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	 We propose an efficient evolutionary fuzzy neural network (EFNN) for mobile robot control.  
The proposed EFNN combines a fuzzy neural network (FNN) and an improved artificial 
bee colony (IABC) algorithm to implement the wall-following control of a mobile robot.  To 
evaluate the wall-following control performance of the FNN, an efficient fitness function is 
defined.  The three control factors (CFs) in the fitness function are the maintenance of the 
robot–wall distance, the avoidance of robot–wall collision, and the successful movement of the 
robot along a wall to travel around a stadium.  The traditional ABC emulates the intelligent 
foraging behavior of honey bee swarms, but this algorithm performs favorably at exploration 
and poorly at exploitation.  Therefore, the proposed IABC algorithm uses mutation strategies to 
balance exploration and exploitation.  Furthermore, a new reward-based roulette wheel selection 
(RRWS) mechanism is adopted to obtain a more favorable solution during the learning process.  
Experimental results demonstrate that the proposed IABC obtains a smaller root mean square 
error (RMSE) than other methods in wall-following control.

1.	 Introduction

	 The navigation control,(1,2) wall-following behavior control,(3,4) parallel parking control,(5) 
and path tracking control(6,7) of mobile robots are essential issues for implementing 
behavior-based control in unknown environments.  However, wall-following behavior control is 
particularly critical for a mobile robot.  In traditional control methods, the control performance 
depends on the accuracy of its sensors because it is affected by noise interference.
	 Fuzzy logic was developed in 1965 by Zadeh(8) to overcome the complication, uncertainty, 
and nonlinearity of systems.  Therefore, it is useful for solving uncertainty in real problems 
by simulating the human experience in fuzzy logic rules.  Fuzzy logic controllers (FLCs) have 
been used by numerous researchers in mobile robot wall-following tasks(9,10) and obstacle 
avoidance.(11)  To improve the performance of FLCs, many optimization algorithms, such as 
supervised learning,(12,13) population-based learning,(14,15) and reinforcement learning,(16) have 
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been proposed.  Supervised learning generally trains an FLC by using input and output training 
data.  However, in wall-following tasks, the collection of training data is difficult.  Therefore, in 
this study, we propose a new fitness function that evaluates the performance of a controller.(17,18)  
The fitness function is computed online from online data generated during the learning process 
for the mobile robot.  In the training process, no training data need be collected in advance.  
Therefore, the training method can be extended to a real-world environment.  In addition, 
many researchers have proposed population-based learning algorithms, such as particle swarm 
optimization (PSO),(19) differential evolution (DE),(20) and artificial bee colony (ABC)(21–23) 
algorithms.
	 The traditional ABC algorithm contains three essential component groups: employed bees, 
onlookers, and scout bees.  Employed bees search for and exploit food sources while imparting 
food source information to the onlookers.  The onlookers then select food sources according 
to this food source information.  Scout bees perform a random search in the search space 
environment to find new food sources.  The traditional ABC algorithm performs favorably at 
exploration but poorly at exploitation.(24)  A new combinatorial solution search stage has been 
proposed to balance the importance of exploration and exploitation during the learning stage.(25–27)  
Furthermore, an onlooker bee in the traditional ABC algorithm measures the nectar information 
of all employed bees and uses a probability value to select food sources, which is similar to the 
“roulette wheel selection” in a genetic algorithm, related to the amount of nectar at each site.(28)  
In roulette wheel selection, some less than optimal food sources may remain.(29,30)

	 We propose an efficient evolutionary fuzzy neural network (EFNN) for mobile robot control.  
The proposed EFNN combines a fuzzy neural network (FNN) and an improved artificial bee 
colony (IABC) algorithm to implement the wall-following control of a mobile robot.  An IABC 
is proposed for adjusting the parameters of an FNN.  The three control factors (CFs) in the 
fitness function are the maintenance of the robot–wall distance, the avoidance of robot–wall 
collision, and the ability of the robot to move along a wall to travel around a stadium.  To 
improve the control performance of the FNN, a mutation strategy in the IABC algorithm is 
produced to balance exploration and exploitation during the learning process.  Moreover, a 
new reward-based roulette wheel selection (RRWS) mechanism in the IABC algorithm is 
also proposed.  A favorable solution can be obtained on the basis of a reward concept.  The 
results are compared with the efficiencies of FNNs based on ABC and DE algorithms for 
wall-following control.
	 The rest of this study comprises six sections.  Section 2 presents a description of the mobile 
robot and associated experiments; Sect. 3 introduces the design of the FNN; Sect. 4 introduces 
the proposed IABC algorithm; Sect. 5 evaluates the controller’s performance and the training 
environment; Sect. 6 describes the simulations and experiments for wall-following robot 
control; and Sect. 7 presents the conclusions of this study.

