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	 In this paper, we expand our previous paper [Mod. Phys. Lett. B 32 (2018) 1750355] from the 
calculation of planar graphene with one band (pz) to the calculation of two-dimensional buckled 
group-IVA materials with multiple bands (S, px, py, and pz); thus, the proposed method is a full-
band model.  Furthermore, the proposed method is established using a nonequilibrium Green’s 
function (NEGF) method in association with the complex energy-band technique, so it is in the 
full-quantum framework.  Unlike other methods, the proposed method is noniterative and thus 
computationally cost-efficient.

1.	 Introduction

	 The graphene, which is regarded as a semimetal or zero-gap semiconductor, possesses a two-
dimensional (2D) honeycomb structure of carbon atoms, and it has attracted tremendous interest 
owing to its unique properties.(1–3)  Therefore, graphene is considered as a promising material 
for future research.  However, its zero energy gap has been widely regarded as an obstacle to 
its application in next-generation nanoelectronics.  Therefore, material researchers have tried 
to solve the zero-gap problem by using new 2D honeycomb materials from other elements in 
group-IVA of the periodic table.  Firstly, many investigations have shown that 2D silicene(4,5) 
and germanene,(4,5) which are the graphene-like analogues of silicon and germanium, 
respectively, have promising applications in nanoscale electronic devices.  The last research in 
this field is related to the 2D honeycomb lattice of a Sn monolayer, commonly referred to as 
stanene.(4,6)

	 Graphene possesses a planar 2D honeycomb lattice of carbon atoms with π-bonding.  In 
contrast to graphene, other 2D layered group-IVA materials possess a buckled structure in the 
honeycomb lattice, which leads to partial sp3 hybridization of an electronic configuration.(4)  
The buckling of a honeycomb lattice enhances the hybridization between π and σ orbitals.(6)  
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Notably, owing to the enhancement of sp3 hybridization with increasing group-IVA atomic 
number, out-of-plane buckling of the honeycomb lattice is enhanced.  Buckled 2D materials 
possess a stronger spin-orbit coupling (SOC) interaction, which gives rise to a band gap between 
conduction and valence bands.(6,7)  A small band gap is one of the most important differences 
of silicene and germanene from graphene.(8)  For stanene, its relatively large buckling and thus 
its stronger SOC interaction open an obvious energy gap in the energy band diagram,(7) which 
solves the zero-gap problem for planar 2D nanostructures.
	 The nonequilibrium Green’s function (NEGF)(9–13) method is the most powerful method 
for solving the quantum transport problems of nanoscale electronic devices.  In the past, many 
studies have shown that the NEGF can be solved by a recursive (or iterative) technique.(14–18)  A 
recursive technique may finish this job or not (divergence), while one of the disadvantages of 
this technique is the slow convergence in the iterative steps.  Moreover, another technique for 
obtaining the NEGF is based on the calculation framework of the Dyson equation, which was 
proposed by Caroli et al.(19) and others.(20–22)  One of the disadvantages of the Dyson equation 
is  the difficulty to dispose the miscellaneous boundary conditions.  However, the disadvantages 
of the recursive and Dyson techniques can be overcome by the method proposed in this paper, 
which a complex energy-band framework in association with the NEGF approach.(23–26)

	 In this paper, the properties of zigzag-edged group-IVA nanoribbon (z4ANR) structures 
such as the density of states (DOS), transmission coefficient, and conductance will be explored 
by the proposed technique.

2.	 Theoretical Methods

	 The z4ANR sample considered in this paper possesses N zigzag lines and has a central 
channel region composed of l atomic layers denoted by σ = 1, 2, ..., l, as shown in Fig. 1.  It is 
supposed that flat-band cases occur in the left-side incoming (σ ≤ 0) and right-side outgoing 
(σ ≥ l + 1) regions, which are located outside of the central channel region.
	 In this study, the theoretical model 4 of a monolayer group-IVA element structure is a tight-
binding calculation based on the τ

βα  (α = s, x, y, z) orbital, where β is an A or B sublattice, and 
the electron spin τ is along the up (↑) or down (↓) direction.  Therefore, the Hamiltonian of these 
monolayer group-IVA elements can be expressed in 16 × 16 matrix form with the τ

βα  orbital, 
which is presented in Appendix A.

2.1	 Hamiltonian matrix and state function of z4ANRs

	 In the flat-band case, the state function k⊥  of a z4ANR, which has N zigzag lines, is a 
combination of the 16N tight-binding basis | , ,k j τ

βα⊥ >, which can be written as

	 , , ,
, , , 1 ,

| ( ) | , ,
N

j
s x y z j A B

k b k k j τ
α β τ β

τ α β
α⊥ ⊥ ⊥

=↑↓ = = =
> = >∑ ∑ ∑ ∑ ,	 (1)

where bj,α,β,τ specifies the expansion coefficient, τ
βα  denotes the α orbital of the group-IVA 

element with electron spin τ (= ↑ or ↓) located at sublattice β (= A or B), j is the index of the N 
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adjacent zigzag lines in the transverse direction (||) of the z4ANR, and k⊥ is the wave vector 
directed along the z4ANR direction (⊥).  The electron energy E, which is shown as | ,k E⊥ > 
and bj,α,β,τ( , )k E⊥ , is omitted for brevity here.  Furthermore, the tight-binding basis of a z4ANR 
Hamiltonian can be expressed as

	
1| , , exp( ) | , ,k j i k a jτ τ

β β
σ

α σ σ α⊥ ⊥ ′> = >
Ω
∑ ,	 (2)

where Ω denotes the normalization number, σ specifies a layer label increasing along the ⊥ 
direction, a' denotes the spacing of two neighboring layers, and | , ,j τ

