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	 For the intelligent manufacturing field, after finishing the cutting process, a metal surface 
may have various defects such as scratches, residues, and dirt.  However, the conventional 
method of determining defects has the disadvantages of being time-consuming and expensive.  
In addition, it is necessary to consider the cost of collecting samples and the labor cost when 
practically collecting samples from industries.  Therefore, in this study, we optimized the 
determination of the defects of the production component by a deep learning (DL) model 
with a few samples and used an image sensor to take pictures of the specific area of the 
component.  Meanwhile, an entropy calculation method is proposed to determine the most 
suitable kernel size of a convolution layer.  We analyzed and established a deep learning model 
to determine whether the finished products of a vision inspection machine have defects using 
only a few samples.  We compared the pros and cons of DarkNet-53, which is a convolutional 
neural network (CNN) that is 53 layers deep, and AlexNet, which is a deep CNN, with the 
DenseNet-201 model in the experiments.  The obtained experimental results indicate that 
the proposed method can effectively increase the rate of recognition between defective and 
nondefective samples and reduce the training cost.  The results of this paper may contribute to 
the development of a novel diagnostic technique and also be helpful for the intelligent manufacturing 
industry. 

1.	 Introduction

	 Nowadays, manufacturers are devoting much of their effort to enhancing product quality and 
production efficiency by especially visual inspection before shipment.  If this type of inspection 
is carried out by manual measurement, it will not only require considerable labor, but it may 
also result in inaccurate testing results and affect the quality of the shipped products owing to 
human factors such as fatigue and manual measurement errors.  Therefore, automated optical 
inspection has started to be increasingly used.  Nowadays, deep learning (DL) is increasingly 
used as it overcomes hardware limitations.  In particular, conventional image processing 
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combined with DL detection is becoming increasingly popular.  Integrating a DL model 
with existing optical inspection systems is a technical breakthrough relieving a bottleneck of 
defect inspection systems in the manufacturing industry, and it also achieves the objective of 
advancing manufacturing processes.  Given the trend of smart manufacturing, how to quickly 
adjust to new and complex manufacturing processes has become a very important subject.  In 
studies of this subject, industrial machine vision inspection and DL are combined.  Results of 
such studies are expected to lead to the development of a visual inspection technology with high 
adaptability to overcome the bottleneck of current image processing technologies and to the 
advancement of manufacturing processes.
	 The modern image classification technology in DL provides a new solution for automated 
image inspection and it can enhance the accuracy of image determination.(1,2)  In addition, the 
application of artificial intelligence (AI) has become possible with the significant advances of 
graphic processing unit (GPU) hardware.  Some renowned DL frameworks, such as DarkNet,(3) 
TensorFlow,(4) and PyTorch,(5) have also been developed, and they have facilitated technological 
advancements in the DL domain.  Many studies adopt convolutional neural network (CNN) 
models to automatically classify different images.(6)  On the basis of the DL structure, CNN 
models are easy to train and can automatically search for useful features.(7,8)  DL technology 
has been used to inspect and determine various types of image defect, and it has been proven to 
be a very effective approach.(9)

	 In addition to discussing the effectiveness of automated feature extractors in DL, their 
efficiency must also be considered.  The well-known feature extractors at present include 
Resnet-101, Resnet-152, DarkNet-19, and DarkNet-53, which are deep residual networks.(10)  The 
model structure of DarkNet-19(11) is similar to that of the Visual Geometry Group (VGG).(12)  
DarkNet-19 is a CNN with 19 convolutional layers and 5 maxpooling layers.  DarkNet-53 
mixes elements of DarkNet-19 and Resnet.(10)  DarkNet-53(13) is much more effective than 
DarkNet-19,(11) and its efficiency is about 1.5 times higher than that of Resnet-101.(14)  In cases 
where DarkNet-53 and Resnet-152(10) have the same effect, DarkNet-53 has efficiency that is 
twice as high as that of Resnet-152.(15)  At the same time, DarkNet-53 achieves the highest 
calculation speed in terms of floating points per second among the network structures, which 
indicates that its network structure can make the best use of GPU.(13)  Deep networks have 
convergence difficulty.  Many researchers have changed the activation function in order to 
prevent gradient disappearance, but issues still remain.(16,17)  For example, activation functions 
such as Type-2 Fuzzy(18) and ReLTanh(19) have been adopted.  However, the disappearance 
or explosion of the gradient is probably due to the high nonlinearity of the deep network.  
DarkNet-53, Resnet-101, and Resnet-152 use the residual learning method to solve the problem 
of accuracy that increases first and then saturates, but this also results in redundant networks.(20)  
Therefore, in this study, we focus on the determination of the defects of the product using 
the DL model with a few samples and also use an image sensor (ex: camera) to take pictures 
of a specific area of the product and propose a parameter adjustment method using only a 
few samples.  This method determines the minimum number of network layers used and the 
minimum kernel size of a CNN to solve the problems of redundant network layers and selecting 
the optimal kernel size to enhance the recognition rate of products and shorten the model 
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training time.  It is hoped to upgrade the diagnosis technology for intelligent manufacturing 
industry and decrease the cost of production.