2.	 Description of Mobile Robot

	 Figure 1 shows Pioneer 3-DX, which is a small, lightweight, two-wheel, and two-motor 
differential-drive robot.  Eight ultrasonic sensors were incorporated into the robot to measure 
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the distances between the robot and obstacles for wall-following control to be achieved.  The 
ultrasonic sensor positions on the Pioneer 3-DX robot were fixed with two on the sides and 
six facing outward at 20° intervals to provide 180° forward coverage.  Each sensor measured a 
distance range between 0.15 and 4.75 m.
	 To prevent collisions between the robot and a wall or an obstacle, only the three ultrasonic 
sensors on the right (or left)—S1, S3, and S4 (or S5, S7, and S8)—were used to evaluate the 
distance between the robot and the wall during a right (or left) wall-following task.  The original 
sensor values were limited to the range of 0.2–0.74 m in the simulations and experiments 
because it was unnecessary to use a larger range for these particular wall-following tasks.

3.	 Design of an FNN

	 This section illustrates the design of the FNN.  Figure 2 shows the structure of the FNN.  
During right (or left) wall-following control, only three ultrasonic sensors, S1, S3, and S4 (or S5, 
S7, and S8), on the right (or left) estimate the distance between the robot and the wall, and these 
are the inputs of the FNN in this study.  The outputs of the FNN control the left- and right-wheel 
speeds of the robot.  The FNN(31) can be expressed as

	
1 ( /3)

1 1 2 2 3 3 :  [IF is and is and is ]

THEN is and is 

j j
j j j

l j r j

Rule j x A x A x A

y w y v

γ γ− +

              
,	 (1)

where x1, x2, and x3 are respectively the distances between the ultrasonic sensors S4, S3, and 
S1 and the wall.  Moreover, Aij is the linguistic term of the precondition part, γj ∈ [0, 1] is the 
compensatory factor, yl and yr are the left- and right-wheel speeds of the robot, and wj and vj are 
the weights of the consequent part, respectively.
	 Fuzzification operation is used as the Gaussian membership function
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Fig. 1.	 (Color online) Pioneer 3-DX.
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where mij and σij respectively represent the mean and variance in the Gaussian function of the 
fuzzy set.
	 In the fuzzy implication operation using product operation, fuzzy implication assists in the 
evaluation of the consequent part of each rule as
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where γj = cj
2/(cj

2 +dj
2) is the compensatory degree and cj, dj ∈ [−1, 1] are pessimistic and 

optimistic parameters, respectively.
	 In the defuzzification operation, the center of the area is used in this study and is described 
by
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4.	 Proposed IABC Algorithm

4.1	 Review of ABC algorithm

	 The ABC algorithm was inspired by the intelligent behavior of honey bees.  The honey 
bees in the ABC algorithm are classified into three groups: onlookers, employed bees, and 
scout bees.  Bees that discover food source positions (i.e., solutions) and randomly search their 
vicinity are named employed bees.  They return to the hive and perform a waggle dance to 
share information regarding the locations of new food sources available with bees in the dance 

Fig. 2.	 Structure of FNN.
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region of the hive.  The onlooker bees watch the dances, select the best food source among those 
found by the employed bees, and conduct a further random search after reaching the vicinity 
of the selected food source.  The onlookers choose the food source according to a probability 
proportional to the amount of nectar (fitness value) of the food source.  Scout bees randomly 
search the environment to find new food sources.  When the food source of employed bees has 
been exhausted, the employed bees will become scout bees.  The steps of the ABC algorithm 
are explained as follows:
Step 1)	 Initialize SN population solutions xi, where xi is a food source with D-dimensional 

real-valued vectors and i = 1, 2, ..., SN.
Step 2)	 Evaluate the fitness function value of each solution.
Step 3)	 Each employed bee generates a new solution vi as

			  , , , , ,( )t t t t
i j i j i j i j k jv x x xϕ= + − ,	 (5)

	 where t is the number of generations; φi, j is a random value in the interval [−1, 1]; and 
k = 1, 2, ..., NP such that k ∉ i and j = 1, 2, ..., D are both randomly chosen indices.  
Thereafter, the fitness value of the new solution is evaluated.

