
3627Sensors and Materials, Vol. 32, No. 11 (2020) 3627–3645
MYU Tokyo

S & M 2364

*Corresponding author: e-mail: cjlin@ncut.edu.tw
https://doi.org/10.18494/SAM.2020.3096

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Using an Evolutionary Fuzzy Neural Network for Sensor-based
Wall-following Control of a Mobile Robot

Cheng-Hung Chen,1* Shiou-Yun Jeng,2 and Cheng-Jian Lin2,3*

1Department of Electrical Engineering, National Formosa University, Yunlin 632, Taiwan
2Department of Computer Science and Information Engineering,
National Chin-Yi University of Technology, Taichung 411, Taiwan

3College of Intelligence, National Taichung University of Science and Technology, Taichung 404, Taiwan

(Received June 20, 2020; accepted October 9, 2020)

Keywords:	 mobile robot control, fuzzy neural network, artificial bee colony algorithm, wall-following
control, differential evolution

	 We propose an efficient evolutionary fuzzy neural network (EFNN) for mobile robot control.
The proposed EFNN combines a fuzzy neural network (FNN) and an improved artificial
bee colony (IABC) algorithm to implement the wall-following control of a mobile robot. To
evaluate the wall-following control performance of the FNN, an efficient fitness function is
defined. The three control factors (CFs) in the fitness function are the maintenance of the
robot–wall distance, the avoidance of robot–wall collision, and the successful movement of the
robot along a wall to travel around a stadium. The traditional ABC emulates the intelligent
foraging behavior of honey bee swarms, but this algorithm performs favorably at exploration
and poorly at exploitation. Therefore, the proposed IABC algorithm uses mutation strategies to
balance exploration and exploitation. Furthermore, a new reward-based roulette wheel selection
(RRWS) mechanism is adopted to obtain a more favorable solution during the learning process.
Experimental results demonstrate that the proposed IABC obtains a smaller root mean square
error (RMSE) than other methods in wall-following control.

1.	 Introduction

	 The navigation control,(1,2) wall-following behavior control,(3,4) parallel parking control,(5)
and path tracking control(6,7) of mobile robots are essential issues for implementing
behavior-based control in unknown environments. However, wall-following behavior control is
particularly critical for a mobile robot. In traditional control methods, the control performance
depends on the accuracy of its sensors because it is affected by noise interference.
	 Fuzzy logic was developed in 1965 by Zadeh(8) to overcome the complication, uncertainty,
and nonlinearity of systems. Therefore, it is useful for solving uncertainty in real problems
by simulating the human experience in fuzzy logic rules. Fuzzy logic controllers (FLCs) have
been used by numerous researchers in mobile robot wall-following tasks(9,10) and obstacle
avoidance.(11) To improve the performance of FLCs, many optimization algorithms, such as
supervised learning,(12,13) population-based learning,(14,15) and reinforcement learning,(16) have

3628	 Sensors and Materials, Vol. 32, No. 11 (2020)

been proposed. Supervised learning generally trains an FLC by using input and output training
data. However, in wall-following tasks, the collection of training data is difficult. Therefore, in
this study, we propose a new fitness function that evaluates the performance of a controller.(17,18)
The fitness function is computed online from online data generated during the learning process
for the mobile robot. In the training process, no training data need be collected in advance.
Therefore, the training method can be extended to a real-world environment. In addition,
many researchers have proposed population-based learning algorithms, such as particle swarm
optimization (PSO),(19) differential evolution (DE),(20) and artificial bee colony (ABC)(21–23)
algorithms.
	 The traditional ABC algorithm contains three essential component groups: employed bees,
onlookers, and scout bees. Employed bees search for and exploit food sources while imparting
food source information to the onlookers. The onlookers then select food sources according
to this food source information. Scout bees perform a random search in the search space
environment to find new food sources. The traditional ABC algorithm performs favorably at
exploration but poorly at exploitation.(24) A new combinatorial solution search stage has been
proposed to balance the importance of exploration and exploitation during the learning stage.(25–27)
Furthermore, an onlooker bee in the traditional ABC algorithm measures the nectar information
of all employed bees and uses a probability value to select food sources, which is similar to the
“roulette wheel selection” in a genetic algorithm, related to the amount of nectar at each site.(28)
In roulette wheel selection, some less than optimal food sources may remain.(29,30)

	 We propose an efficient evolutionary fuzzy neural network (EFNN) for mobile robot control.
The proposed EFNN combines a fuzzy neural network (FNN) and an improved artificial bee
colony (IABC) algorithm to implement the wall-following control of a mobile robot. An IABC
is proposed for adjusting the parameters of an FNN. The three control factors (CFs) in the
fitness function are the maintenance of the robot–wall distance, the avoidance of robot–wall
collision, and the ability of the robot to move along a wall to travel around a stadium. To
improve the control performance of the FNN, a mutation strategy in the IABC algorithm is
produced to balance exploration and exploitation during the learning process. Moreover, a
new reward-based roulette wheel selection (RRWS) mechanism in the IABC algorithm is
also proposed. A favorable solution can be obtained on the basis of a reward concept. The
results are compared with the efficiencies of FNNs based on ABC and DE algorithms for
wall-following control.
	 The rest of this study comprises six sections. Section 2 presents a description of the mobile
robot and associated experiments; Sect. 3 introduces the design of the FNN; Sect. 4 introduces
the proposed IABC algorithm; Sect. 5 evaluates the controller’s performance and the training
environment; Sect. 6 describes the simulations and experiments for wall-following robot
control; and Sect. 7 presents the conclusions of this study.