βσ α > denotes the τ
βα  

orbital of the group-IVA element at lattice site (σ, j).  In the expression of the | , ,k j τ
βα⊥ > basis, 

the z4ANR Hamiltonian 4 ( )z ANRH k⊥ , which possesses 16N × 16N matrix formalism, is written 
in Appendix B.  The state function of a z4ANR can also be expressed in the form of

	 , , , ,
, ,

| ( )| , ,j
j

k c k j τ
σ α β τ β

σ α τ β
σ α⊥ ⊥> = >∑∑∑ ,	 (3)

where , , , , , , ,
1( ) ( )exp( )j jc k b k i k aσ α β τ α β τ σ⊥ ⊥ ⊥ ′=
Ω

.  On the basis of the structure of z4ANR 

lattice points, the Hamiltonian of a z4ANR in the nearest-neighbor approach can also be 
expressed as

	 ' '
4 , 1 , , 1( ) ik a ik a

z ANRH k H e H H eσ σ σ σ σ σ
⊥ ⊥− +

⊥ − += + + ,	 (4)

where Hσ,σ and Hσ,σ±1 are 16N × 16N matrices (see Appendix C), whose elements are written as

	 , , , , ; , , ,( ) , , | ( ) | , ,j jH j H E jτ τ
σ σ α β τ α β τ β βσ α σ α ′

′ ′ ′ ′ ′′ ′= < − > ,	 (5a)

Fig. 1.	 (Color online) Geometric structure of z4ANR-based transport device (width, N zigzag lines; channel 
length, l atomic layers).
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and 

	 , 1 , , , ; , , ,( ) , , | | 1, ,j jH j H jτ τ
σ σ α β τ α β τ β βσ α σ α ′

′ ′ ′ ′ ′± ′ ′= < ± > ,	 (5b)

respectively.

2.2	 Complex energy-band structure of z4ANRs

	 The Schrödinger equation ( ) | 0H E k⊥− > =  in a z4ANR structure can be expressed as(27–29)

	 1 1
1 1
, 1 , 1 , 1 ,

0 ik aI c c
e

c cH H H H
σ σ

σ σσ σ σ σ σ σ σ σ

⊥ ′− −
− −

+ − +

     
=     − −      

,	 (6)

where I denotes a 16N × 16N identity matrix, a state function k⊥  specifies the available plane-
wave states in the left and right regions, and cσ can be expressed as a 16N-length column vector 
of coefficients whose components are denoted as cσ,j,α,β,τ, i.e.,

	

,1

,2

,16N

c
c

c

c

σ

σ
σ

σ

 
 
 =
 
 
  


.	 (7)

	 According to Bloch’s theorem, the tight-binding coefficients must satisfy the relation 

1
ik ac e cσ σ
⊥ ′

−= .
	 To solve the eigenvalue ( ik ae ⊥ ′) of Eq. (6), we can obtain a set of 2 × (16N) real or complex 

wave vectors { }, ; 1, 2, , 32k Nλ λ⊥ =   and their corresponding state functions ,k λ⊥  for a given 
electron energy E, which can yield an , 1 32NE k λ⊥ = −−  complex energy-band diagram.(23–25)

2.3	 Hamiltonian matrix and wave function of z4ANR-based devices

	 In the z4ANR-based structure, the wave function of the Schrödinger equation 
( ) | 0H E ψ− > =  can be written as

	 , , , ,
, ,

| ( ) | ( ) ( ) | , ,j
k j k

a k k a k c k j τ
σ α β τ β

σ α τ β
ψ σ α

⊥ ⊥

⊥ ⊥ ⊥ ⊥> = > = >∑ ∑∑∑∑ ,	 (8)

where ( )a k⊥  denotes the amplitude coefficient of a z4ANR state function k⊥ .  Therefore, the 
wave function of the whole structure can be expressed in the form

	 , , , ,
, ,

| | , ,j
j

f j τ
σ α β τ β

σ α τ β
ψ σ α> = >∑∑∑ ,	 (9)

where fσ,j,α,β,τ is , , , ,( ) ( )j
k

a k c kσ α β τ
⊥

⊥ ⊥∑ , which is electron-energy-dependent, i.e., fσ,j,α,β,τ (E).
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	 The Schrödinger equation ( ) | 0H E ψ− > =  can be expressed in the | , ,j τ
βσ α > basis form, 

and thus we obtain the following combinative equation for the σth layer:(28–30)

	 , 1 1 , , 1 1 0H f H f H fσ σ σ σ σ σ σ σ σ− − + ++ + = ,	 (10)

where Hσ,σ and Hσ,σ±1 can be written in the form of 16N × 16N matrices, as shown in Appendix C, 
and fσ is a 16N-length column vector whose components are fσ,j,α,β,τ.  Therefore, the Hamiltonian 
matrix of the whole structure can be expressed as

	
1, 2 1, 1 1,

, 1 , , 1

1, 1, 1 1, 2

0 0 0
0 0

0 0
0 0

0 0 0

H H H
H H HH E I

H H H

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

− − − − −
∧

− +

+ + + + +

 
 
 
 − =
 
 
  

   

 

 

 

   

.	(11)