Step 4)	 Apply a greedy selection mechanism to compare a current solution xi with a new 
solution vi.

Step 5)	 Calculate the probability value for each solution.  The onlooker bees use the roulette 
wheel selection scheme to choose a solution.  The probability value is calculated as
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	 where fiti represents the fitness value of solution i and SN represents the total number 
of solutions.

Step 6)	 Each onlooker bee produces a new solution that is in the neighborhood of its current 
solution by using Eq. (1) and evaluates it.

Step 7)	 Repeat Step 2 and use the greedy selection process to compare a current solution xi 
with a new solution vi.

Step 8)	 If solution xi is not improved and exceeds a certain threshold, then a better solution 
cannot be found; thus, it is considered that this solution needs to be abandoned and the 
corresponding bee becomes a scout bee.  The new scout bee is randomly initialized in 
the search space expressed as

			  , min, max, min,(0,1)( )i j j j jx x rand x x= + − ,	 (7)

	 where xmin, j and xmax, j are the lower and upper bounds in dimension j, respectively, and 
rand (0,1) represents a random value between 0 and 1.

Step 9)	 Remember the best solution found thus far.
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Step 10)	Check for termination.  If the generation value is larger than the predefined maximum 
number of generations, stop and print the result; otherwise, return to Step 3 and 
continue performing the algorithm.

4.2	 Population-based DE

	 DE is a population-based and directed search method.  Similar to other evolutionary 
algorithms, DE begins by generating an initial population NP (at t = 0) with D-dimensional 
parameter vectors, which search through the search space by randomly choosing within the 
boundary.  Thereafter, DE tries to find the global optimal solution by iterating the populations 
using three major operations: mutation, crossover, and selection.  The basic strategy of DE is 
described in further detail as follows:
1) Mutation 
	 The mutation operation generates a mutant vector t

iV .  The mutation process is expressed as

	
0 1 2

( )t t t t
i r r rV X F X X= + ⋅ − ,	 (8)

where t is the current generation and i and j are the ith vector and the dimension of the vectors, 
respectively.  The variables r0, r1, and r2 are randomly selected indices from the range [0, NP − 1].  
Moreover, r0 ≠ r1 ≠ r2 ≠ i, and F ∈ (0, 1) is a CF.
2) Crossover
	 The crossover operation is used as the crossover rate to generate a trial vector from each of 
the target vectors and their corresponding mutant vectors after the mutation phase:
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where CR ∈ [0, 1] is a predefined value and randj (0, 1) is a random value between 0 and 1.
3) Selection
	 If the fitness function of the new trial vector t

iU  is superior to its corresponding target vector 
t
iX , the target vector is changed by the trial vector in the next generation.  The operation is 

represented as
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	 The previous steps are repeated until the maximal evolutionary generation or until the best 
solution is found.
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4.3	 Proposed IABC

	 This subsection illustrates the proposed IABC.  The traditional ABC performs favorably 
at exploration but poorly at exploitation.(24)  During the learning process to achieve both 
exploration and exploitation characteristics, a new search process used to obtain a combinatorial 
solution is proposed.  In the ABC, onlookers measure nectar information obtained from all 
employed bees and use roulette wheel selection(28) to select food source locations with a given 
probability.  Therefore, few food sources may remain in the selection scheme.(29,30)  An efficient 
RRWS mechanism is proposed to improve the probability values.  Figure 3 shows a flow chart 
of the proposed IABC algorithm.  The steps of the IABC are explained as follows:

Fig. 3.	 Flow chart of the proposed IABC algorithm.
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Step 1) Initialize the population solutions xi, i = 1, 2, ..., SN 
	 Each position of food source (solution) xi is an FNN.  Each FNN consists of multiple fuzzy 
rules.  Figure 4 shows the coding of an FNN (solution) in the IABC algorithm.  In the FNN, 
the sensor signals S1, S3, and S4 are used as three inputs and the left- and right-wheel speeds 
are used as outputs.  All the control parameters must be defined in advance.  In this study, a 
uniform random distribution is used to generate the boundary conditions for each parameter.  
The FNN parameters are initialized as

