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 The rapid growth of passenger flows has brought a series of challenges to the environment 
and safety management of tourist attractions.  It is vital to establish an accurate passenger flow 
prediction model to reduce the risks associated with human flows.  Owing to the limitation 
of a single data source, the existing research on the prediction of tourist flows in scenic 
spots ignores the impact of public transport passengers on the internal tourist flow in scenic 
areas.  The prediction model lacks the learning process of data samples, and the ability of 
generalization and self-study is weak.  In this paper, we propose a new method of predicting 
passenger flow in scenic areas based on a convolutional neural network and long short-term 
memory (CNN-LSTM) hybrid neural network (HNN) model, which considers the multisource 
traffic flow around a scenic area.  It uses a series of HNNs to mine the temporal and spatial 
correlation between the passenger flows from multiple sources and solves the problem of data 
stability dependence.  The time series of the passenger flow in the study area was designed 
and extracted on the basis of the spatial analysis of South Luogu Lane in Beijing, and the input 
structure was constructed by combining the multisource traffic passenger flow dimension.  This 
model for predicting passenger flow in scenic areas based on CNN-LSTM provides a reference 
for the comprehensive application of multisource data in scenic areas and has high accuracy and 
robustness.

1. Introduction

 Passenger flow prediction in scenic areas plays a key role in their development.  Accurate 
passenger flow prediction facilitates relevant departments to carry out safety risk management 
and control and improve the safety management of scenic areas.(1)

 With the continuous improvement of computer performance, the world has entered the era of 
big data, and the mining of tourism data has also transitioned from the collection and analysis of 
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sparse samples to multisource big-data comprehensive analysis.  However, the existing research, 
which ignores the impact of the spatiotemporal distribution of public transport passenger flow 
on the passenger flow inside a scenic area, is mostly based on the single-source monitoring 
data of passenger flow, mainly relying on the manual investigation or installation of fixed 
information collection equipment for data acquisition.  The method for gathering and evaluating 
the passenger flow in urban tourist attractions should go hand in hand with the changes in 
passenger flow inside the scenic area.(2–5)  Therefore, in this paper, we consider fusing the 
prediction of multisource traffic passenger flows around scenic areas and passenger flows in the 
core area.  Buses, subways, taxis, and shared bicycles are the main research objects of scholars 
of passenger flows because these are the most important modes of transportation in cities.  The 
related research of scholars has mainly focused on the large-scale passenger flow distribution 
and passenger behavior pattern mining, while there have been few studies on passenger flow in 
scenic areas using traffic passenger flow data.  For example, some scholars have used Beijing’s 
transportation card data to analyze passenger space–time characteristics.(6)  Some scholars have 
used the data obtained by bus card swiping in London and used passenger portraits to explore 
the patterns of resident public interchange and travel.(7)

 In terms of prediction methods, since the passenger flow in a scenic area is susceptible to 
many external factors such as weather and holidays, it has complex nonlinearity and volatility, 
so it is difficult to capture the inherent laws governing changes.  However, the existing 
forecasting methods of passenger flow are mostly based on the idea of mathematical statistics, 
which mostly establish a subjective model of the sequence in advance and then make predictions 
on the basis of the subjective model, such as a time series analysis or Kalman filtering 
model.(8,9)  For example, some scholars have predicted passenger flow in scenic areas using the 
autoregressive integrated moving average (ARIMA) model based on monthly passenger flow 
data obtained over two years in the Huangshan scenic area.(10)  Some scholars have constructed 
a combined model by combining a grey model with a Markov chain to forecast highway 
passenger traffic.(11)  However, these methods still lack the learning process of data samples 
and do not have the ability of generalization and self-learning.  It is thus difficult to accurately 
predict the flow of tourists in a scenic area.
 In this paper, we propose a method of predicting passenger flow in a scenic area that is based 
on a hybrid neural network (HNN) model combining a convolutional neural network (CNN) 
and long short-term memory (LSTM) with the support of multisource traffic data.  We hope 
that this model will be used to reduce the dependence of traditional prediction models on data 
stability and improve prediction accuracy.  
 In what follows, we propose a passenger flow prediction method for scenic areas based 
on CNN-LSTM and introduce the algorithm structure and input format.  Afterwards, taking 
South Luogu Lane in Beijing as an example, multisource data are normalized according to the 
spatial distribution characteristics of the study area.  Then, we verify the prediction results 
of CNN-LSTM and a comparative algorithm through model evaluation indicators and time 
distribution curves.  Finally, we conclude the paper with a discussion of our research.
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2. Methodology