2.	 Description of Mobile Robot

	 Figure 1 shows Pioneer 3-DX, which is a small, lightweight, two-wheel, and two-motor
differential-drive robot. Eight ultrasonic sensors were incorporated into the robot to measure

Sensors and Materials, Vol. 32, No. 11 (2020)	 3629

the distances between the robot and obstacles for wall-following control to be achieved. The
ultrasonic sensor positions on the Pioneer 3-DX robot were fixed with two on the sides and
six facing outward at 20° intervals to provide 180° forward coverage. Each sensor measured a
distance range between 0.15 and 4.75 m.
	 To prevent collisions between the robot and a wall or an obstacle, only the three ultrasonic
sensors on the right (or left)—S1, S3, and S4 (or S5, S7, and S8)—were used to evaluate the
distance between the robot and the wall during a right (or left) wall-following task. The original
sensor values were limited to the range of 0.2–0.74 m in the simulations and experiments
because it was unnecessary to use a larger range for these particular wall-following tasks.

3.	 Design of an FNN

	 This section illustrates the design of the FNN. Figure 2 shows the structure of the FNN.
During right (or left) wall-following control, only three ultrasonic sensors, S1, S3, and S4 (or S5,
S7, and S8), on the right (or left) estimate the distance between the robot and the wall, and these
are the inputs of the FNN in this study. The outputs of the FNN control the left- and right-wheel
speeds of the robot. The FNN(31) can be expressed as

	
1 (/3)

1 1 2 2 3 3 : [IF is and is and is]

THEN is and is

j j
j j j

l j r j

Rule j x A x A x A

y w y v

γ γ− +

,	 (1)

where x1, x2, and x3 are respectively the distances between the ultrasonic sensors S4, S3, and
S1 and the wall. Moreover, Aij is the linguistic term of the precondition part, γj ∈ [0, 1] is the
compensatory factor, yl and yr are the left- and right-wheel speeds of the robot, and wj and vj are
the weights of the consequent part, respectively.
	 Fuzzification operation is used as the Gaussian membership function

	
(1) 2

2

[]
exp

ij

i ij
A

ij

u m
µ

σ

 − −
 =
 
 

,	 (2)

Fig. 1.	 (Color online) Pioneer 3-DX.

3630	 Sensors and Materials, Vol. 32, No. 11 (2020)

where mij and σij respectively represent the mean and variance in the Gaussian function of the
fuzzy set.
	 In the fuzzy implication operation using product operation, fuzzy implication assists in the
evaluation of the consequent part of each rule as

	
1

3
j

j

j ijA A
i

γ
γ

µ µ
− +

 
=   

 
∏ ,	 (3)

where γj = cj
2/(cj

2 +dj
2) is the compensatory degree and cj, dj ∈ [−1, 1] are pessimistic and

optimistic parameters, respectively.
	 In the defuzzification operation, the center of the area is used in this study and is described
by

	 ,
j j

j j

A j A j
j j

l r
A A

j j

w v
y y

µ µ

µ µ
= =

∑ ∑

∑ ∑ .	 (4)

4.	 Proposed IABC Algorithm

4.1	 Review of ABC algorithm

	 The ABC algorithm was inspired by the intelligent behavior of honey bees. The honey
bees in the ABC algorithm are classified into three groups: onlookers, employed bees, and
scout bees. Bees that discover food source positions (i.e., solutions) and randomly search their
vicinity are named employed bees. They return to the hive and perform a waggle dance to
share information regarding the locations of new food sources available with bees in the dance

Fig. 2.	 Structure of FNN.

Sensors and Materials, Vol. 32, No. 11 (2020)	 3631

region of the hive. The onlooker bees watch the dances, select the best food source among those
found by the employed bees, and conduct a further random search after reaching the vicinity
of the selected food source. The onlookers choose the food source according to a probability
proportional to the amount of nectar (fitness value) of the food source. Scout bees randomly
search the environment to find new food sources. When the food source of employed bees has
been exhausted, the employed bees will become scout bees. The steps of the ABC algorithm
are explained as follows:
Step 1)	 Initialize SN population solutions xi, where xi is a food source with D-dimensional

real-valued vectors and i = 1, 2, ..., SN.
Step 2)	 Evaluate the fitness function value of each solution.
Step 3)	 Each employed bee generates a new solution vi as

			 , , , , ,()t t t t
i j i j i j i j k jv x x xϕ= + − ,	 (5)

	 where t is the number of generations; φi, j is a random value in the interval [−1, 1]; and
k = 1, 2, ..., NP such that k ∉ i and j = 1, 2, ..., D are both randomly chosen indices.
Thereafter, the fitness value of the new solution is evaluated.

Step 4)	 Apply a greedy selection mechanism to compare a current solution xi with a new
solution vi.

Step 5)	 Calculate the probability value for each solution. The onlooker bees use the roulette
wheel selection scheme to choose a solution. The probability value is calculated as

			
1

i
i SN

nn

fitp
fit

=

=
∑

,	 (6)

	 where fiti represents the fitness value of solution i and SN represents the total number
of solutions.

Step 6)	 Each onlooker bee produces a new solution that is in the neighborhood of its current
solution by using Eq. (1) and evaluates it.