	 (0,1) (0.74 0.2) 0.2ij im rand= × − + ,	 (11)

	 (0,1) (0.74 0.2) 0.2ij irandσ = × − + ,	 (12)

	 [0,1]j randomγ = ,	 (13)

	 [0,10]jw random= ,	 (14)

	 [0,10]jv random= ,	 (15)

where each ultrasonic sensor (S1, S3, or S4) has a reading range of 0.2–0.74 m.  The left- and 
right-wheel speeds have a range of 0–10 m/s in the simulations.
Step 2) Evaluate the FNN
	 In traditional supervised learning,(12,13) training data are required in the learning process, 
which is used for optimizing an FLC.  Therefore, during the wall-following control, a fitness 
function(17,18) is presented to evaluate the performance of the FNN.  We propose a fitness 
function C and three robot stop conditions.  All the control parameters must be defined in 
advance of the training stage.  The maximum cost function C comprises three CFs and three 
robot stop conditions, as described in Sect. 6.
Step 3) Generate and evaluate the new solutions ui for employed bees
	 Using the mutation strategy, each employed bee generates new solutions ui and applies the 
greedy selection operation for employed bees.  Therefore, the bees seek a wider field and make 
the controller more adaptive.  The new solutions ui are presented as

Fig. 4.	 Coding of FNN in IABC algorithm.
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Step 4) Calculate the probability values pi for the solutions xi

	 An RRWS is adopted to calculate the probability values for the solutions, which are given as
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where fi and vi are the fitness values of the feasible and infeasible solutions of the ith solution, 
respectively.  Moreover, NP is the number of FNNs, Ci is the fitness function of the ith solution, 

( )min 1 21
NP

iiCG C C SN SN=
= × +∑  is the compensatory gain, and SN1 and SN2 are the numbers of 

feasible and infeasible solutions, respectively.
	 In this phase, the solutions are divided into feasible and infeasible solutions.  Feasibility 
indicates that the solution is within the range of the search space; otherwise, the solutions are 
considered infeasible.  After employed bees have produced candidate solutions, the greedy 
selection process is used to compare the solutions with the original population.  Then, the 
probability values pi of the solutions xi are calculated by RRWS.  In the RRWS, the feasible 
solutions obtain a reward, whereas the selection of infeasible solutions incurs a punishment.  
Under this operation, feasible (infeasible) solutions to the cost function are given larger (smaller) 
probability values.  In the next operation (performed by onlookers), feasible solutions with 
larger probability values have a greater chance of being selected.
Step 5) Generate and evaluate the new solutions ui for the onlookers
	 In this phase, using the mutation strategy, each onlooker generates new solutions ui by DE 
that are dependent on the RRWS.
Step 6) Confirm the status of a scout bee; if abandoned, a new randomly generated solution xi is 
replaced with the scout bee.
	 If the solution of the IABC algorithm is generated within a specific range, we discard this 
solution and generate a new solution.  This operation is described as

	 , min, max, min,[0,1]( )G G G G
i j j j jx x rand x x= + − ,	 (18)
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where i is the ith solution of the population, j represents the jth dimension of the solution, 
G is the generation number, and min,

G
jx  and max,

G
jx  are the lower and upper bounds of the jth 

dimension, respectively.
Step 7) Remember the best solution
	 In the final phase, the best solution has been obtained.  If the current fitness function is 
superior to the memorized best fitness function, the current fitness function replaces the 
previous best fitness function.

