 90% 
with SVM, 87% with RF, 83% with DT, and 88% with k-NN.  In the programming problems, 

Fig. 1.	 (Color online) A view of the experiment.
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the F1-scores were 77% with SVM, 75% with RF, 72% with DT, and 74% with k-NN, and for 
several users, the F1-score was more than 70%.  However, the F1-score was low for users C, G, 
and J.
	 Feature importance of RF was evaluated, and consequently, the three most important 
features were recorded for each user, with the results presented in Tables 4–6.  It was found 

Table 2
F1-score for each user (kanji problems).

SVM RF DT k-NN Avg.
A 100% 92% 95% 95% 95%
B 55% 70% 67% 78% 67%
C 65% 62% 63% 58% 62%
D 92% 93% 88% 87% 90%
E 100% 92% 82% 98% 93%
F 98% 97% 92% 100% 97%
G 100% 95% 85% 93% 93%
H 92% 77% 68% 80% 79%
I 97% 98% 90% 95% 95%
J 100% 97% 97% 100% 98%
Avg. 90% 87% 83% 88%

Table 1
F1-score for each user (calculation problems).

SVM RF DT k-NN Avg.
A 98% 100% 78% 80% 89%
B 83% 100% 100% 77% 90%
C 92% 88% 82% 92% 88%
D 95% 97% 55% 73% 80%
E 62% 77% 85% 68% 73%
F 100% 100% 100% 97% 99%
G 93% 98% 98% 87% 94%
H 82% 92% 58% 82% 78%
I 100% 98% 100% 100% 99%
J 47% 37% 42% 57% 45%
Avg. 85% 89% 80% 81%

Table 3
F1-score for each user (programming problems).

SVM RF DT k-NN Avg.
A 92% 72% 77% 87% 82%
B 73% 77% 73% 67% 73%
C 62% 55% 48% 68% 58%
D 77% 65% 83% 65% 73%
E 100% 97% 97% 93% 97%
F 80% 97% 58% 77% 78%
G 60% 60% 60% 65% 61%
H 80% 68% 65% 78% 73%
I 92% 100% 97% 93% 95%
J 52% 63% 62% 48% 56%
Avg. 77% 75% 72% 74%

Table 4
Important features (calculation problems). 
Feature No. of users
Mean of yaw angle 9 people
Minimum value of yaw angle 8 people
Median of yaw angle 5 people
Maximum value of yaw angle 4 people
Maximum value of y-axis acceleration 2 people
Mean of roll angle 1 person
Minimum value of x-axis acceleration 1 person

Table 6
Important features (programming problems).
Feature No. of users
Mean of yaw angle 8 people
Minimum value of yaw angle 8 people
Median of yaw angle 7 people
Maximum value of yaw angle 1 people
Mean of roll angle 1 people
Minimum of roll angle 1 person
Maximum value of pitch angle 1 person
Minimum value of y-axis acceleration 1 person
Mean of z-axis acceleration 1 person
Maximum value of z-axis acceleration 1 person

Table 5
Important features (kanji problems).
Feature No. of users
Mean of yaw angle 10 people
Minimum value of yaw angle 6 people
Median of yaw angle 5 people
Maximum value of yaw angle 5 people
Maximum value of z-axis acceleration 2 people
Mean of roll angle 1 person
Minimum value of x-axis acceleration 1 person
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that the mean of the yaw angle is the most important feature in all cases.  This indicates that the 
horizontal rotation of the head may depend on the difficulty of the problem.  It appears that this 
was because the speed of problem-solving depends on the level of difficulty of the problem.  In 
general, when solving a problem, the head tilts and nods, and therefore, the pitch angle, which 
represents the vertical movement of the head, is likely to be related to the level of difficulty.  
However, in this experiment, only a few users exhibited this tendency, and therefore, the yaw 
angle was found to be the most important feature.

3.2	 Dependence of F1-score on the type of user

	 The dependence of F1-score on the type of user was evaluated using experimental data.  In 
particular, the model was trained using data from each user (number of data: 300), and F1-scores 
for all users’ test data were evaluated accordingly.  The SVM is only used for evaluation, and 
the F1-scores are presented in Tables 7–9.  It was observed that the responses to calculation and 
programming problems vary greatly among individuals.  Depending on the user, the F1-score 
was as high as 100% or as low as 1%.  However, the kanji problems appeared to be easiest to 
characterize using the users’ results.  For users A–H, the F1-score was at least 50%, and in most 

Table 7
Dependence of F1-score on the type of user (calculation problems).