Step 7)	 Repeat Step 2 and use the greedy selection process to compare a current solution xi
with a new solution vi.

Step 8)	 If solution xi is not improved and exceeds a certain threshold, then a better solution
cannot be found; thus, it is considered that this solution needs to be abandoned and the
corresponding bee becomes a scout bee. The new scout bee is randomly initialized in
the search space expressed as

			 , min, max, min,(0,1)()i j j j jx x rand x x= + − ,	 (7)

	 where xmin, j and xmax, j are the lower and upper bounds in dimension j, respectively, and
rand (0,1) represents a random value between 0 and 1.

Step 9)	 Remember the best solution found thus far.

3632	 Sensors and Materials, Vol. 32, No. 11 (2020)

Step 10)	Check for termination. If the generation value is larger than the predefined maximum
number of generations, stop and print the result; otherwise, return to Step 3 and
continue performing the algorithm.

4.2	 Population-based DE

	 DE is a population-based and directed search method. Similar to other evolutionary
algorithms, DE begins by generating an initial population NP (at t = 0) with D-dimensional
parameter vectors, which search through the search space by randomly choosing within the
boundary. Thereafter, DE tries to find the global optimal solution by iterating the populations
using three major operations: mutation, crossover, and selection. The basic strategy of DE is
described in further detail as follows:
1) Mutation
	 The mutation operation generates a mutant vector t

iV . The mutation process is expressed as

	
0 1 2

()t t t t
i r r rV X F X X= + ⋅ − ,	 (8)

where t is the current generation and i and j are the ith vector and the dimension of the vectors,
respectively. The variables r0, r1, and r2 are randomly selected indices from the range [0, NP − 1].
Moreover, r0 ≠ r1 ≠ r2 ≠ i, and F ∈ (0, 1) is a CF.
2) Crossover
	 The crossover operation is used as the crossover rate to generate a trial vector from each of
the target vectors and their corresponding mutant vectors after the mutation phase:

	 ,
,

,

if ((0,1)),

otherwise,

t
j i jt

j i t
j i

V rand CR
U

X

 ≤= 


	 (9)

where CR ∈ [0, 1] is a predefined value and randj (0, 1) is a random value between 0 and 1.
3) Selection
	 If the fitness function of the new trial vector t

iU is superior to its corresponding target vector
t
iX , the target vector is changed by the trial vector in the next generation. The operation is

represented as

	 1 if () (),

otherwise.

t t t
i i it

i t
i

U f U f X
X

X
+

 ≤= 


	 (10)

	 The previous steps are repeated until the maximal evolutionary generation or until the best
solution is found.

Sensors and Materials, Vol. 32, No. 11 (2020)	 3633

4.3	 Proposed IABC

	 This subsection illustrates the proposed IABC. The traditional ABC performs favorably
at exploration but poorly at exploitation.(24) During the learning process to achieve both
exploration and exploitation characteristics, a new search process used to obtain a combinatorial
solution is proposed. In the ABC, onlookers measure nectar information obtained from all
employed bees and use roulette wheel selection(28) to select food source locations with a given
probability. Therefore, few food sources may remain in the selection scheme.(29,30) An efficient
RRWS mechanism is proposed to improve the probability values. Figure 3 shows a flow chart
of the proposed IABC algorithm. The steps of the IABC are explained as follows:

Fig. 3.	 Flow chart of the proposed IABC algorithm.

3634	 Sensors and Materials, Vol. 32, No. 11 (2020)

Step 1) Initialize the population solutions xi, i = 1, 2, ..., SN
	 Each position of food source (solution) xi is an FNN. Each FNN consists of multiple fuzzy
rules. Figure 4 shows the coding of an FNN (solution) in the IABC algorithm. In the FNN,
the sensor signals S1, S3, and S4 are used as three inputs and the left- and right-wheel speeds
are used as outputs. All the control parameters must be defined in advance. In this study, a
uniform random distribution is used to generate the boundary conditions for each parameter.
The FNN parameters are initialized as

	 (0,1) (0.74 0.2) 0.2ij im rand= × − + ,	 (11)

	 (0,1) (0.74 0.2) 0.2ij irandσ = × − + ,	 (12)

	 [0,1]j randomγ = ,	 (13)

	 [0,10]jw random= ,	 (14)

	 [0,10]jv random= ,	 (15)

where each ultrasonic sensor (S1, S3, or S4) has a reading range of 0.2–0.74 m. The left- and
right-wheel speeds have a range of 0–10 m/s in the simulations.
Step 2) Evaluate the FNN
	 In traditional supervised learning,(12,13) training data are required in the learning process,
which is used for optimizing an FLC. Therefore, during the wall-following control, a fitness
function(17,18) is presented to evaluate the performance of the FNN. We propose a fitness
function C and three robot stop conditions. All the control parameters must be defined in
advance of the training stage. The maximum cost function C comprises three CFs and three
robot stop conditions, as described in Sect. 6.
Step 3) Generate and evaluate the new solutions ui for employed bees
	 Using the mutation strategy, each employed bee generates new solutions ui and applies the
greedy selection operation for employed bees. Therefore, the bees seek a wider field and make
the controller more adaptive. The new solutions ui are presented as

Fig. 4.	 Coding of FNN in IABC algorithm.