2.4	 Boundary conditions solved by complex energy-band method

	 We rearrange the state functions , 1~32Nk λ⊥ =  of the complex energy-band formalism, which 
are obtained from Eq. (6).  Therefore, the index of λ = 1, 2, ..., 16N corresponds to the state 
functions, which either propagate (k⊥ real) or decay (  complex) to the right-hand side.  On the 
other hand, λ = 16N + 1, 16N + 2, ..., 32N correspond to those which either propagate or decay 
to the left-hand side.(29,30)  The boundary conditions are such that we have a known incoming 
plane-wave state from the left contact, no incoming plane-wave state from the right contact, and 
unknown outgoing transmitted and reflected plane-wave states in the right and left contacts, 
respectively.  For a given energy E and for a given amplitude (here unity) of an incoming plane-
wave-like state (denoted by i) from the left, the wave functions in the left (L) and right (R) 
contacts must satisfy the boundary conditions of this example, which can be expressed in terms 
of the state functions of the complex energy-band structure as follows:(29,30)

	
16

, , 16 , 16
1

| ; | | | ; ( ; ) | ;
N

i
i i N NI k a k L kL L Lλ λ

λ
ψ ψ ψℜ

⊥ ⊥ + ⊥ +
=

>= > + >= > + >∑ ,	 (12a)

and

	
16

, ,
1

| ; | ( ; ) | ;
N

R a k R k Rλ λ
λ

ψ ψℑ
⊥ ⊥

=
>= >= >∑ ,	 (12b)

where Ii denotes the known amplitude (here unity) coefficient of the incoming plane-wave-
like state function from the left contact, and ,( ; )a k Rλ⊥  and , 16( ; )Na k Lλ⊥ +  are the unknown 
amplitude coefficients of the transmitted and reflected state functions, respectively.  For 
convenience, we use ℜ and ℑ to denote the outgoing waves that propagate (or decay) to the left 
in the left contact and to the right in the right contact, respectively.
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	 We rewr ite Eq. (9) as , , , ,
, ,

| | , ,j
j

f jζ ζ τ
βσ α β τ

σ α τ β
ψ σ α> = >∑∑∑ , then we obtain the 

relation(10,30,31)

	 óóf B aζ ζ ζ     =     
,	 (13)

where ζ  denotes ℑ and ℜ, which represent transmitted and reflected waves, respectively,

	 ,1 ,2 ,16[ ] [ ( ) ( ) ( )]N RB c k c k c kσ σ σ σ
ℑ

⊥ ⊥ ⊥=  ,	 (14a)

	 ,16 1 ,16 2 ,32[ ] [ ( ) ( ) ( )]N N N LB c k c k c kσ σ σ σ
ℜ

⊥ + ⊥ + ⊥=  ,	 (14b)

	

,1

,2

,16

( )
( )

( )N R

a k
a k

a

a k

⊥

⊥ℑ

⊥

 
 
 =
 
 
  


,	 (15a)

	

,16 1

,16 2

,32

( )
( )

( )

N

N

N L

a k
a k

a

a k

⊥ +

⊥ +ℜ

⊥

 
 
 =
 
 
  


.	 (15b)

	 The coefficients fσ,j,α,β,τ of the | , ,j τ
βσ α > orbital in the right and left contacts can be acquired 

through Eqs. (13)–(15), which result in two boundary conditions,(10,30,31) 

	
1

2 2 1 1l l l lf B B f
−ℑ ℑ ℑ ℑ

+ + + +       =        ,	 (16a)

	
1

1 1 0 0f B B f
−ℜ ℜ ℜ ℜ

− −       =        .	 (16b)

2.5	 Schrödinger-like equation in the NEGF form solved by complex energy-band method

	 From Eqs. (11), (12), and (16), we can obtain the Schrödinger-like equation for the active 
region (0 ≤ σ ≤ l + 1) in the NEGF framework as(9,10,30,31)

	 { } { }act L RH E I Sφ
∧ 

− + Σ + Σ = 
 

,	 (17)

where the Hamiltonian in the active region (Hact), the boundary self-energies for the left (L) 
and right (R) contacts (ΣL,R), the wave function {ϕ}, and the source term {S} are written in the 
matrix form as



Sensors and Materials, Vol. 32, No. 11 (2020)	 3713

	

0,0 0,1

1,0 1,1 1,2

, 1 , , 1

1, 1, 1

0 0

0

0 0

0

0 0

act

l l l l l l

l l l l

H H

H H H

H E I

H H H

H H

∧

− +

+ + +

 
 
 
 

− =  
 
 
 
 





  





,	 (18)

	
1

0, 1 1 0L H B B
−ℜ ℜ

− −     Σ =       ,	 (19a)

	
1

1, 2 2 1R l l l lH B B
−ℑ ℑ

+ + + +     Σ =       ,	 (19b)

	 { }

0

1

1

l

l

f

f

f

f

φ

ℜ

ℑ
+

 
 
 
 

=  
 
 
 
 

 ,	 (20)

and

	 { }

0

0, ,
1

1,0 0,

0

0

i

i

H c

H c

S

σ σ
σ =−

 
− 
 
 
 −
 
 
 =  
 
 
 
 
 
 
  

∑



.	 (21)

2.6	 Applicative calculation using NEGF framework

	 The Green’s function of the whole device is expressed as

	
1

d act L RG E I H
−

∧ 
= − − Σ − Σ 
 

.	 (22)



3714	 Sensors and Materials, Vol. 32, No. 11 (2020)

	 The Green’s function Gd is obtained, and then the transmission function ( )T E  is determined 
by the trace of(12,32)

	 ( ) ( ) ( ) [ ]L d R dT E T E M E Tr G GΓ Γ += = ,	 (23)

where ( )T E  is the product of the number of forward-propagating eigenstates M(E) and the 
transmission probability T(E), , , ,( )L R L R L RiΓ += Σ − Σ  is the broadening factor, superscript ‘+’ 
is the complex conjugate transpose, and Tr denotes the trace operator.  Occasionally, M(E) is 
referred to as the propagating channel or propagating mode.
	 The conductance G(E) of the device is obtained from the Fermi energy EF, and it can be 
associated with the transmission function ( )T E  as(12,32–34)

	
22( ) ( )F F

eG E T E
h

= ,	 (24)

where h denotes the Planck constant, e denotes the electron charge, and 2e2/h represents the 
conductance quantum.  Furthermore, the transmission function ( )T E  should be obtained at the 
Fermi energy EF using ( ) [ ]

F
F L d R d E E

T E Tr G GΓ Γ +

=
= .