Users (test data)
A B C D E F G H I J

Users
(training
 data)

A — 98% 43% 5% 18% 15% 81% 23% 97% 40%
B 100% — 29% 4% 12% 1% 73% 17% 90% 35%
C 52% 36% — 44% 81% 63% 76% 73% 52% 66%
D 1% 3% 64% — 90% 97% 14% 76% 20% 69%
E 13% 3% 72% 98% — 100% 57% 85% 18% 70%
F 20% 8% 74% 95% 92% — 41% 76% 31% 72%
G 85% 83% 58% 7% 35% 11% — 44% 62% 44%
H 44% 50% 55% 36% 51% 60% 47% — 46% 58%
I 95% 76% 38% 48% 43% 71% 46% 42% — 47%
J 43% 60% 81% 45% 74% 53% 77% 49% 41% —

Table 8
Dependence of F1-score on the type of user (kanji problems).

Users (test data)
A B C D E F G H I J

Users
(training 
data)

A — 92% 74% 94% 97% 100% 94% 35% 18% 0%
B 99% — 79% 91% 97% 100% 91% 43% 26% 3%
C 91% 74% — 94% 97% 98% 96% 36% 39% 2%
D 97% 80% 80% — 100% 98% 100% 55% 25% 7%
E 100% 83% 82% 99% — 100% 99% 45% 18% 0%
F 100% 88% 81% 96% 100% — 99% 44% 22% 0%
G 95% 81% 81% 96% 99% 97% — 49% 22% 2%
H 96% 88% 59% 78% 75% 96% 72% — 17% 11%
I 20% 25% 40% 28% 17% 8% 41% 23% — 75%
J 0% 13% 21% 4% 0% 0% 0% 63% 78% —
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cases, the F1-score was at least 80%.  Estimations for users A–H were less accurate than those 
for users I and J.  In addition, the results depended on the type of problem.  In a kanji problem, 
participants are unable to calculate the solution; they either know or do not know the answer.  
We suppose that the movement of these users was similar because it depends on the problem’s 
difficulty.  In such a case, the F1-score of difficulty estimation is more dependent on the type of 
user.  Therefore, we conclude that user dependence may be reduced by employing learning data 
from users with similar abilities.

4.	 Conclusions

	 In this study, we used a machine learning approach to estimate the degree of difficulty 
experienced with different types of learning content based on the head movements of students.  
We used JINS MEME eyewear, which does not require a camera, to track the head movements 
of students and estimate the difficulty of problems.  Our results show the high F1-score of the 
proposed approach.  The most important features of RF were examined, and the yaw angle, 
which represents the left–right head rotation, was found to be the most important feature in all 
the cases.  Additionally, when the dependence of the F1-score on the type of user was examined 
using other training models, we observed significant differences in the results depending on 
the particular student and type of problem.  For future work, the F1-score will be examined by 
increasing the number of participants and considering other factors such as age, gender, and 
ability.  This will enable us to develop a highly accurate approach to determining difficulty 
levels using machine learning, which may be applied in the rapidly expanding field of online 
learning.
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Table 9
Dependence of F1-score on the type of user (programming problems).

Users (test data)
A B C D E F G H I J

Users
(training 
data)

A — 46% 49% 43% 31% 53% 62% 64% 26% 57%
B 36% — 40% 23% 31% 74% 21% 74% 87% 48%
C 49% 45% — 90% 100% 5% 86% 38% 2% 58%
D 55% 19% 83% — 97% 14% 88% 36% 3% 56%
E 47% 38% 91% 86% — 7% 90% 37% 2% 57%
F 30% 82% 14% 10% 0% — 9% 60% 100% 29%
G 51% 25% 58% 84% 89% 17% — 31% 7% 62%
H 44% 56% 45% 53% 12% 75% 24% — 53% 39%
I 48% 80% 14% 1% 0% 93% 9% 63% — 33%
J 75% 15% 88% 93% 99% 1% 90% 35% 1% —
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