Sensors and Materials, Vol. 32, No. 11 (2020)	 3635

	 1 2, , , , ,
,

,

() () if ((0,1)),

otherwise.

G G G G G
i j best j i j r j r j jG

i j G
i j

x K x x F x x rand CR
u

x

 + − + − ≤= 


	 (16)

Here, ,
G
best jx is the best individual, ,

G
i jx is the current individual, F and K are the scaling factors,

1,
G
r jx and 2,

G
r jx are randomly selected individuals, and , 1, 2,

G G G
i j r j r jx x x≠ ≠ . G is the generation

number.
Step 4) Calculate the probability values pi for the solutions xi

	 An RRWS is adopted to calculate the probability values for the solutions, which are given as

	

2

1

1

1

if solution is feasible,

if solution is infeasible,

i

NP

i
ii

i
NP

i
i

SNf CG
SN

C
p

v CG

C

=

=

 + ×


= 
 −





∑

∑

	 (17)

where fi and vi are the fitness values of the feasible and infeasible solutions of the ith solution,
respectively. Moreover, NP is the number of FNNs, Ci is the fitness function of the ith solution,

()min 1 21
NP

iiCG C C SN SN=
= × +∑ is the compensatory gain, and SN1 and SN2 are the numbers of

feasible and infeasible solutions, respectively.
	 In this phase, the solutions are divided into feasible and infeasible solutions. Feasibility
indicates that the solution is within the range of the search space; otherwise, the solutions are
considered infeasible. After employed bees have produced candidate solutions, the greedy
selection process is used to compare the solutions with the original population. Then, the
probability values pi of the solutions xi are calculated by RRWS. In the RRWS, the feasible
solutions obtain a reward, whereas the selection of infeasible solutions incurs a punishment.
Under this operation, feasible (infeasible) solutions to the cost function are given larger (smaller)
probability values. In the next operation (performed by onlookers), feasible solutions with
larger probability values have a greater chance of being selected.
Step 5) Generate and evaluate the new solutions ui for the onlookers
	 In this phase, using the mutation strategy, each onlooker generates new solutions ui by DE
that are dependent on the RRWS.
Step 6) Confirm the status of a scout bee; if abandoned, a new randomly generated solution xi is
replaced with the scout bee.
	 If the solution of the IABC algorithm is generated within a specific range, we discard this
solution and generate a new solution. This operation is described as

	 , min, max, min,[0,1]()G G G G
i j j j jx x rand x x= + − ,	 (18)

3636	 Sensors and Materials, Vol. 32, No. 11 (2020)

where i is the ith solution of the population, j represents the jth dimension of the solution,
G is the generation number, and min,

G
jx and max,

G
jx are the lower and upper bounds of the jth

dimension, respectively.
Step 7) Remember the best solution
	 In the final phase, the best solution has been obtained. If the current fitness function is
superior to the memorized best fitness function, the current fitness function replaces the
previous best fitness function.

5.	 Reinforcement Learning of Mobile Robot Wall-following Control

	 In the training process, three ultrasonic sensor inputs, S1, S3, and S4, in the FNN estimate the
distance between the robot and the wall. The outputs of the FNN are the left- and right-wheel
speeds of the mobile robot. The FNN is optimized using the reinforcement-learning-based
IABC in a training environment. The predefined training environment is shown in Fig. 5.
Figure 6 displays the learning architecture of the wall-following control using the FNN during
the training process.
	 Traditional evolutionary algorithms use input–output training data to train a controller. In
this study, the fitness function is designed to assess the FNN performance in wall-following
control. The proposed fitness function comprises three CFs and three stop conditions to
perform the wall-following control using reinforcement learning. The stop conditions are as
follows: (1) the robot collides with the wall (obstacle); (2) the robot travels away from the wall (i.e.,
S4 ≥ 0.74 m); and (3) the robot successfully moves along the wall for at least one complete circuit (i.e.,
Tdis ≥ Tstop), where Tdis is the distance moved by the robot within the environment and Tstop is
the maximum distance that can be travelled by the robot, which is user-defined according to the
scale of the environment.
The three CFs of the fitness function are defined as follows:
A. CF1: The robot keeps a predefined distance from the wall. According to sensor S4, CF1
represents the right-side distance RD1 between the robot and the wall. CF1 at time step t is
given by

Fig. 5.	 Training environment. Fig. 6.	 Learning architecture of wall-following
control using FNN.

Sensors and Materials, Vol. 32, No. 11 (2020)	 3637

	
1

1
1

()
totalT

t

total

RD t
CF

T
==
∑

,	 (19)

where 1 4() () wallRD t S t d= − . RD1(t) = 0 indicates that the robot maintains the desired right-side
distance from the wall; dwall represents the required wall–robot distance, which is set to 0.3 m
(Fig. 7); and Ttotal is the number of time steps.
B. CF2: The mobile robot avoids obstacles in a complex environment. According to sensors S1

and S3, CF2 is the distance RD2 between the robot and the front-right wall. CF2 at time step t is
expressed as

	
2

1
2

()
totalT

t

total

RD t
CF

T
==
∑

,	 (20)

where 2 () () LimitRD t Limit t d= − . RD2(t) = 0 represents the state wherein no obstacles are in
front of the robot and dLimit(t) is the desired distance between the robot and the front-right wall,
which is set to 0.5 m (Fig. 8).
C. CF3: The robot moves along the wall to travel around the stadium successfully. CF3
represents the difference between the distance Tdis that the robot moves within the environment
and Tstop that represents the distance the robot will travel if it takes the optimal route around the
circuit. CF3 is defined as

	 3 dis stopCF T T= − .	 (21)

Fig. 7.	 (Color online) The robot maintains the
desired distance from the wall.