2.1 HNN

 A single neural network has different advantages in nonlinear dynamic modeling and 
application.  To make better use of the advantages of highly nonlinear, adaptive, and self-
learning neural networks with different structures, an HNN concept has been proposed.  An 
HNN is related to a single type of neural network.  It combines multiple types of neural 
network and uses structural advantages to compensate for the disadvantages of each network, 
thereby reducing the training time.  This makes the network converge faster and improves the 
performance of its applications.
 An HNN mainly includes two structures: series and parallel networks.  In the series network, 
multiple neural networks with different structures are connected in series, and the networks of 
separate structures are connected in sequence according to the series hierarchy.  The input and 
output dimensions at the two layers are the same.  The data are transferred in layers until the 
final layer receives the final output.  In the parallel network, multiple networks with different 
structures are connected in parallel.  The input dimensions of all networks are the same, that 
is, all networks perform parallel operations on the input data, and then the output results of 
different dimensions of different networks are integrated.  Finally, the output is obtained.
 At present, there are many different HNN structures.  Scholars have proposed different 
network models for specific application scenarios.(12–14)

2.2 CNN-LSTM forecasting model

2.2.1 Framework

 A CNN consists of an input layer, a convolutional layer, a pooling layer, a fully connected 
layer, and an output layer.  Figure 1 displays the structure.  There are three main advantages of 
a CNN:

(i) Weight sharing.  Since the parameters of the convolution kernel are all shared, the 
number of parameters is reduced and the network learning efficiency is improved.

(ii) Downsampling.  The pooling layer reduces the network feature dimension after the 
convolutional layer and improves the calculation efficiency.

Fig. 1. (Color online) One-dimensional CNN structure.



3910 Sensors and Materials, Vol. 32, No. 11 (2020)

(iii) Local area perception.  The convolution kernel performs local perception and gradually 
extracts high-dimensional features in layers, which improves the generalization ability 
of the model.

 An LSTM network has been proposed as an improved recurrent neural network (RNN).  It 
not only can effectively avoid the problem of gradient disappearance but also has a significant 
effect on processing and predicting time series with longer intervals and delayed events.  The 
internal structure of the LSTM layer is shown in Fig. 2.  The input is a time sequence x = (x1, x2, ..., 
xt) of t moments and the output is a hidden layer sequence h = (h1, h2, ..., ht).  At each iteration, 
the hidden value ht–1 of the previous moment is input together with the input value xt of the 
current moment, thereby transmitting information from previous multiple moments.(15–20)

 A CNN and LSTM are mainstream algorithms for deep learning.  A CNN is suitable for 
extracting local features of data and abstracting them into high-level features, while LSTM 
is more suitable for time expansion, and its long-term memory function is more suitable for 
processing time series.  Therefore, in this paper, we propose a hybrid model for passenger flow 
prediction in scenic areas that is based on a CNN-LSTM method, which gives the model the 
ability to extract potential features existing in multisource time series data in scenic areas.  In 
the model framework, a space–time data set is first constructed from multisource traffic data 
around the scenic area and passenger flow data obtained by laser monitoring in the core of the 
scenic area, and then the feature vectors are input into the LSTM network in time series so as 
to realize the passenger flow forecast in the core area of the scenic area.  The overall model 
structure is shown in Fig. 3.

2.2.2 Input structure

 To avoid influence on the time series in the convolution process and separate the feature 
extraction from the time series prediction, the CNN-LSTM HNN takes a one-dimensional 
time series vector as the input of the network.  To meet the demand for the early warning 
of congestion in scenic areas, the total number of passengers in the scenic area needs to be 
predicted on the same day from 3:00 am to 10:00 pm, and the estimated passenger flow must be 
predicted every 15 min.  Therefore, when constructing a sample, it is first necessary to arrange 

Fig. 2. Internal structure of LSTM.
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the normalized data in a sequence according to the time course and form a two-dimensional 
data matrix, and then construct the data set by sliding window interception, where the predicted 
label here is the number of passengers in the scenic area at that moment.  The constructed input 
format is shown in Fig. 4, where t is a specific time with an interval of 15 min, and t + n is the 
time n interval of 15 min after time t.