2.	 Methods

	 The research process proposed in this research is shown in Fig. 1.  The experimental setup is 
introduced in Sect. 2.1, which includes the description of hardware and inspected objects for the 
machines, the specifications and photo shooting angles of the imaging equipment, the training 
computer of DL, and the specifications for the implemented computers.  In Sect. 2.2, the number 
of images and image preprocessing methods used by the DL model are described.  In Sect. 2.3, 
the principles of DarkNet-53 and the procedures for improving the model are described.

Fig. 1.	 (Color online) Flowchart of experiment.
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2.1	 Experimental setup

2.1.1	 Industrial automation equipment

	 Firstly, we discuss the hardware structure of the 506 Vision Inspection Machine.  A photo 
of the machine is shown in Fig. 2.  The machine includes 13 inspection and backup stations 
(reserved for use), an automatic detection feeding station, a transfer station (transfer components 
from station to station using the turntable), and the station for separating normal and defective 
materials.  In this research, we focus on one of the distinctive stations named the small end-
face vision inspection station.  The appearance of the inspected object and its position detected 
by the small end-face vision inspection station are shown in Fig. 3.  This figure also shows a 
diagram of the mechanism of object inspection.  As this component is viewed from the direction 
of the smaller diameter end (area enclosed in red dashed line), it is named the small end face.  
The red plane of the component in the figure is the area inspected by the small end-face vision 
inspection station.

Fig. 2.	 (Color online) 506 Vision Inspection Machine.

Fig. 3.	 (Color online) The area enclosed in a red dashed line is the small end-face portion of component 506.
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2.1.2	 Image-capturing device

	 The small end-face vision inspection station is used to determine the defects in the two 
planes and inside the holes of the small end face of component 506, and it takes multiple 
images at different light angles and focal distances.  The small end-face vision inspection 
station includes mechanical moving parts and machine vision inspection equipment parts.  The 
movement control of mechanical parts and two CCD cameras are integrated with the serial port 
built-in CPU module (KV-3000; KEYENCE) and programmable logic controller (PLC); the 
vision inspection machine structure is shown in Fig. 4.  
	 The vision inspection machine structure has the following mechanical movement 
components: two-step motors, a coupling device, a circulation system, a circulation fixture 
base, a guideway, a reed switch, and a fixture pallet.  This structure controls the movement of 
the components and the light source through the collaboration of the motors and circulation 
system.  Each component is irradiated by the ring light at three different angles, and the height 
of the component is adjusted after taking the photos of the top surface of the component at 
three different light source angles, and the focal distance of the top CCD camera (CCD1) is 
then adjusted with respect to the lower surface portion of the component.  At this moment, 
the ring light is adjusted again to take photos of the lower surface portion of the component at 
three different light source angles.  At the same time, the side CCD camera (CCD2) also takes 
separate photos of the side of the hole.  After all the images are taken, the component is moved 
back to the fixture pallet and allowed to standby for subsequent operations.

Fig. 4.	 (Color online) Vision inspection machine structure.
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	 For the vision inspection machine, we choose low-noise, high-sensitivity CCD cameras for 
imaging, and we use the standard interface GigE of industrial cameras for high-speed video 
transmission.  We control the PLC transmission via Ethernet.  We detect defects in this study by 
observing collision traces or scratches on the plane; thereby, we choose a ring light source that 
can highlight the plane features, and the types of defect are distinguished by taking photos at 
different light source angles.  The brightness of the light source is controlled by the light source 
controller.  The specifications of the vision inspection machine components are shown in Table 1.  
The schematic diagram for the height adjustment of the light source and the movement of the 
CCD cameras of the small end-face vision inspection station is shown in Fig. 5.  In this figure, 
the height of the ring light source is adjusted to three levels, namely, (a) high, (b) medium, and (c) 

Table 1
Specifications of vision inspection machine components.
Component Manufacturer Specification
Charge-coupled device (CCD) Basler acA1300-75gm
Lens 1 of CCD1 VS Technology 50 mm TV lens
Lens 2 of CCD2 VS Technology 1.0 × 652 mm fixed ratio lens
Ring light High Bright Tech DLR2-45-070-2-W-24V
Light source controller High Bright Tech PC-24V60W-4-S
Operating system Microsoft Windows 7 32 bit

Fig. 5.	 (Color online) Schematic diagram for height adjustment of light source in small end-face vision inspection 
station.