Fig. 8.	 (Color online) Desired distance between
robot and front-right wall.

3638	 Sensors and Materials, Vol. 32, No. 11 (2020)

	 When 1 2() () 0RD t RD t= = , the robot is moving parallel to the wall. In addition, when
0dis stopT T− ≥ , the robot is successfully moving along the wall to travel around the stadium.

	 After calculating CF1, CF2, and CF3, a normalization operation is used to adjust all the CFs,
and these adjustable parameters are defined as F1, F2, and F3. The three CFs (i.e., F1, F2, and
F3) are used to maximize the fitness function C, which is expressed as

	
()1 1 2 2 3 3

1
1

C
F F Fα α α

=
+ + +

,	 (22)

where α1, α2, and α3 are the weighting coefficients that are set to 0.4, 0.05, and 0.55, respectively,
in these experiments.

6.	 Experimental Results

	 To demonstrate the proposed FNN based on the IABC algorithm, wall-following control
was performed using the Pioneer 3-DX robot and the results were compared with those of
other algorithms. The training environment in Fig. 5 was used. Table 1 shows all the initial
parameters set before the training process in the IABC algorithm. The experiment was repeated
30 times to demonstrate the stability of the proposed IABC algorithm.

6.1	 Experimental results in a training environment

	 As described in this subsection, we designed and analyzed an FNN for wall-following
control. The maximum distance of the robot was set to 15 m. Figure 9(a) shows that the robot
could successfully move along the wall to travel around the stadium using the FNN based
on the IABC algorithm. Figure 9(b) shows the distances between the wall and the ultrasonic
sensors S1, S3, and S4 over one complete circuit, in addition to the left- and right-wheel speeds
of the robot. When the robot moved along the wall to point A, it slowly turned left in a straight
area. At this moment, the ultrasonic sensors S1, S3, and S4 registered distances from the wall of
0.74, 0.39, and 0.38 m, and the left- and right-wheel speeds were 2.67 and 2.92 m/s, respectively.
Then, the robot encountered an inside corner at point B. To avoid a collision with the wall, the
robot quickly turned left; the ultrasonic sensors S1, S3, and S4 registered distances of 0.42, 0.35,
and 0.54 m, and the left- and right-wheel speeds were 2.78 and 5.88 m/s, respectively.

Table 1
Initialization parameters.
Parameter Value
Population size (PS) 30
Crossover rate (CR) 0.9
Scale factor (F, K) 0.5
Evaluation number 3000
Number of rules 5
Scout bee limit 30

Sensors and Materials, Vol. 32, No. 11 (2020)	 3639

	 At points C, E, and F, the robot encountered outside corners and turned right. In this case,
the ultrasonic sensors S1, S3, and S4 registered distances of 0.74, 0.74, and 0.42 m, and the left-
and right-wheel speeds were 6.6 and 5.03 m/s, respectively. Finally, when the robot entered a
straight area, the ultrasonic sensors S1, S3, and S4 registered distances of 0.74, 0.41, and 0.3 m,
and the left- and right-wheel speeds were 2.85 and 2.85 m/s, respectively. The trajectory
obtained using the proposed FNN based on the IABC algorithm and those obtained using other
population-based algorithms are compared in Fig. 10. Figure 11 shows a plot of the average
values of the cost functions for the proposed IABC design at different evaluation points and
a comparison of these values with the corresponding values for the ABC and DE algorithms.
Figure 11 and Table 2 demonstrate that the proposed IABC algorithm performed more favorably
than the ABC and DE algorithms in wall-following control.

6.2	 Experimental results in two testing environments

	 To further demonstrate the method’s performance, two complex testing environments were
created for the wall-following task. Figures 12(a) and 13(a) show the robot trajectories obtained
using the IABC algorithm in the two complex testing environments.
	 When the robot encountered an outside corner at point A in testing environment 1 [see
Fig. 12(a)], it turned right and moved along the wall. The ultrasonic sensors S1, S3, and S4
registered distances of 0.74, 0.74, and 0.25 m, and the left- and right-wheel speeds were 4.9 and
3.56 m/s, respectively. When the robot encountered an outside corner at point B, the sensors
detected an obstacle and the robot turned left. The ultrasonic sensors S1, S3, and S4 registered

Fig. 9.	 (Color online) (a) Robot trajectory along wall to travel around training environment. (b) Distances between
wall and ultrasonic sensors, and left- and right-wheel speeds of robot in training environment.

(a) (b)

3640	 Sensors and Materials, Vol. 32, No. 11 (2020)

Fig. 12.	 (Color online) (a) Robot trajectory while following the wall in testing environment 1. (b) Distances
between wall and ultrasonic sensors, and left- and right-wheel speeds of robot in testing environment 1.

Table 2
Comparison of fitness values obtained using various methods.
Algorithm Proposed IABC ABC DE
Best fitness value C 0.984 0.974 0.976
Average fitness value C 0.976 ± 3.6E−03 0.966 ± 3E−03 0.970 ± 2E−03

(a) (b)

Fig. 10.	 (Color online) Robot trajectories using
various algorithms in training environment.