	 If the Green’s function Gd is obtained, the DOS can be determined via(12,15,32)

	
1( ) [ ( ) ]

2 d L R dDOS E Tr G GΓ Γ
π

+= + .	 (25)

3.	 Results and Discussion

	 Figures 2(a)–2(d) show the energy-band structures of monolayer group-IVA elements, which 
are calculated by the tight-binding four-band technique with the SOC effect in the nearest-
neighbor approach.  Furthermore, the tight-binding four-band results are in good agreement 
with the first-principles results only for the valence  and conduction bands in the low-energy 
sections,(4) i.e., near the K points.  Therefore, the four-band model used here can capture the 
essential physics of monolayer group-IVA elements in the low-energy region reasonably well.
	 Graphene possesses a planar (θ = 90°) honeycomb lattice of carbon atoms, where θ is the 
angle between the bond and the z direction.  In contrast to graphene, other layered group-IVA 
materials possess a buckled (θ ≠ 90°) structure in the honeycomb lattice.  θ is 101.7° for silicene, 
106.5° for germanene, and 107.1° for stanene.(4)  The buckling in the honeycomb lattice enhances 
the overlap between π and σ orbitals.  Therefore, the buckling in the honeycomb lattice leads to 
partial hybridization between π and σ orbitals, and thus partial sp3 hybridization exists in the 
orbital configuration.  Furthermore, owing to the increasing sp3 hybridization with increasing 
group-IVA atomic number, the out-of-plane buckling of the honeycomb lattice is enhanced.  
Owing to the low atomic mass of graphene, its intrinsic SOC interaction is negligible.  As shown 
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in Appendix A, the strength of the SOC interaction 0ξ  is 0.009 for graphene, 0.034 for silicene, 
0.196 for germanene, and 0.8 for stanene in units of eV.(4)  Compared with the planar graphene, 
the buckled 2D group-IVA elements possess a stronger intrinsic SOC interaction, which gives 
rise to a band gap in the K points.  Possessing a small band gap is the most important difference 
of silicene and germanene from graphene, as shown in Figs. 2(a)–2(c).  Compared with silicene 
and germanene, stanene possesses a larger buckled altitude and thus a stronger SOC interaction, 
which opens an obvious band gap in the energy-band diagram, as shown in Fig. 2(d).
	 A z4ANR, which has N zigzag lines (width), possesses 2N group-IVA atoms in the interior 
of its unit cell, as presented in Fig. 1.  A 2N-center tight-binding framework of this case 
yields a 16N × 16N [where 16 2 4( ) 2( )N N α τ= × ×  ]-dimensional Hamiltonian matrix, as 
presented in Appendix B.  In the case of N (= 4) zigzag lines, the energy-band structures of 
the z4ANR members (zGNR, zSiNR, zGeNR, and zSnNR, which are constituted of graphene, 
silicene, germanene, and stanene, respectively) are computed and presented in Figs. 3(a)–3(d), 
respectively.  The energy-band structure of a zGNR with N (= 4) zigzag lines is computed and 

Fig. 2.	 (Color online) Energy-band diagrams for monolayer (a) graphene, (b) silicene, (c) germanene, and (d) 
stanene.
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presented in the left panel of Fig. 4, and its corresponding number of forward-propagating 
channels M(E) is presented in the right panel.
	 Equation (6), which is an eigenvalue equation, possesses a 32N × 32N matrix formalism.  
According to Eq. (6), at a certain energy E, one can attain 32N real or complex eigenvalues 

{ }, ; 1, 2, , 32k Nλ λ⊥ =   and their corresponding eigenvectors ,k λ⊥ , which can yield an 

, 1~32NE k λ⊥ =−  complex energy-band diagram.(23–25)  Moreover, some value of E and its 
corresponding real k⊥ yield the traditional E – k⊥ energy-band diagram of a z4ANR.  For 
example, the traditional E – k⊥ energy-band diagram of a zGNR with N (= 4) zigzag lines is 
presented in the left panel of Fig. 4.  For a real value of k⊥, the propagating waves transmit to 

Fig. 3.	 (Color online) Energy-band diagram for single-layer (a) zGNR, (b) zSiNR, (c) zGeNR, and (d) zSnNR with 
N (= 4) zigzag lines.
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the right [ ( ) 0g kυ ⊥ > ] or left [ ( ) 0g kυ ⊥ < ] direction (see Fig. 4), where gυ  is the group velocity 
[ 1 ( ) /NRBH k k−