2.3 Evaluation indexes

 To better analyze the prediction effect of the CNN-LSTM passenger flow prediction model 
under different parameter settings and compare it with a comparative algorithm, we use the 
mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square 
error (RMSE) as indicators for evaluation.  The three indicators are defined in Eqs. (1)–(3), 
where Yt,i and Yp,i represent the true and predicted passenger flows at time i, respectively.(21–25) 
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Fig. 3. (Color online) Passenger flow prediction structure based on CNN-LSTM network.
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3. Data and Model Results

3.1 Study area

 The historical and cultural neighborhood of South Luogu Lane is a scenic area in Beijing.  
The main road is South Luogu Lane, which runs from north to south.  Its north end is adjacent 
to Gulou East Street and the south end is next to Di’anmen East Street.  Because the scenic 
area is located at the center of Beijing, the transportation is convenient, and there are many 
buses and subway lines in this area.  Its surrounding bus stations include eight stations, such 
as Luogu Lane Station, Gulou Station, Di’anmen Wai Station, and two subway stations, South 
Luogu Lane Station and Shichahai Station.  Although bikes and taxis are prohibited inside 
the scenic area, tourists can walk to the surrounding main roads along any lane to take public 
transportation.
 Therefore, to fully consider the spatial distribution of public transportation facilities in 
South Luogu Lane, in this study, a rectangular study area covering an area of about 1 km2 was 
selected, with the central area of South Luogu Lane as the center, Di’anmen Wai Street and 
Jiaodaokou South Street at the east and west edges, and Gulou East Street and Di’anmen East 
Street at the south and north edges, respectively.  The red rectangle in Fig. 5 represents the study 
area, the blue markers indicate the bus stations, and the brown markers indicate the subway 
stations.

3.2 Data source and preprocessing

 The research data include bus card data, subway card data, taxi order data, bike-sharing 
order data, and laser monitoring data of the passenger flow in the core area of South Luogu 

Fig. 4. Input data structure of CNN-LSTM network model.
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Lane from August 1 to August 30, 2018.  On average, there are 22 million records of bus card 
swiping, 23 million records of subway card swiping, and about 1.4 million orders of bike sharing 
per day.  The basic situation of the experimental data is shown in Table 1.  The multisource 
traffic data can be divided into order and card data.
 For the order data, the same passenger information cannot be extracted from the taxi and 
bike-sharing order data, and similarly, the same information cannot be extracted from the bus 
and subway card data.  Therefore, the transfer behavior cannot be identified from the individual.  
Moreover, taxi and bike-sharing trips are generally independent with almost no transfer using 
the same vehicle, so we do not consider the transfer factor for order data.  We extract the data 
within the study area from the entire city of Beijing through the coordinates of the starting point 
of the order and its corresponding time in order to extract time series data of taxis and bike 
sharing within the study area.
 Because of the complex environment of the study area (in addition to the South Luogu 
Lane scenic area, there are many schools, hospitals, and residential areas), it is impossible to 
ultimately determine whether individual passengers have entered the scenic area.  Therefore, 
potential relationships can only be analyzed by time-series changes in passenger f low.  
However, owing to multiple factors such as the complex environment of the urban scenic area, 
the time series of bus and subway passenger flows still have a large number of passengers who 
are not going to the scenic area.  Thus, we establish a connection based on the card numbers in 
the bus and subway data, and retrieve the card records of the same number in the two modes of 
transportation and extract the travel chain to exclude passengers passing through the stations in 
the scenic area instead of entering the scenic area.  The data processing flow is shown in Fig. 6.  
The specific steps are as follows:

Fig. 5. (Color online) Study area around South Luogu Lane.
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 Step 1: Filter out card records within the study area.
 Step 2: Extract the travel chain of bus and subway journeys.
 Step 3: Exclude transfer credit card records.
 Step 4: Count the passenger flow of each station at 15 min intervals.