Fig. 11.	 (Color online) Average fitness values of
various algorithms.

distances of 0.56, 0.48, and 0.31 m, and the left- and right-wheel speeds were 3.63 and 3.99 m/s,
respectively. When the robot was in the straight area at point C, the ultrasonic sensors S1, S3,
and S4 registered distances of 0.74, 0.41, and 0.29 m, and the left- and right-wheel speeds were 2.84

Sensors and Materials, Vol. 32, No. 11 (2020)	 3641

and 2.85 m/s, respectively. Figure 13(a) shows complex testing environment 2; Fig. 13(b) shows
a plot of the distances according to the sensors S1, S3, and S4, and the left- and right-wheel
speeds of the robot in testing environment 2. When the robot encountered an outside corner
at point A, it turned right and moved along the wall. The ultrasonic sensors S1, S3, and S4
registered changes at distances from 0.74, 0.46, and 0.3 m to 0.74, 0.26, and 0.31 m; the left- and
right-wheel speeds changed from 6.6 and 5.04 m/s to 1.98 and 2.75 m/s, respectively. When
the robot encountered the inside acute angle at point B, it turned left to avoid collision. The
ultrasonic sensors S1, S3, and S4 registered distances of 0.2, 0.2, and 0.35 m, and the left- and
right-wheel speeds were 2.65 and 7.63 m/s, respectively. Finally, the robot encountered the
hairpin bend at point C, where all the ultrasonic sensors temporarily lost their targets and the
robot slowly turned to the right and moved away from the wall. The ultrasonic sensors S1, S3,
and S4 registered distances of 0.74, 0.74, and 0.74 m, and the left- and right-wheel speeds were
5.85 and 3.9 m/s, respectively. The robot trajectories obtained in the two environments by
wall-following control using the IABC, ABC, and DE algorithms are shown in Figs. 14 and 15.
The results of an evaluation of the control function C of the IABC, ABC, and DE algorithms in
different environments are given in Table 3. These results demonstrate that the mobile robot
successfully achieves the wall-following control in the two testing environments and keeps
a fixed distance from the wall. In addition, the proposed IABC algorithm performed more
favorably than the ABC and DE algorithms, as illustrated in Figs. 14 and 15 by the behavior of
the robot when it encountered a corner.

Fig. 13.	 (Color online) (a) Robot trajectory while following the wall in testing environment 2. (b) Distances
between wall and ultrasonic sensors, and left- and right-wheel speeds of robot in testing environment 2.

(a) (b)

3642	 Sensors and Materials, Vol. 32, No. 11 (2020)

6.3	 Analysis of S4

	 In this subsection, CF1 is analyzed by applying the root mean square error (RMSE). CF1
ensures that the robot can maintain a predefined wall–robot distance. In other words, it ensures
that the right-hand distance between the robot and the wall according to sensor S4 can be
kept constant. The RMSE is used to measure the performance of the FNN in wall-following
control. A comparison of the RMSE values obtained using the IABC, ABC, and DE methods in
different environments is given in Table 4.

	
2

4
1

()
totalT

wall
t

total

S d
RMSE

T
=

−
=

∑ 	 (23)

6.4	 Experimental results in a real environment

	 This subsection describes the actual wall-following control of the Pioneer 3-DX mobile
robot using the FNN based on the IABC algorithm. To demonstrate the system’s feasibility, a
real environment was created for testing the performance of the robot in actual wall-following

Fig. 14.	 (Color online) Robot trajectories obtained
using various algorithms in testing environment 1.

Fig. 15.	 (Color online) Robot trajectories obtained
using various algorithms in testing environment 2.

Table 3
Comparison of results obtained using various methods in different environments.
Algorithm IABC ABC DE
Evaluation
function F1 F2 F3 C F1 F2 F3 C F1 F2 F3 C

Training
environment 0.035 0.006 4.2E−04 0.982 0.053 0.012 7.5E−04 0.972 0.055 0.008 7.5E−04 0.972

Testing
environment 1 0.028 0.004 7.5E−05 0.986 0.045 0.008 1.7E−04 0.977 0.058 0.008 1.3E−04 0.973

Testing
environment 2 0.058 0.004 5.3E−05 0.984 0.45 0.008 2.55E−04 0.978 0.053 0.006 1.8E−04 0.976

Sensors and Materials, Vol. 32, No. 11 (2020)	 3643

control. Figure 16 shows the wall-following control results obtained using the proposed
approach. The Pioneer 3-DX robot not only moves along the wall (obstacle) but also maintains
a user-defined distance from the wall.

7.	 Conclusions

	 We proposed an EFNN to execute mobile robot wall-following control. The EFNN
comprises an FNN and its reinforcement-learning-based IABC algorithm. The proposed
IABC algorithm adopts a mutation strategy and a new RRWS for optimizing FNN parameters.
For the fitness function used to evaluate the FNN’s performance, three stop conditions are
proposed. Therefore, the learning process of the mobile robot control in this study does not
use any training data. Experimental results show that the average fitness value of the proposed
IABC algorithm is superior to those of the ABC and DE optimization algorithms. The RMSE
values of the proposed IABC, ABC, and DE algorithms in the testing environment are 0.034,
0.042, and 0.042, respectively. In addition, the actual wall-following control of a Pioneer 3-DX
mobile robot applying an FNN based on the IABC algorithm was also performed successfully.
To achieve high-speed operation in real-time applications, the FNN will also be implemented
on a field-programmable gate array in a future study.