(a) (b) (c)

(d) (e) (f)
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low.  CCD1 captures images of the top of component 506; after completing the above procedure, 
CCD2 is used to capture images of the side of the component.  Then the height of the ring light 
source is adjusted to three levels, namely, (d) low, (e) medium, and (f) high, and CCD2 captures 
images of component 506 at different focal distances.  In this study, we only use the images 
captured by CCD1 for model discussion and thus only three images are processed.

2.1.3	 Description of training and recognition equipment

	 The specifications of the model training equipment used in this study are listed in Table 2, 
mainly including two NVIDIA TITAN V graphics cards to speed up the training process of the 
model.  The specifications of actual recognition equipment on the production line are shown 
in Table 3.  These specifications are for the model of respective inspection stations performing 
inspection for the defects of component 506.  Therefore, the memory is designed to be relatively 
large to support the GPU and multithreading to accelerate the calculation in actual execution.

2.2	 Image data preprocessing

	 A total of 430 × 3 images are initially collected; here, 3 are the images collected at three 
different focal distances.  As the images collected at three different focal distances must be 
considered, in this research, we adopt the approach of image fusion to reduce the burden on 
the model.  In the fusion approach, three images are fused and then the total number of images 
is divided by three, so the number of images at this time is 430.  Among the 430 images, 274 
showed no defects and 156 showed defects.  We then perform data augmentation to reduce the 
validation loss during the training and the overfitting problem, which is particularly useful 
for small sample data.(21,22)  However, in this study, we discuss the model design with only a 
few samples; thus, we only use random rotation and rescaling.  We also consider the balance 
between defect-positive and defect-negative samples.  After the samples are balanced, a total 
of 548 images are used as data sets for image training, in which there are 274 defect-positive 
and defect-negative images.  Moreover, the recognition rates of DarkNet-53 and AlexNet are 
compared with that of DenseNet201 in order to retain the meaning of the original model and 
unify the standard.  Therefore, the 548 images are transformed into the corresponding models 
of DarkNet-53 (25 × 256), AlexNet (227 × 227), and DenseNet201 (256 × 256).

Table 3
Computer specifications of model for actual execution.
Type Model No.
CPU INTEL i9-9900K
Random access memory 16 GB DDR4-2666 x4

Storage capacity 512 G/M.2 PCIe 2280
HDD 1 TB

Graphics card ROG-STRIX-RTX2060-
O6G-GAMING

Table 2
Computer specifications of training model.
Type Model No.
CPU Intel i9-9820X
Random access memory 8 GB DDR4-2666 x4

Storage Capacity 1T/M.2 PCIe 2280
HDD 4 TB

Graphics card NVIDIA TITAN V x2
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2.3	 Network structure improvement

	 This research mainly utilizes DarkNet-53.  The two most important parts of DarkNet-53 
are the convolution layer and Resnet.  The convolution layer is for extracting features or 
compressing the number of features to reduce the amount of calculation and the number of 
parameters for the model, and Resnet is used to solve the degradation problem in the deep 
network.  From experience, we found that the depth of the network has a significant impact on 
the performance of the model.  When the number of network layers is increased, the network 
can perform and extract more complex feature patterns.  Therefore, better results can be 
achieved with deeper network models in theory, but the accuracy of the network becomes 
saturated or even decreases with a deeper network, which is the degradation problem.  Resnet 
uses the residual learning method to solve the degradation problem.  The accumulation layer 
only performs identity mapping at this time even when the residual is 0, which is equivalent to 
a shortcut connection in the circuit; therefore, Resnet can inhibit the decrease in accuracy due 
to multiple layers of the deep network.  In general, the residual value is smaller and the level 
of learning difficulty is lower; thus, the speed is expected to be higher.  In summary, Resnet 
can make the network deeper, faster, and easier to be optimized, with fewer parameters and 
lower complexity.  The Resnet element added in DarkNet-53 has deepened the network.  The 
network has 53 convolution layers after the improvement and its structure is shown in Fig. 
6.  DarkNet-53 is mainly used not only for feature extraction in the YOLO V3 model, but also 