5.	 Reinforcement Learning of Mobile Robot Wall-following Control

	 In the training process, three ultrasonic sensor inputs, S1, S3, and S4, in the FNN estimate the 
distance between the robot and the wall.  The outputs of the FNN are the left- and right-wheel 
speeds of the mobile robot.  The FNN is optimized using the reinforcement-learning-based 
IABC in a training environment.  The predefined training environment is shown in Fig. 5.  
Figure 6 displays the learning architecture of the wall-following control using the FNN during 
the training process.
	 Traditional evolutionary algorithms use input–output training data to train a controller.  In 
this study, the fitness function is designed to assess the FNN performance in wall-following 
control.  The proposed fitness function comprises three CFs and three stop conditions to 
perform the wall-following control using reinforcement learning.  The stop conditions are as 
follows: (1) the robot collides with the wall (obstacle); (2) the robot travels away from the wall (i.e., 
S4 ≥ 0.74 m); and (3) the robot successfully moves along the wall for at least one complete circuit (i.e., 
Tdis ≥ Tstop), where Tdis is the distance moved by the robot within the environment and Tstop is 
the maximum distance that can be travelled by the robot, which is user-defined according to the 
scale of the environment.
The three CFs of the fitness function are defined as follows:
A.  CF1: The robot keeps a predefined distance from the wall.  According to sensor S4, CF1 
represents the right-side distance RD1 between the robot and the wall.  CF1 at time step t is 
given by

Fig. 5.	 Training environment. Fig. 6.	 Learning architecture of wall-following 
control using FNN.
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where 1 4( ) ( ) wallRD t S t d= − .  RD1(t) = 0 indicates that the robot maintains the desired right-side 
distance from the wall; dwall represents the required wall–robot distance, which is set to 0.3 m 
(Fig. 7); and Ttotal is the number of time steps.
B.  CF2: The mobile robot avoids obstacles in a complex environment.  According to sensors S1 

and S3, CF2 is the distance RD2 between the robot and the front-right wall.  CF2 at time step t is 
expressed as 
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total

RD t
CF

T
==
∑

,	 (20)

where 2 ( ) ( ) LimitRD t Limit t d= − .  RD2(t) = 0 represents the state wherein no obstacles are in 
front of the robot and dLimit(t) is the desired distance between the robot and the front-right wall, 
which is set to 0.5 m (Fig. 8).  
C.  CF3: The robot moves along the wall to travel around the stadium successfully.  CF3 
represents the difference between the distance Tdis that the robot moves within the environment 
and Tstop that represents the distance the robot will travel if it takes the optimal route around the 
circuit.  CF3 is defined as

	 3 dis stopCF T T= − .	 (21)

Fig. 7.	 (Color online) The robot maintains the 
desired distance from the wall.

Fig. 8.	 (Color online) Desired distance between 
robot and front-right wall.
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	 When 1 2( ) ( ) 0RD t RD t= = , the robot is moving parallel to the wall.  In addition, when 
0dis stopT T− ≥ , the robot is successfully moving along the wall to travel around the stadium.

	 After calculating CF1, CF2, and CF3, a normalization operation is used to adjust all the CFs, 
and these adjustable parameters  are defined as F1,  F2, and F3.  The three CFs (i.e., F1, F2, and 
F3) are used to maximize the fitness function C, which is expressed as

	
( )1 1 2 2 3 3

1
1

C
F F Fα α α

=
+ + +

,	 (22)

where α1, α2, and α3 are the weighting coefficients that are set to 0.4, 0.05, and 0.55, respectively, 
in these experiments.

6.	 Experimental Results

	 To demonstrate the proposed FNN based on the IABC algorithm, wall-following control 
was performed using the Pioneer 3-DX robot and the results were compared with those of 
other algorithms.  The training environment in Fig. 5 was used.  Table 1 shows all the initial 
parameters set before the training process in the IABC algorithm.  The experiment was repeated 
30 times to demonstrate the stability of the proposed IABC algorithm.

6.1	 Experimental results in a training environment

	 As described in this subsection, we designed and analyzed an FNN for wall-following 
control.  The maximum distance of the robot was set to 15 m.  Figure 9(a) shows that the robot 
could successfully move along the wall to travel around the stadium using the FNN based 
on the IABC algorithm.  Figure 9(b) shows the distances between the wall and the ultrasonic 
sensors S1, S3, and S4 over one complete circuit, in addition to the left- and right-wheel speeds 
of the robot.  When the robot moved along the wall to point A, it slowly turned left in a straight 
area.  At this moment, the ultrasonic sensors S1, S3, and S4 registered distances from the wall of 
0.74, 0.39, and 0.38 m, and the left- and right-wheel speeds were 2.67 and 2.92 m/s, respectively.  
Then, the robot encountered an inside corner at point B.  To avoid a collision with the wall, the 
robot quickly turned left; the ultrasonic sensors S1, S3, and S4 registered distances of 0.42, 0.35, 
and 0.54 m, and the left- and right-wheel speeds were 2.78 and 5.88 m/s, respectively.