Fig. 16.	 (Color online) Wall-following control results of Pioneer 3-DX robot in actual environment.

Table 4
Comparison of RMSE values obtained using various methods in different environments.
Algorithm IABC ABC DE
Training environment 0.036 0.04 0.041
Training environment 1 0.032 0.039 0.043
Training environment 2 0.036 0.044 0.040

3644	 Sensors and Materials, Vol. 32, No. 11 (2020)

References

	 1	 X. Tu, J. Gai, and L. Tang: Comput. Elect ron. Agri. 164 (2019) 104892. ht tps://doi.org/10.1016/
j.compag.2019.104892

	 2	 C. Ordonez, E. G. Collins, M. F. Selekwa, and D. D. Dunlap: Rob. Auton. Syst. 56 (2008) 645. https://doi.
org/10.1016/j.robot.2007.11.010

	 3	 X. Wang, G. Zhang, Y. Sun, J. Cao, L. Wan, M. Sheng, and Y. Liu: Ocean Eng. 190 (2019) 106429. https://doi.
org/10.1016/j.oceaneng.2019.106429

	 4	 M. Mucientes, J. Alcala-Fdez, R. Alcala, and J. Casillas: Expert Syst. Appl. 37 (2010) 1471. https://doi.
org/10.1016/j.eswa.2009.06.095

	 5	 T. H. S. Li, Y. C. Yeh, J. D. Wu, M. Y. Hsiao, and C. Y. Chen: IEEE Trans. Ind. Electron. 57 (2010) 1687.
https://doi.org/10.1109/TIE.2009.2033093

	 6	 Y. Wang, S. Zhang, Z. Zhu, Z. Li, Y. Du, and L. Fang: Inf. Process. Agric. 6 (2019) 1. https://doi.org/10.1016/
j.inpa.2018.10.001

	 7	 S. G. Tzafestas, K. M. Deliparaschos, and G. P. Moustris: Rob. Auton. Syst. 58 (2010) 1017. https://doi.
org/10.1016/j.robot.2010.03.014

	 8	 L. A. Zadeh: Inf. Control. 8 (1965) 338. https://doi.org/10.1016/S0019-9958(65)90241-X
	 9	 A. Ilyas, M. R. Khan, and M. Ayyub: Optik. 213 (2020) 164668. https://doi.org/10.1016/j.ijleo.2020.164668
	10	 A. Khalid, M. Amar, A. Habiba, S. Shafique, and R. Noor: 2010 2nd Int. Conf. Signal Processing Systems. 2 (2010)

740–746. https://doi.org/10.1109/ICSPS.2010.5555781
	11	 O. R. E. Motlagh, T. S. Hong, and N. Ismail: Fuzzy Sets. Syst. 160 (2009) 1929. https://doi.org/10.1016/

j.fss.2008.09.015
	12	 X. Wang, X. Lin, and X. Dang: Neural Netw. 125 (2020) 258. https://doi.org/10.1016/j.neunet.2020.02.011
	13	 W. Tsui, M. S. Masmoudi, F. Karray, I. Song, and M. Masmoudi: IEEE ASME Trans Mechatron. 13 (2008)

125. https://doi.org/10.1109/TMECH.2007.910054
	14	 H. Y. Chung, C. C. Hou, and S. C. Liu: 2013 IEEE Int. Symp. Industrial Electronics (2013) 1–6. https://doi.

org/10.1109/ISIE.2013.6563767
	15	 C. F. Juang and Y. C. Chang: IEEE Trans. Fuzzy Syst. 19 (2011) 379. ht tps://doi.org /10.1109/

TFUZZ.2011.2104364
	16	 C. F. Juang and C. H. Hsu: IEEE Trans. Ind. Electron. 56 (2009) 3931. https://doi.org/10.1109/TIE.2009.2017557
	17	 C. H. Hsu and C. F. Juang: IEEE Trans Fuzzy Syst. 21 (2013) 100. https://doi.org/10.1109/TFUZZ.2012.2202665
	18	 C. H. Hsu and C. F. Juang: IEEE Comput. Intell. Mag. 8 (2013) 28. https://doi.org/10.1109/MCI.2013.2264233
	19	 H. Wang, Z. Guo, and W. Chen: Thermochim. Acta. 676 (2019) 271. https://doi.org/10.1016/j.tca.2019.05.009
	20	 R. Storn and K. V. Price: J. Global Optim. 11 (1997) 341. https://doi.org/10.1023/A:1008202821328
	21	 T. U. Hassan, T. Alquthami, S. E. Butt, M. F. Tahir, and K. Mehmood: Energy Rep. 6 (2020) 984. https://doi.

org/10.1016/j.egyr.2020.04.003
	22	 D. Karaboga and B. Basturk: Appl. Soft Comput. 8 (2008) 687. https://doi.org/10.1016/j.asoc.2007.05.007
	23	 D. Karaboga and B. Akay: Appl. Math. Comput. 214 (2009) 108. https://doi.org/10.1016/j.amc.2009.03.090
	24	 G. P. Zhu and S. Kwong: Appl. Math. Comput. 217 (2010) 3166. https://doi.org/10.1016/j.amc.2010.08.049
	25	 X. Li and M. Yin: IET Microwaves Antennas Propag. 6 (2012) 1573. https://doi.org/10.1049/iet-map.2011.0611
	26	 Q. K. Pan, L. Wang, K. Mao, J. H. Zhao, and M. Zhang: IEEE Trans. Autom. Sci. Eng. 10 (2013) 307. https://

doi.org/10.1109/TASE.2012.2204874
	27	 W. F. Gao, S. Y. Liu, and L. L. Huang: IEEE Trans. Cybern. 43 (2013) 1011. https://doi.org/10.1109/