Fig. 6.	 DarkNet-53 structure.
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for determining the classification probability of the samples through softmax at the end of the 
process.  In DarkNet-53, the leaky ReLu function is used as the activation function, the pooling 
layer is discarded, and a convolution layer with a stride of 2 is used to prevent data loss.  The 
network has 53 layers and its nonlinearity increases with depth, processing more spatial features 
as well as increasing the feature diversity.  DarkNet-53 performs a total of five dimensionality 
reductions, and the numbers of rows and columns of the respective feature matrix of each output 
for dimensionality reduction decrease to half.
	 Although Resnet can solve the degradation problem, the accumulation layer only 
performs identity mapping at this time when the residual is 0.  Therefore, the layer upholds 
its performance, but it still has redundant computations.  In addition, the kernel size of the 
convolution layer can also determine the capability of feature extraction of samples.  In 
summary, in this research, we propose the use of entropy to determine the kernel size of the 
convolution layer, as well as to determine whether the number of layers has a redundant issue.  
Shannon referred to and applied the entropy of thermodynamics to information theory, and 
defined the degree of information variation, which is called information entropy.  The entropy 
indicates how much information is contained in an event, which is called self-information, and 
it is represented by Eq. (1),(23,24) where pi represents the probability that event i will occur for 
the self-information i of event Ii.

	 2logi iI p= − 	 (1)

	 The calculation formula for the average information entropy uses the Shannon entropy 
defined as

	 2
0
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i i
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H p p
=

= −∑ ,	 (2)

which can be derived in grayscale images and rewritten as Eq. (3), where Ni is the number of 
pixels with image intensity i, and Ns is the total number of pixels for all images.
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s
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N
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	 In this study, we propose the use of the aforementioned entropy calculation method to 
determine the kernel size of the convolution layer, as well as to determine whether the number 
of layers has a redundant issue.  The determination process is shown in Fig. 7.  The automation 
process determines the optimal kernel size of the convolution layer.  This determination process 
is based on the difference in entropy among the image samples.  The most suitable kernel size 
of each convolution layer is determined sequentially from the lower layer to the higher layer, 
and the number of layers can be verified whether it is redundant.  The gradient descent with 
momentum is used in the model training methods in the following experiments.
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3.	 Results and Discussion

3.1	 Recognition results of different models with only a few samples

	 DarkNet-53, AlexNet, and DenseNet-201 are used for training and testing comparison of 
recognition results of different models with only a few samples.  The training parameters of 
DarkNet-53 are as follows: batch size of 64, 80000 iterations, learning rate of 0.1, momentum 
of 0.9, weight decay of 0.0005, and an activation function that adopts the leaky ReLU.  The 
training parameters of AlexNet are as follows: batch size of 128, 80000 iterations, learning rate 
of 0.01, momentum of 0.9, weight decay of 0.0005, and an activation function that adopts ReLU 
(based on the original model setting).  The training parameters of DenseNet201 are as follows: 
batch size of 128, 160000 iterations, learning rate of 0.1, momentum of 0.9, weight decay of 
0.0005, and an activation function that adopts the leaky ReLU.  During model training, the data 
sets are randomly allocated, and 70% of them are used as training sets, 15% as verification sets, 
and 15% as testing sets.  The ratios of samples in each category for the training, verification, 

Fig. 7.	 Process of determining entropy.
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Table 4
Results of various well-known models.
Model Recognition rate Precision Recall F1 Score
DarkNet-53 0.58 0.56 0.79 0.33
AlexNet 0.50 0.50 1 0.33
DenseNet-201 0.51 0.50 0.99 0.33

Fig. 8.	 (Color online) Convergence statuses of three models during training. (a) Convergence status of DarkNet-53, (b) 
convergence status of AlexNet, and (c) convergence status of DenseNet201.