3.3 Results and interpretation

 In this paper, the 25 days of data from August 1 to August 25, 2018 are used as the training 
data set, and data from August 26 to August 30, 2018 are used as the test data set.  The test 

Table 1 
Basic situation of experimental data.
Data type Description Format Volume
Bus card data Data on using IC card for getting on and off the bus .csv 60G
Subway card data Data on using IC card for getting on and off the subway .csv 70G
Taxi order data Data on the location of passengers taking taxis .csv 50G
Bike-sharing order data Data on the borrowing and returning of shared bikes .csv 10G
Laser monitoring data Monitoring data of passenger flow in interior of scenic area .csv 5G

Fig. 6. (Color online) Flow chart of card data processing.
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data set is divided into five subsets in units of days, which is convenient for evaluating the 
performance and stability of the model.
 The model is optimized by stochastic gradient descent.  The learning rate is 0.001, the 
number of iterations is 100, and the loss function is the mean square error (MSE).  After test 
comparison, the optimal structure and parameter configuration are shown in Table 2.  The 
input step is set to 10, which is equivalent to using the first 10 samples to predict the next 
value.  Therefore, the input form is a two-dimensional vector with dimensions of (10, 25).  
Data first enter the CNN part.  This part was designed as four convolutional and four pooling 
layers.  Finally, the flattening layer compresses the three-dimensional vector array into a one-
dimensional vector array of length 544, which was extracted as a global feature.  The LSTM in 
this study consists of three LSTM layers and a fully connected layer.  The numbers of LSTM 
units in the layers are 32, 64, and 128.  Each hidden layer of the model adds dropout constraints, 
and the optimization function uses the Adam algorithm.
 In addition, we select two classic time-series prediction methods (ARIMA and LSTM) 
for comparative experiments, and compared the forecasts based on evaluation indicators and 
curves.  In this paper, the ARIMA algorithm is implemented using the auto.arima() function 
in R language, where the model parameters p, d, and q are automatically obtained from the 
Akaike information criterion (AIC) and the Bayesian information criterion (BIC).  The LSTM 
comparison model is tested with multiple sets of parameters.  We use the optimal multilayer 
LSTM network model, including two LSTM layers and one fully connected layer.  The neuron 
structure of the model is 32 × 64 × 128 × 8.
 The results of the predicted curves of the three models in the five test sets are shown in Fig. 7.  
The blue, yellow, green, and red curves in each figure represent the actual curve for the day and 
the ARIMA, LSTM, and CNN-LSTM prediction curves, respectively.  For the fundamental 
passenger flow law, both the neural-network-based model and the traditional time-series model 
can learn some characteristics and predict the passenger flow in the future.  However, from the 

Table 2 
Model structure and parameter configuration.
Input (10 × 25)
Layer (type) Parameter 
conv1<23,32> 128
Maxpool(1) 0
conv1<21,64> 6208
Maxpool1(1) 0
conv1<19,64> 12352
Maxpool1(1) 0
conv1<17,32> 6176
flatten(544) 0
lstm(32) 73856
lstm(64) 24832
lstm(128) 98816
FC<1>(1) 129
Input(1)
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qualitative performance of each model, the CNN-LSTM curve is the most similar to the actual 
curve shape in all test sets, with only an oscillation phenomenon causing the curve to deviate 
from the actual trend.  ARIMA cannot adequately identify the changes in passenger flow, 
resulting in a significant deviation from the actual curve on all five days.  The prediction curve 
of LSTM is a significant improvement over that of ARIMA except for the first test set, but 

Fig. 7. (Color online) Comparison of prediction results on August (a) 26, (b) 27, (c) 28, (d) 29, and (e) 30.

(a) (b)

(c) (d)