TSMCB.2012.2222373
	28	 B. Akay and D. Karaboga: Inf. Sci. 192 (2012) 120. https://doi.org/10.1016/j.ins.2010.07.015
	29	 R. N. Khushaba, A. Al-Ani, and A. Al-Jumaily: Expert Syst. Appl. 38 (2011) 11515. https://doi.org/10.1016/

j.eswa.2011.03.028
	30	 A. Lipowski and D. Lipowska: Physica A 391 (2012) 2193. https://doi.org/10.1016/j.physa.2011.12.004
	31	 C. H. Chen, C. J. Lin, and C. T. Lin. IEEE Trans. Fuzzy Syst. 17 (2009) 668. https://doi.org/10.1109/

TFUZZ.2008.924186

https://doi.org/10.1016/j.compag.2019.104892
https://doi.org/10.1016/j.compag.2019.104892
https://doi.org/10.1016/j.robot.2007.11.010
https://doi.org/10.1016/j.robot.2007.11.010
https://doi.org/10.1016/j.oceaneng.2019.106429
https://doi.org/10.1016/j.oceaneng.2019.106429
https://doi.org/10.1016/j.eswa.2009.06.095
https://doi.org/10.1016/j.eswa.2009.06.095
https://doi.org/10.1109/TIE.2009.2033093
https://doi.org/10.1016/j.inpa.2018.10.001
https://doi.org/10.1016/j.inpa.2018.10.001
https://doi.org/10.1016/j.robot.2010.03.014
https://doi.org/10.1016/j.robot.2010.03.014
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.ijleo.2020.164668
https://doi.org/10.1109/ICSPS.2010.5555781
https://doi.org/10.1016/j.fss.2008.09.015
https://doi.org/10.1016/j.fss.2008.09.015
https://doi.org/10.1016/j.neunet.2020.02.011
https://doi.org/10.1109/TMECH.2007.910054
https://doi.org/10.1109/ISIE.2013.6563767
https://doi.org/10.1109/ISIE.2013.6563767
https://doi.org/10.1109/TFUZZ.2011.2104364
https://doi.org/10.1109/TFUZZ.2011.2104364
https://doi.org/10.1109/TIE.2009.2017557
https://doi.org/10.1109/TFUZZ.2012.2202665
https://doi.org/10.1109/MCI.2013.2264233
https://doi.org/10.1016/j.tca.2019.05.009
https://doi.org/10.1023/A
https://doi.org/10.1016/j.egyr.2020.04.003
https://doi.org/10.1016/j.egyr.2020.04.003
https://doi.org/10.1016/j.asoc.2007.05.007
https://doi.org/10.1016/j.amc.2009.03.090
https://doi.org/10.1016/j.amc.2010.08.049
https://doi.org/10.1049/iet-map.2011.0611
https://doi.org/10.1109/TASE.2012.2204874
https://doi.org/10.1109/TASE.2012.2204874
https://doi.org/10.1109/TSMCB.2012.2222373
https://doi.org/10.1109/TSMCB.2012.2222373
https://doi.org/10.1016/j.ins.2010.07.015
https://doi.org/10.1016/j.eswa.2011.03.028
https://doi.org/10.1016/j.eswa.2011.03.028
https://doi.org/10.1016/j.physa.2011.12.004
https://doi.org/10.1109/TFUZZ.2008.924186
https://doi.org/10.1109/TFUZZ.2008.924186

Sensors and Materials, Vol. 32, No. 11 (2020)	 3645

About the Authors

	 Cheng-Hung Chen received his Ph.D. degree in electrical and control
engineering from National Chiao-Tung University, Taiwan, in 2008.
Currently, he is a professor of the Electrical Engineering Department, National
Formosa University, Yunlin County, Taiwan. His current research interests
are in fuzzy systems, neural networks, evolutionary algorithms, intelligent
control, and evolutionary robots. He has authored or coauthored more than 60
papers published in referred journals and conference proceedings.

	 Shiou-Yun Jeng received her Ph.D. degree in industrial engineering and
management from National Yunlin University of Science & Technology,
Taiwan, R.O.C., in 2019. Currently, she is a postdoctoral research fellow of
the Computer Science and Information Engineering Department, National
Chin-Yi University of Technology, Taichung City, Taiwan, R.O.C. Her current
research interests are in intelligence and fuzzy theory, sustainable supply
chain management, resource efficiency and green production management,
and big data analysis.

	 Cheng-Jian Lin received his Ph.D. degree in electrical and control
engineering from National Chiao-Tung University, Taiwan, in 1996.
Currently, he is a chair professor of the Computer Science and Information
Engineering Department, National Chin-Yi University of Technology,
Taichung, Taiwan, and the dean of Intelligence College, National Taichung
University of Science and Technology, Taichung, Taiwan. His current
research interests are in machine learning, pattern recognition, intelligent
control, image processing, and evolutionary robots. (cjlin@ncut.edu.tw)

