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	 Particulate matter with a diameter of less than 2.5 µm (PM2.5) has a significant impact 
on air pollution, atmospheric visibility, and human health.  The most basic and important 
step of regional air pollution control is to obtain air pollution data in different seasons from 
both satellite sensors and ground-level observations.  The aim of this paper is to accurately 
estimate the PM2.5 concentration in the Beijing–Tianjin–Hebei urban area in different seasons 
by establishing a seasonal geographically and temporally weighted regression (S-GTWR) 
model that integrates multiple complex factors.  Using a greedy algorithm, the model results 
were optimized by selecting the characteristic variables that contributed to the accuracy of the 
model in different seasons.  The measured and estimated PM2.5 concentrations were compared 
and the cross-validation results were used as a basis for evaluating the accuracy of the model.  
The results showed that the accuracy of the S-GTWR model that combined the optimal 
characteristic variables was higher than that of the geographically weighted regression (GWR) 
model and the kriging method.  The mean prediction error (ME), relative prediction error (RPE), 
and root mean square error (RMSE) of the S-GTWR model were small, and the coefficient of 
determination (R2) of the model exceeded 0.86 for each season.  The accuracy of the S-GTWR 
model in estimating the PM2.5 concentration was highest in summer and lowest in winter.  In 
addition, the proposed model can accurately estimate PM2.5 concentrations in areas without 
monitoring sites.  The results can provide a scientific basis for the study of pollution control and 
PM2.5 exposure in large urban agglomerations.

1.	 Introduction

	 In recent years, with the acceleration of China’s social and economic development, urban 
integration has developed rapidly and industry has expanded similarly.(1)  Subsequently, the 
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problem of environmental pollution caused by the increases in population and industrial 
production has attracted increasing public attention.(2)  China’s three economic heartlands, 
the Yangtze River Delta, the Pearl River Delta, and the Beijing–Tianjin–Hebei region, 
are particularly seriously impacted by air pollution caused by economic development.(3,4)  
Particulate matter 2.5 (PM2.5), also known as fine particulate matter, refers to particulate matter 
in the atmosphere with an aerodynamic diameter smaller than 2.5 µm.(5)  PM2.5 can remain 
suspended in the air for a long time, and it is difficult for it to disperse in a short time once it 
accumulates.  The adsorption of PM2.5 greatly increases the risk of disease for urban residents.(6)  
In addition, derivatives of air pollutants also cause global climate change, acid rain, and other 
environmental problems.(7)  The accurate estimation of near-surface PM2.5 concentrations and 
the analysis of the spatial differences and variation characteristics of PM2.5 concentrations 
would greatly contribute to solving environmental problems.
	 A number of studies have shown that spatially continuous PM2.5 concentrations can 
be obtained through global or regional chemical transport models.  These models require 
detailed pollutant emission inventories as the base data and establish chemical transformation 
models for air pollutants under a series of ideal assumptions.  Therefore, numerical simulation 
methods provide uncertain results in the study of the spatially continuous distribution of PM2.5 
concentrations.(8)  Non-mechanistic models, which are represented by mathematical statistics 
and machine learning models, are widely applied to pollutant concentration predictions.  
Machine learning is a new method in the field of artificial intelligence.  Through the effective 
learning of the characteristics of a large number of observation data, machine learning 
provides new research ideas and methods for the study of the spatially continuous distribution 
of the PM2.5 concentration.(9)  Artificial neural network models based on meteorological and 
air quality data have exhibited good performance in the study of the daily average PM2.5 
concentration.(10)  Although machine learning methods have been used to improve the fitting 
accuracy in the study of pollutant trends, they also have the following problems.  First, the 
data used in machine learning models are mainly based on the real-time data of air pollutants 
obtained from ground monitoring stations.(11)  However, most of the existing monitoring stations 
in China are located in urban areas.  It is very difficult to obtain the real-time concentration of 
pollutants in suburban and rural areas without monitoring stations.  The uneven distribution of 
data will lead to a reduction in model accuracy.  Then, the machine learning method will cause 
problems such as overfitting and local minima, resulting in an insufficient generalization ability.(12)