(e)
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compared with the actual curve, it is shifted to the left.  Therefore, according to the qualitative 
observation, the CNN-LSTM model has the highest prediction accuracy.
 The experimental results of the three evaluation indicators of the prediction models are 
shown in Table 3.  In order to make the evaluation indicators more intuitive, we calculated 
the indicators by the denormalization of the predicted output values.  The results show that 
CNN-LSTM has better MAE, MAPE, and RMSE in all test sets than the other benchmark 
models.  The RMSE of the ARIMA model in the five test sets exceeded 1000 people, and 
the MAPE reached 2.29 on August 30.  Because this model can essentially only capture the 
linear relationship, it is difficult to characterize the changes in a complex nonlinear sequence.  
ARIMA is mainly suitable for time series with stable data sets, and there are strict requirements 
on the statistical properties of the research objects.  However, the passenger flow data in an 
urban scenic area reflects the operation status of the area, and the daily passenger flow will 
produce irregularities depending on the date, weather, and other factors.  The fluctuation of the 
passenger flow time series will also produce anomalous subsequences owing to surrounding 
activity events, so the experimental accuracy of ARIMA is lowest.  LSTM performs better than 
ARIMA, but the prediction accuracy is low on August 26, and the indicators of each data set 
have some fluctuations.  As a nonlinear model, LSTM can solve the long-term dependence of 
time series data through multiple cell states to a certain extent and retain the long- and short-
term fluctuation rules of the passenger flow in the scenic area.  However, LSTM can only 
fit single-source data and is unable to mine the potential impact of the surrounding traffic 
passenger flow because it lacks the ability to merge multisource data.  MAE for CNN-LSTM 
is on average 60% larger than that of LSTM, and the fluctuation range of the three indicators in 
each training set does not exceed 20%.  CNN-LSTM uses the feature extraction ability of the 
convolution structure and fully excavates the correlation of the multisource passenger flow in 
the scenic area.  Therefore, the experimental accuracy is relatively high.

Table 3
Comparison of model prediction results.
Data Model MAE MAPE RMSE

August 26
ARIMA 1574.95 0.406 1756.29
LSTM 2118.70 1.074 2596.03

CNN-LSTM 318.67 0.156 72.56

August 27
ARIMA 1241.12 0.351 1561.72
LSTM 640.72 0.608 1015.13

CNN-LSTM 418.37 0.131 63.73

August 28
ARIMA 2456.44 1.157 2143.21
LSTM 825.17 0.185 1218.25

CNN-LSTM 260.84 0.290 24.28

August 29
ARIMA 2791.58 1.642 3297.56
LSTM 588.59 0.304 912.03

CNN-LSTM 218.36 0.133 37.65

August 30
ARIMA 3813.10 2.291 4255.87
LSTM 482.95 0.348 638.57

CNN-LSTM 247.41 0.417 38.42
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4. Discussion and Conclusion

 In the context of today’s global call for green travel, public transportation has become the 
first choice for tourists.  Public transportation, subways, taxis, and shared bikes are the main 
components of public transportation for urban passengers.  Various data collection systems 
can be used for dynamic analysis.  Extracting potential information does not only grasp the 
passenger flow status of a scenic spot in real time but also provides a basis for decision making 
for the evacuation of passenger flows on important holidays and in emergency responses.  In 
this article, we use South Luogu Lane, a famous historic and cultural district in Beijing, as 
an example and propose a method of predicting passenger flow in scenic spots.  This method 
identifies relevant public transportation facilities in a scenic spot through the spatial analysis 
of the scenic spot, then normalizes the spatiotemporal processing of multisource public 
transportation data, and designs and constructs a passenger flow forecast for a CNN-LSTM 
hybrid network.  This model can provide important early-warning indicators for passenger flow 
management in the South Luogu Lane scenic area.
 Compared with other traditional passenger flow prediction models, the prediction model 
designed in this article has the best performance on various indicators, improves the accuracy 
of passenger flow prediction, and can provide a basis for decision making in scenic area 
management.  The advantages of the passenger flow prediction method proposed in this article 
are as follows:

(i) The use of multisource public transportation data around the scenic area makes up for 
problems, such as the sparseness of a single data source, and enhances the continuity 
and comprehensiveness of the data.

(ii) Continuous one-dimensional feature vectors are constructed from multisource 
data using a time-sliding window as the input.  This makes full use of the potential 
advantages of the CNN model for feature extraction, so that more useful information 
contained in the data can be mined.

(iii) The feature vector extracted by the CNN, which takes into account the time sequence 
of multisource traffic as the input of the LSTM network model, can be used to better fit 
the timing of complex passenger flow data in the scenic area and the complicated high-
dimensional nonlinear relationship.

 Owing to the interference of seasonal factors, external shocks, economic cycles, and 
other factors, the short-term or medium–long-term periodic passenger flow has strong non-
stationarity characteristics, and different types of scenic area are affected by different factors.  
Therefore, in follow-up research, the impact of various transportation modes on different 
types of scenic area should be explored, and a multiscale input model structure, which can 
improve the real-time performance of passenger flow prediction while ensuring the accuracy 
of prediction, should be designed.  By using data transmission and calculation technology, this 
study can have more significance for passenger flow prediction and early warning in a variety 
of crowded places.
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