Table 1
Initialization parameters.
Parameter Value
Population size (PS) 30
Crossover rate (CR) 0.9
Scale factor (F, K) 0.5
Evaluation number 3000
Number of rules 5
Scout bee limit 30



Sensors and Materials, Vol. 32, No. 11 (2020)	 3639

	 At points C, E, and F, the robot encountered outside corners and turned right.  In this case, 
the ultrasonic sensors S1, S3, and S4 registered distances of 0.74, 0.74, and 0.42 m, and the left- 
and right-wheel speeds were 6.6 and 5.03 m/s, respectively.  Finally, when the robot entered a 
straight area, the ultrasonic sensors S1, S3, and S4 registered distances of 0.74, 0.41, and 0.3 m, 
and the left- and right-wheel speeds were 2.85 and 2.85 m/s, respectively.  The trajectory 
obtained using the proposed FNN based on the IABC algorithm and those obtained using other 
population-based algorithms are compared in Fig. 10.  Figure 11 shows a plot of the average 
values of the cost functions for the proposed IABC design at different evaluation points and 
a comparison of these values with the corresponding values for the ABC and DE algorithms.  
Figure 11 and Table 2 demonstrate that the proposed IABC algorithm performed more favorably 
than the ABC and DE algorithms in wall-following control.

6.2	 Experimental results in two testing environments

	 To further demonstrate the method’s performance, two complex testing environments were 
created for the wall-following task.  Figures 12(a) and 13(a) show the robot trajectories obtained 
using the IABC algorithm in the two complex testing environments.
	 When the robot encountered an outside corner at point A in testing environment 1 [see 
Fig. 12(a)], it turned right and moved along the wall.  The ultrasonic sensors S1, S3, and S4 
registered distances of 0.74, 0.74, and 0.25 m, and the left- and right-wheel speeds were 4.9 and 
3.56 m/s, respectively.  When the robot encountered an outside corner at point B, the sensors 
detected an obstacle and the robot turned left.  The ultrasonic sensors S1, S3, and S4 registered 

Fig. 9.	 (Color online) (a) Robot trajectory along wall to travel around training environment. (b) Distances between 
wall and ultrasonic sensors, and left- and right-wheel speeds of robot in training environment.

(a) (b)
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Fig. 12.	 (Color online) (a) Robot trajectory while following the wall in testing environment 1. (b) Distances 
between wall and ultrasonic sensors, and left- and right-wheel speeds of robot in testing environment 1.

Table 2
Comparison of fitness values obtained using various methods.
Algorithm Proposed IABC ABC DE
Best fitness value C 0.984 0.974 0.976
Average fitness value C 0.976 ± 3.6E−03 0.966 ± 3E−03 0.970 ± 2E−03

(a) (b)

Fig. 10.	 (Color online) Robot trajectories using 
various algorithms in training environment.

Fig. 11.	 (Color online) Average fitness values of 
various algorithms.

distances of 0.56, 0.48, and 0.31 m, and the left- and right-wheel speeds were 3.63 and 3.99 m/s, 
respectively.  When the robot was in the straight area at point C, the ultrasonic sensors S1, S3, 
and S4 registered distances of 0.74, 0.41, and 0.29 m, and the left- and right-wheel speeds were 2.84 
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and 2.85 m/s, respectively.  Figure 13(a) shows complex testing environment 2; Fig. 13(b) shows 
a plot of the distances according to the sensors S1, S3, and S4, and the left- and right-wheel 
speeds of the robot in testing environment 2.  When the robot encountered an outside corner 
at point A, it turned right and moved along the wall.  The ultrasonic sensors S1, S3, and S4 
registered changes at distances from 0.74, 0.46, and 0.3 m to 0.74, 0.26, and 0.31 m; the left- and 
right-wheel speeds changed from 6.6 and 5.04 m/s to 1.98 and 2.75 m/s, respectively.  When 
the robot encountered the inside acute angle at point B, it turned left to avoid collision.  The 
ultrasonic sensors S1, S3, and S4 registered distances of 0.2, 0.2, and 0.35 m, and the left- and 
right-wheel speeds were 2.65 and 7.63 m/s, respectively.  Finally, the robot encountered the 
hairpin bend at point C, where all the ultrasonic sensors temporarily lost their targets and the 
robot slowly turned to the right and moved away from the wall.  The ultrasonic sensors S1, S3, 
and S4 registered distances of 0.74, 0.74, and 0.74 m, and the left- and right-wheel speeds were 
5.85 and 3.9 m/s, respectively.  The robot trajectories obtained in the two environments by 
wall-following control using the IABC, ABC, and DE algorithms are shown in Figs. 14 and 15.  
The results of an evaluation of the control function C of the IABC, ABC, and DE algorithms in 
different environments are given in Table 3.  These results demonstrate that the mobile robot 
successfully achieves the wall-following control in the two testing environments and keeps 
a fixed distance from the wall.  In addition, the proposed IABC algorithm performed more 
favorably than the ABC and DE algorithms, as illustrated in Figs. 14 and 15 by the behavior of 
the robot when it encountered a corner.