⊥ ⊥∂ ∂ ].  Furthermore, for a complex value of k⊥, the evanescent waves decay 
exponentially in the right [Im( ) 0k⊥ > ] or left (Im( ) 0k⊥ < ) direction.  Each of the eigenvectors of 
Eq. (6) corresponds to a pair of k⊥ and k⊥− ; hence, half (16N) of the propagating or evanescent 
waves propagate rightward and the other half (16N) propagate leftward at a certain energy E, as 
shown in Fig. 4.
	 In the z4ANR-based devices considered in this section, the width of the channel is N (= 4) 
zigzag lines and the length of central channel is l (= 14) atomic layers.  For these z4ANR-based 
samples, which assume a perfect flat-band potential profile, Figs. 5(a)–5(d) display the spectral 
diagrams of the transmission function (T ), conductance (G), and DOS as a function of energy E.  
Furthermore, for these z4ANR-based samples, which now have a double-barrier structure (DBS) 
potential profile imposed on them (i.e., central channel length: l = 2 (barrier) + 10 (well) + 2 (barrier) 
= 14 atomic layers with barrier height 0.7 eV), Figs. 6(a)–6(d) display the spectral diagrams of T , G, 
and DOS as a function of E.
	 Assuming a perfect flat-band potential, we have T(E) = 1, and thus ( ) ( )T E M E= , for the 
z4ANR-based samples.  According to calculations using Eqs. (23) and (24), these flat-band 
samples have a staircase-like conductance, which is the number of propagating channels M(E) 
multiplied by the conductance quantum 2e2/h, as displayed in the right panel of Fig. 4 and 
Figs. 5(a)–5(d).(35–37)  As presented in Figs. 5(a)–5(d) and Figs. 6(a)–6(d), it can be seen that 
in the DBS imposition, the quantization staircases of conductance spectra are destroyed and 
show more complicated oscillation behaviors due to the scattering from the DBSs.  Namely, 
it is shown that the transition of conductance is from the quantized conductance in flat-band 
structures to resonant-tunneling conductance in DBSs.

Fig. 4.	 (Color online) Energy-band diagram for single-layer zGNR with N (= 4)  zigzag lines and its corresponding 
number of propagating channels at given energy E.
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Fig. 5.	 (Color online) Transmission function (T ), conductance (G), and density of states (DOS) as functions of 
electron energy E for the flat-band (a) zGNR-based, (b) zSiNR-based, (c) zGeNR-based, and (d) zSnNR-based 
device structures (width : N = 4 zigzag lines; channel length : l = 14 atomic layers), where M(E) denotes the number 
of propagating channels at a given energy E.

Fig. 6.	 (Color online) Transmission function (T ), conductance (G), and density of states (DOS) as functions of 
electron energy E for z4ANR-based device structure (width : N = 4 zigzag lines; channel length : l = 2 + 10 + 2 = 14 
atomic layers). A 2-10-2 atomic-layer DBS potential profile with barrier height 0.7 eV is imposed on the (a) zGNR-
based, (b) zSiNR-based, (c) zGeNR-based, and (d) zSnNR-based structures, where M(E) denotes the number of 
propagating channels at a given energy E.
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	 A van Hove singularity can be seen as a singularity (nonsmooth point) in the DOS spectra 
of crystalline solids.  The van Hove singularities occur where the derivative of the DOS with 
respect to energy E diverges, which yields a strikingly sharp peak in the DOS spectra.(38–43) 
Therefore, in a perfect flat-band z4ANR, the DOS diverges at the onset of each subband, as 
shown in Figs. 5(a)–5(d) and Figs. 3(a)–3(d).  Figures 5(a)–5(d) display the strikingly sharp and 
asymmetric peaks in the DOS spectra, which are also called van Hove singularities.
	 In quantum transport devices such as DBSs, a series of discrete and fine confined levels (or 
states) exist in the central channel, and a continuous distribution of states exists in the left and 
right contacts.  When the central channel and the two contacts are joined, the discrete channel 
levels couple and then acquire a few states of the two contacts.(12,32)  Therefore, the effect 
of coupling is to broaden the DOS in the central channel from its original discrete lines to a 
continuous spectrum,(12,32) as shown in Figs. 6(a)–6(d).  With increasing DBS barrier height, the 
coupling strength of the two contacts to the central channel decreases, and thus the line-shape 
sharpness and depth of the DOS peaks and dips increase.  Therefore, the DBS has been verified 
to be a suitable structure for exploring the coupling strength of contacts to a central channel, 
and an increase in DBS barrier height yields the DOS modification of the central channel.  As 
shown in Figs. 6(a)–6(d), when energy E coincides with any resonant-tunneling confined levels 
of the DBS, irregularly spaced resonant-tunneling peaks occur in DOS spectra.

4.	 Conclusions

	 In this paper, we have developed an atomistic full-band and full-quantum model for 
calculating the electronic transport characteristics of z4ANR-based devices, which also involves 
the SOC effect.  We have derived in detail the theoretical expressions for z4ANR-based devices 
such as their wave function, Hamiltonian matrix, and the Schrödinger-like equation in the 
NEGF form, which is based on the complex energy-band method.  The proposed method is 
straightforward, nonrecursive, and thus computationally cost-efficient.  Using the developed 
method, we have calculated and obtained important findings on z4ANR-based devices, such 
as their conductance quantization, van Hove singularities in the DOS, and the effect of contact 
interactions on the channel.

Acknowledgments

	 This work was supported in part by National Science Council (NSC), Taiwan, ROC, under 
Contract NSC-108-2112-M-032-015.

References

	 1	 L. E. F. F. Torres, S. Roche and J. C. Charlier: Introduction to Graphene-Based Nanomaterials: From 
Electronic Structure to Quantum Transport (Cambridge University Press, Cambridge, U.K., 2014).