(a)

(b)

(c)

and testing sets are equal.  The results of the model comparison are shown in Table 4.  For 
DarkNet-53, the recognition rate is 0.58, the precision is 0.56, the recall is 0.79, and the F1 
score is 0.33; for AlexNet, the recognition rate is 0.5, the precision is 0.5, the recall is 1, and the 
F1 score is 0.33; for DenseNet201, the recognition rate is 0.51, the precision is 0.5, the recall 
is 0.9, and the F1 score is 0.33.  The convergence statuses of the DarkNet-53, AlexNet, and 
DenseNet-201 models are shown in Figs. 8(a)–8(c), respectively.  DarkNet-53 tends to have a 
more obvious loss of convergence than the other models.  The residual learning mechanism of 
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DarkNet-53 captures and retains the best image feature information, which can more effectively 
distinguish slight differences between the normal and defective samples of the centralized 
data.  In contrast, without a residual learning mechanism, AlexNet is unable to converge and 
has the worst performance in terms of recognition rate.  DenseNet-201 has a residual learning 
mechanism similar to that of DarkNet-53; their difference is that DenseNet-201 exhibits the 
residual learning and serial connection of feature layers in any two convolution layers and 
any two dense blocks.  The closely connected and dependent stacked-layer structure makes 
DenseNet-201 unable to distinguish the core features between the normal and defective samples 
as inferred using other unimportant features, affecting the final determination process.  Thus, 
the recognition rate of DenseNet-201 is not higher than that of DarkNet-53.

3.2	 Convolution layer using different kernel sizes

	 The experimental flow processes in Figs. 1 and 7 are carried out to prove the effectiveness 
of adjusting the size of the convolution layer with the entropy proposed in this study.  The 
best model input image size is obtained to be 192 × 160 by the determination approach using 
DarkNet-53 with the following training parameters: batch size of 64, 80000 iterations, learning 
rate of 0.1, momentum of 0.9, weight decay of 0.0005, and an activation function that adopts 
the leaky ReLU.  The experiment for the size of the standardized convolution layer and the 
experiment after the adjustment of entropy were carried out.  The results of these experiments 
indicate that the recognition rate before the adjustment is 0.58, the precision is 0.56, the recall 
is 0.79, and the F1 score is 0.33; the recognition rate after the automatic adjustment of entropy 
reaches 0.81, the precision is 0.74, the recall is 0.95, and the F1 score is 0.42 as shown in Table 
5.  The obtained convergence statuses before and after adjustment are shown in Figs. 9(a) and 
(b), respectively.  With the entropy adjustment in terms of the size of the convolution layer, 
Darknet-53 conducts counting for convolution kernel and entropy using statistical centralized 
data of normal and defective samples, to construct DarkNet-53 with the largest entropy 
difference in each layer and optimize the model in terms of the effect of feature extraction.  
	 Regarding training time, the training time of DarkNet-53 before the adjustment is 10 h 
and 32 min.  After the adjustment in terms of the size of the convolution layer with entropy, 
the training time is 4 h and 12 min.  The DarkNet53 structure with entropy adjustment in 
the convolution layers without a difference in entropy adopts the 1 × 1 convolution layer for 
acceleration in the training, and its number of parameters is smaller than that of the standard 
DarkNet-53 structure.  This mechanism can significantly increase the training speed of models 
without affecting their accuracy under the condition that the models have the same number of 
layers.

Table 5
Results of model comparison.
Model Recognition rate Precision Recall
With entropy adjustment
DarkNet-53 0.81 0.74 0.95

Standard DarkNet-53 0.58 0.56 0.79
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4.	 Conclusions

	 In this paper, we mainly discuss how to determine the defects of the component 506 using 
the DL model with a few samples.  We also used an image sensor (ex: camera) to take pictures of 
the red dotted area of the component.  We propose a method of calculating entropy to choose the 
most suitable kernel size of the convolution layer to enhance the recognition rate of components 
and shorten the model training time.  The experimental results have proved that DarkNet-53 
is better than AlexNet and DenseNet-201 with only a few samples.  DarkNet-53 has a more 
obvious convergence tendency in the loss curve and its residual learning mechanism can capture 
and retain the best image feature information, which effectively distinguishes slight differences 
in data between normal and defective samples.  The images obtained under the influence of the 
convolution layer with different kernel sizes based on the calculated entropy effectively show an 
increase in recognition rate and a reduction in training time.  The training time in the standard 
DarkNet-53 model is 10 h and 32 min, and the recognition rate is 58%.  After using the method 
proposed in this study, the training time is 4 h and 12 min, and the recognition rate is 81%.  
Taken together, the method of selecting the kernel size of the convolution layer proposed in this 
study can effectively enhance the recognition effect and improve the training time with only a 
few samples.

Fig. 9.	 (Color online) Convergence statuses obtained before and after improvement by method proposed in this 
study. (a) Convergence status before adjustment and (b) convergence status after adjustment.

(a)

(b)
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