Fig. 13.	 (Color online) (a) Robot trajectory while following the wall in testing environment 2. (b) Distances 
between wall and ultrasonic sensors, and left- and right-wheel speeds of robot in testing environment 2.

(a) (b)
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6.3	 Analysis of S4

	 In this subsection, CF1 is analyzed by applying the root mean square error (RMSE).  CF1 
ensures that the robot can maintain a predefined wall–robot distance.  In other words, it ensures 
that the right-hand distance between the robot and the wall according to sensor S4 can be 
kept constant.  The RMSE is used to measure the performance of the FNN in wall-following 
control.  A comparison of the RMSE values obtained using the IABC, ABC, and DE methods in 
different environments is given in Table 4.
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6.4	 Experimental results in a real environment

	 This subsection describes the actual wall-following control of the Pioneer 3-DX mobile 
robot using the FNN based on the IABC algorithm.  To demonstrate the system’s feasibility, a 
real environment was created for testing the performance of the robot in actual wall-following 

Fig. 14.	 (Color online) Robot trajectories obtained 
using various algorithms in testing environment 1.

Fig. 15.	 (Color online) Robot trajectories obtained 
using various algorithms in testing environment 2.

Table 3
Comparison of results obtained using various methods in different environments. 
Algorithm IABC ABC DE
Evaluation 
function F1 F2 F3 C F1 F2 F3 C F1 F2 F3 C

Training 
environment 0.035 0.006 4.2E−04 0.982 0.053 0.012 7.5E−04 0.972 0.055 0.008 7.5E−04 0.972

Testing 
environment 1 0.028 0.004 7.5E−05 0.986 0.045 0.008 1.7E−04 0.977 0.058 0.008 1.3E−04 0.973

Testing 
environment 2 0.058 0.004 5.3E−05 0.984 0.45 0.008 2.55E−04 0.978 0.053 0.006 1.8E−04 0.976
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control.  Figure 16 shows the wall-following control results obtained using the proposed 
approach.  The Pioneer 3-DX robot not only moves along the wall (obstacle) but also maintains 
a user-defined distance from the wall.

7.	 Conclusions

	 We proposed an EFNN to execute mobile robot wall-following control.  The EFNN 
comprises an FNN and its reinforcement-learning-based IABC algorithm.  The proposed 
IABC algorithm adopts a mutation strategy and a new RRWS for optimizing FNN parameters.  
For the fitness function used to evaluate the FNN’s performance, three stop conditions are 
proposed.  Therefore, the learning process of the mobile robot control in this study does not 
use any training data.  Experimental results show that the average fitness value of the proposed 
IABC algorithm is superior to those of the ABC and DE optimization algorithms.  The RMSE 
values of the proposed IABC, ABC, and DE algorithms in the testing environment are 0.034, 
0.042, and 0.042, respectively.  In addition, the actual wall-following control of a Pioneer 3-DX 
mobile robot applying an FNN based on the IABC algorithm was also performed successfully.  
To achieve high-speed operation in real-time applications, the FNN will also be implemented 
on a field-programmable gate array in a future study.

Fig. 16.	 (Color online) Wall-following control results of Pioneer 3-DX robot in actual environment.

Table 4
Comparison of RMSE values obtained using various methods in different environments.
Algorithm IABC ABC DE
Training environment 0.036 0.04 0.041
Training environment 1 0.032 0.039 0.043
Training environment 2 0.036 0.044 0.040
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