	 2	 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim: Rev. Mod. Phys. 81 (2009) 109. 
https://doi.org/10.1103/RevModPhys.81.109

	 3	 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. 
Firsov: Science 306 (2004) 666. https://doi.org/10.1126/science.1102896

	 4	 C. C. Liu, H. Jiang, and Y. Yao: Phys. Rev. B 84 (2011) 195430. https://doi.org/10.1103/PhysRevB.84.195430

https://doi.org/10.1103
https://doi.org/10.1126
https://doi.org/10.1103/PhysRevB.84.195430


3720	 Sensors and Materials, Vol. 32, No. 11 (2020)

	 5	 S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci: Phys. Rev. Lett. 102 (2009) 236804. https://
doi.org/10.1103/PhysRevLett.102.236804

	 6	 Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang: Phys. Rev. Lett. 111 (2013) 
136804. https://doi.org/10.1103/PhysRevLett.111.136804

	 7	 B. van den Broek, M. Houssa, E. Scalise, G. Pourtois, V. V. Afanas’ev, and A. Stesmans: 2D Mater. 1 (2014) 
021004. https://doi.org/10.1088/2053-1583/1/2/021004

	 8	 Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu: Nano Lett. 12 (2012) 113. https://
doi.org/10.1021/nl203065e

	 9	 C. N. Chen, W. L. Su, M. E. Lee, J. Y. Jen, and Y. Li: Jpn. J. Appl. Phys. 50 (2011) 060201. https://doi.
org/10.1143/JJAP.50.060201

	10	 C. N. Chen, S. H. Chang, W. L. Su, J. Y. Jen, and Y. Li: Math. Comput. Model. 58 (2013) 282. https://doi.
org/10.1016/j.mcm.2012.11.010

	11	 S. Datta: Superlattices Microstruct. 28 (2000) 253.
	12	 S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995).
	13	 R. Venugopal, Z. Ren, S. Datta, M. S. Lundstrom, and D. Jovanovic: J. Appl. Phys. 92 (2002) 3730. https://doi.

org/10.1063/1.1503165
	14	 R. Golizadeh-Mojarad and S. Datta: Phys. Rev. B 75 (2007) 081301. https//doi.org/10.1103/PhysRevB.75.081301
	15	 S. K. Chin, K. T. Lam, D. Seah, and G. C. Liang: Nanoscale Res. Lett. 7 (2012) 114. https://doi.

org/10.1186/1556-276X-7-114
	16	 A. Yazdanpanah, M. Pourfath, M. Fathipour, H. Kosina, and S. Selberherr: IEEE Trans. Electron Devices 59 

(2012) 433. https://doi.org/10.1109/TED.2011.2173690
	17	 K. S. Dy, S. Y. Wu, and T. Sprathn: Phys. Rev. B 20 (1979) 4237. https://doi.org/10.1103/PhysRevB.20.4237
	18	 D. H. Lee and J. D. Joannopoulos: Phys. Rev. B 23 (1981) 4988. https://doi.org/10.1103/PhysRevB.23.4988
	19	 C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James: J. Phys. C 4 (1971) 916. https://doi.org/10.1088/0022-

3719/4/8/018
	20	 J. A. Stovneng and P. Lipavsky: Phys. Rev. B 49 (1994) 16494. https://doi.org/10.1103/PhysRevB.49.16494
	21	 G. Kim, H. Suh, and E. Lee: Phys. Rev. B 52 (1995) 2632. https://doi.org/10.1103/PhysRevB.52.2632
	22	 A. Umerski: Phys. Rev. B 55 (1997) 5266. https://doi.org/10.1103/PhysRevB.55.5266
	23	 M. Ogawa, T. Sugano, and T. Miyoshi: Solid State Electron. 44 (2000) 1939. https://doi.org/10.1016/S0038-

1101(00)00174-X
	24	 D. Z.-Y. Ting: Microelectron. J. 30 (1999) 985. https://doi.org/10.1016/S0026-2692(99)00065-8
	25	 T. B. Boykin: Phys. Rev. B 54 (1996) 8107. https://doi.org/10.1103/PhysRevB.54.8107
	26	 Y. C. Chang and J. N. Schulman: Phys. Rev. B 25 (1982) 3975. https://doi.org/10.1103/PhysRevB.25.3975
	27	 M. Ogawa, T. Sugano, and T. Miyoshi: Physica E 7 (2000) 840. https://doi.org/10.1016/S1386-9477(00)00073-4
	28	 J. N. Schulman and Y. C. Chang: Phys. Rev. B 27 (1983) 2346. https://doi.org/10.1103/PhysRevB.27.2346
	29	 D. Z.-Y. Ting, E. T. Yu, and T. C. McGill: Phys. Rev. B 45 (1992) 3583. ht tps://doi.org/10.1103/

PhysRevB.45.3583
	30	 J. C. Chiang and Y. C. Chang: J. Appl. Phys. 73 (1993) 2402. https://doi.org/10.1063/1.353094
	31	 C. N. Chen, W. J. Luo, F. L. Shyu, H. C. Chung, C. Y. Lin, and J. Y. Wu: Mod. Phys. Lett. B 32 (2018) 1750355. 

https://doi.org/10.1142/S0217984917503559
	32	 S. Datta: Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005).
	33	 V. H. Nguyen, V. N. Do, A. Bournel, V. L. Nguyen, and P. Dollfus: J. Appl. Phys. 106 (2009) 053710. https://

doi.org/10.1063/1.3212984
	34	 Y. T. Zhang, Q. F. Sun, and X. C. Xie : J. Appl. Phys. 109 (2011) 123718. https://doi.org/10.1063/1.3599930
	35	 A. Orlof, J. Ruseckas, and I. V. Zozoulenko: Phys. Rev. B 88 (2013) 125409. https://doi.org/10.1103/

PhysRevB.88.125409
	36	 Y. Wu and P. A. Childs: Nanoscale Res. Lett. 6 (2011) 62.
	37	 B. Novakovic, R. Akis, and I. Knezevic: Phys. Rev. B 84 (2011) 195419. ht tps://doi.org/10.1103/

PhysRevB.84.195419
	38	 H. B. Ribeiro, K. Sato, G. S. N. Eliel, E. A. T. de Souza, C. C. Lu, P. W. Chiu, R. Saito, and M. A. Pimenta: 

Carbon 90 (2015) 138. https://doi.org/10.1016/j.carbon.2015.04.005
	39	 Y. Yang, G. Fedorov, S. E. Shafranjuk, T. M. Klapwijk, B. K. Cooper, R. M. Lewis, C. J. Lobb, and P. Barbara: 

Nano Lett. 15 (2015) 7859. https://doi.org/10.1021/acs.nanolett.5b02564
	40	 X. Lin and J. Ni : J. Appl. Phys. 117 (2015) 164305. https://doi.org/10.1063/1.4919223
	41	 K. Y. Li, W. J. Luo, and S. J. Wei: Appl. Sci. 10 (2020) 3991. https://doi.org/10.3390/app10113991
	42	 K. Y. Li, W. J. Luo, X. H. Hong, S. J. Wei, and P. H. Tai: IEEE Access 8 (2020) 28988. https://doi.org /10.1109/

ACCESS.2020.2972580
	43	 K. Y. Li, W. J. Luo, J. Z. Huang, Y. C. Chan, Pratikt, and D. Faridah: Appl. Sci. 7 (2017) 420. https://doi.

org/10.3390/app7040420

https://doi.org/10.1103/PhysRevLett.102.236804
https://doi.org/10.1103/PhysRevLett.102.236804
https://doi.org/10.1103/PhysRevLett.111.136804
https://doi.org/10.1088/2053-1583/1/2/021004
https://doi.org/10.1021/nl203065e
https://doi.org/10.1021/nl203065e
https://doi.org/10.1143/JJAP.50.060201
https://doi.org/10.1143/JJAP.50.060201
https://doi.org/10.1016/j.mcm.2012.11.010
https://doi.org/10.1016/j.mcm.2012.11.010
https://doi.org/10.1063/1.1503165
https://doi.org/10.1063/1.1503165
http://doi.org/10.1103/PhysRevB.75.081301
https://doi.org/10.1186/1556-276X-7-114
https://doi.org/10.1186/1556-276X-7-114
https://doi.org/10.1109/TED.2011.2173690
https://doi.org/10.1103/PhysRevB.20.4237
https://doi.org/10.1103/PhysRevB.23.4988
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1103/PhysRevB.49.16494
https://doi.org/10.1103/PhysRevB.52.2632
https://doi.org/10.1103/PhysRevB.55.5266
https://doi.org/10.1016/S0038-1101(00)00174-X
https://doi.org/10.1016/S0038-1101(00)00174-X
https://doi.org/10.1016/S0026-2692(99)00065-8
https://doi.org/10.1103/PhysRevB.54.8107
https://doi.org/10.1103/PhysRevB.25.3975
https://doi.org/10.1016/S1386-9477(00)00073-4
https://doi.org/10.1103/PhysRevB.27.2346
https://doi.org/10.1103/PhysRevB.45.3583
https://doi.org/10.1103/PhysRevB.45.3583
https://doi.org/10.1063/1.353094
https://doi.org/10.1142/S0217984917503559
https://doi.org/10.1063/1.3212984
https://doi.org/10.1063/1.3212984
https://doi.org/10.1063/1.3599930
https://doi.org/10.1103/PhysRevB.88.125409
https://doi.org/10.1103/PhysRevB.88.125409
https://doi.org/10.1103/PhysRevB.84.195419
https://doi.org/10.1103/PhysRevB.84.195419
https://doi.org/10.1016/j.carbon.2015.04.005
https://doi.org/10.1021/acs.nanolett.5b02564
https://doi.org/10.1063/1.4919223
https://doi.org/10.3390/app10113991
https://doi.org
https://doi.org/10.3390/app7040420
https://doi.org/10.3390/app7040420


Sensors and Materials, Vol. 32, No. 11 (2020)	 3721

About the Authors

	 Win-Jet Luo earned his master’s degree in engineering in 1994 and his 
Ph.D. degree in engineering in 2000 from National Chen Kung University 
(NCKU), Taiwan.  At present, he is a professor in the Graduate Institute 
of Precision Manufacturing, National Chin Yi University of Technology 
(NCUT).  His research has mainly focused on computational fluid dynamics, 
micro-electromechanical systems, ventilation, energy saving, fuel cells, and 
microsensors.  He has published more than 70 research papers in prestigious 
international journals, and he has been invited to serve as a reviewer for 
journals.  (wjluo@ncut.edu.tw)

	 Wei-Ta Chien earned his master’s degree in materials science and 
engineering in 1999 from National Taiwan University of Science and 
Technology and his PhD degree in microelectronics in 2011 from National 
Cheng-Kung University, Taiwan.  At present, Chien is an assistant professor 
in the Department of Refrigeration, Air-Conditioning and Engineering at Far 
East University.

	 Hau-Chen Yen was born in Kaohsiung, Taiwan, R.O.C., in 1964.  He 
received his M.S. degree in computer and information engineering from 
Tamkang University, Taipei, Taiwan, R.O.C., and Ph.D. degree from National 
Sun Yat-sen University, Kaohsiung, Taiwan, R.O.C., in 1992 and 2003, 
respectively.  His research interests include power electronic converters and 
their applications.

	 Chun-Nan Chen was born in Taitung, Taiwan, R.O.C., in 1963.  He received 
his M.S. degree in electrical and computer engineering from Arizona State 
University, United States, and Ph.D. degree from NCKU, Taiwan., R.O.C., in 
1989 and 2002, respectively.  His research interests include quantum physics 
and their applications.

Appendix A: Hamiltonian of Monolayer Group-IVA Elements

	 For a monolayer group-IVA element structure, the Hamiltonian with the τ
βα  orbital, which 

is calculated using the tight-binding model with the SOC effect and only nearest-neighbor 
interactions, can be written as

	 ( ) ( )monolayer tb socH H H= +k k ,	 (A1)

where Htb is the tight-binding Hamiltonian and Hsoc is the SOC Hamiltonian.
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	 The tight-binding Hamiltonian Htb with orbital ordering { , , , }A B A Bα α α α↑ ↑ ↓ ↓  and α (= {z, y, x, s}) 

can be expressed in the 16 × 16 matrix form as

	
0

( )
0
tb

tb
tb

H
H

H

↑↑

↓↓

 
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where
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k is a wave vector (k⊥, ||k ), θ is the angle between the bond and the z direction, a ( 3 b= ) is the 
lattice constant, b is the bond length projected on the layer plane, and a total of five interaction 
parameters exist, namely, Δ, Vppσ, Vppπ, Vspσ, and Vssσ.  Δ is related to the on-site energy 
difference between the s and p orbitals, while the remaining four parameters represent the 
nearest-neighbor interactions.

	 The SOC Hamiltonian HSOC with orbital ordering { , , , }A B A Bα α α α↑ ↑ ↓ ↓  and α (= {z, y, x, s}) can 

be expressed in the 16 × 16 matrix form as

	 soc soc
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soc soc

h h
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where σx, σy, and σz are the Pauli spin matrices and ξ0 is the strength of the SOC effect.  The 
parameters in this appendix are shown in Tables I and II of Ref. 4.

Appendix B: Hamiltonian of Zigzag-edge Group-IVA Nanoribbon

	 The z4ANR Hamiltonian, which is calculated using the tight-binding model with the SOC 
effect and only nearest-neighbor interactions, in the | , ,k j τ

βα⊥ > basis can be written in the 
N × N block matrix form as ( j = 1, 2, ..., N)
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where h1 and h2 are 16 × 16 matrices with orbital ordering { , , , }A B A Bα α α α↑ ↑ ↓ ↓  and α (= {z, y, x, s}).  

	 The h1 matrix can be written in the 16 × 16 matrix form as

	 1 ( )tb soch h k H⊥= + ,	 (B2)

where HSOC is given by Eq. (A4), htb has basically the same form as Htb in Eq. (A2), but Ti(= 1–5) 

must be changed to T1 = T3 = 2T4 = 4T5 = 12cos
2

k a⊥  and 2
12 sin
2

T i k a⊥= .

	 The h2 matrix can be written in the 16 × 16  matrix form as

	 2
2

2

0

0

h
h

h

↑↑

↓↓

 
 =
  

,	 (B3)

with

	 ( )
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

A A A
zz zy zs

A A A
yz yy ys

A
xx

A A Aor
sz sy ss

h h h

h h h

h

h h hh↑↑ ↓↓

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

,	 (B4)
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Appendix C: Hamiltonians of Zigzag-edge Group-IVA Nanoribbon Between 
Adjacent Layers

	 The Hamiltonians Hσ,σ and Hσ,σ±1 of a z4ANR with N zigzag lines, which are calculated 
using the tight-binding model with the SOC effect and only nearest-neighbor interactions, in the 
| , ,j τ

βσ α > layer basis can be written in the N × N  block matrix forms ( j = 1, 2, ..., N)

	

1 2

2 1 2

, 2 1

2

2 1

0 0

0
0 0

0
0 0

g g

g g g
H g g

g
g g

σ σ

+

+

+

 
 
 
 =  
 
 
  







  



  	 (C1a)

and

	 , 1

0 0 0
0 0 0
0 0 0

0 0
0 0 0

z
z

H z

z

σ σ

±

±

± ±

±

 
 
 
 =
 
 
  







  



,	 (C1b)

where each of the block matrix elements is 16 × 16-dimensional, in the orbital ordering 

{ , , , }A B A Bα α α α↑ ↑ ↓ ↓  and α (= {z, y, x, s}).

	 The g1 matrix can be written in the 16 × 16 matrix form as

	
1

0

0
soc

g E
g H

g E

↑↑

↓↓

 −
 = +
 − 

,	 (C2)

where E is the injected electron energy, HSOC is given by Eq. (A4), and

	 ( )

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

org↑↑ ↓↓

 
 
 
 
 

∆ =  
 
 
 
 

∆  

.	 (C3)
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	 The g2 matrix can be expressed in the 16 × 16 matrix form, which has the same form as the 
h2 matrix, i.e., g2 = h2.
	 The z± matrix can be written in the 16 × 16 matrix form as

	
0

0

z
z

z

↑↑
±

± ↓↓
±

 
 =
  

,	 (C4)

with
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0 0 0 0

A A A A
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B B B B
xz xy xx xs

B B B B
sz sy sx ss

z z z z

z z z z

z z z z

z z z z
z

z z z z

z z z z

z z z z

z z z z

↑↑ ↓↓
±

 
 
 
 
 
 
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 
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


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

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,	 (C5)

where
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