	 A statistical method developed in the middle of the 20th century was first applied to the 
study of air pollutants.  The commonly used kriging method was proposed by Krige in 1960.  
Menz et al. formalized the method of giving it the ability to address geostatistical problems.(13)  
However, owing to the limited number and uneven distribution of monitoring stations on the 
ground, the kriging method cannot accurately estimate the PM2.5 concentration in areas without 
monitoring stations.  Moreover, it does not consider the impact of time and space dimensions on 
air pollutants, making it difficult to meet the requirements for the study of the spatiotemporal 
distribution of the PM2.5 concentration.(14)  A large number of studies have confirmed that 
regression analysis can also be used to estimate the PM2.5 concentration.  The geographically 
weighted regression (GWR) model has been used in research on air pollutants.(15)  The GWR 
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model is better than the ordinary linear regression model in revealing the spatial heterogeneity 
of the PM2.5 concentration, but the fluctuation in the estimated PM2.5 concentration over time 
is ignored in the modeling process.(16,17)  To apply the local regression model to the analysis 
and research of spatiotemporal data, Huang et al. added the time factor to the GWR model 
and established the geographically and temporally weighted regression (GTWR) model.  This 
model has been suggested to have a better fitting effect when verifying spatiotemporal data.(18)  
Domestic scholars have studied the extension and application of the GTWR model.  They found 
that the precision of the same GTWR model differed in different regions and at different times, 
so the GTWR model needs to be improved.
	 The selection of characteristic variables to be used in the regression model is a key step 
to improve model performance and accuracy.  The observations from satellite-based remote 
sensors are an important data source for estimating the PM2.5 concentration.  Aerosol optical 
depth (AOD) has a strong correlation with the PM2.5 concentration owing to its good spatial 
continuity, so it has been used for estimating the PM2.5 concentration on a regional scale.(19)  
Mirzaei et al. used the GTWR model to study the temporal and spatial variability between 
the PM2.5 concentration measured by a ground monitoring station and the satellite AOD data.  
Meteorological variables and land-use information were used as additional predictors in the 
GTWR model to improve its accuracy.(20)  Fu and Li added social and economic indicators, 
such as per capita GDP and urban population ratio, and verified the potential relationship 
between the social and economic indicators and the PM2.5 level when using the GTWR model 
to estimate the PM2.5 level worldwide.(21)  The GTWR model proposed by He and Huang added 
some variables related to meteorology and land cover when estimating the PM2.5 concentration, 
and the cross-validation coefficient of determination (R2) reached 0.80.(22)  Guo et al. found that 
the GTWR model with meteorological parameters and land use variables set as predictors could 
be used to fit the seasonal PM2.5 concentration, and a seasonal GTWR (S-GTWR) fitting model 
could be constructed to obtain the PM2.5 concentration in an urban area with high precision.(23)

	 Through the analysis of existing research, we found that the selection of characteristic 
variables for the GTWR model mainly depends on the correlation between characteristic 
variables and observation data.  However, in the existing research, the differences in the 
precision of the same model constructed in different regions and at different times have 
been ignored.  That is, according to the characteristics of the seasonal variation in PM2.5 
concentration, the optimal characteristic variables of the PM2.5 concentration in different 
seasons should be selected for modeling instead of using the same characteristic variables 
for different times of the year.(24)  Moreover, the previous characteristic variable selection 
method based on correlation depends on only the degree of correlation between a single 
characteristic variable and the PM2.5 concentration, rather than the degree of the contribution of 
the characteristic variable in the modeling process as a selection standard for the characteristic 
variable.  Therefore, a characteristic variable with a strong correlation obtained during the 
process of characteristic variable selection is not necessarily the optimal characteristic variable 
that can optimize the model accuracy.  In addition, the time span of the PM2.5 concentration 
in the existing research is mostly a short time series of one or two years.  As a result, the 
possibility of the reduced model accuracy caused by the effect of extreme weather in the 
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research time period increases.  In particular, when building PM2.5 concentration estimation 
models for different seasons, the seasonal PM2.5 concentration over a short time series is not 
representative.
	 In view of the problems in the existing research, our research objective is the accurate 
estimation of the PM2.5 concentration (all concentrations are mass concentrations in this study) 
in the Beijing–Tianjin–Hebei urban agglomeration.  In this research, a greedy algorithm is used 
to select the optimal characteristic variables, and the degree of contribution of characteristic 
variables in the modeling process is used to screen the characteristic variables.  The factors 
sensitively influencing the PM2.5 concentration are integrated to optimize the precision of an 
S-GTWR model, and the precision of the model is quantitatively evaluated.  An important 
objective of this study is to build the best model for estimating the PM2.5 concentration that 
considers the optimal characteristic variable group, and this model is used to calculate the 
PM2.5 concentration in each season and its spatial distribution in the research area to provide a 
scientific basis for PM2.5 monitoring and control.

2.	 Materials and Methods

2.1	 Study area

	 The Beijing–Tianjin–Hebei region is the heart of China’s Capital Economy Circle.  As shown 
in Fig. 1, this region consists of two municipalities (Beijing and Tianjin) and 11 prefecture-level 
cities in Hebei Province (Shijiazhuang, Baoding, Langfang, Tangshan, Zhangjiakou, Chengde, 

Fig. 1.	 (Color online) Schematic diagram of study area and PM2.5 monitoring stations.
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Qinhuangdao, Cangzhou, Hengshui, Xingtai, and Handan).  The Beijing–Tianjin–Hebei region 
is located in the northern part of the North China Plain.  The overall altitude is high in the 
northwest and low in the southeast.  The mountains in the northwest are not conducive to the 
diffusion of pollutants.  There are four main types of landform in the region, plateau, mountain, 
basin, and plain, with various other landform types.  In other words, owing to the geographical 
location and landforms of the Beijing–Tianjin–Hebei region, the concentration of air pollutants 
sharply increases when conditions are unfavorable for air diffusion, which is likely to cause 
haze and affect the health and lives of urban residents.(25)  The Beijing–Tianjin–Hebei 
region has a large population (approximately 110 million, or 8% of China’s population) 
and its urbanization has been rapid.  This region also suffers from serious air pollution caused 
by industry, traffic, and coal for heating in winter.  During the study period, only Zhangjiakou 
and Chengde among the 13 cities in the Beijing–Tianjin–Hebei region met China’s national 
annual standard (35 μg/m3).  The PM2.5 average in some cities was 300% higher than the 
national standard and 600% higher than the World Health Organization standard (15 μg/m3).(26)  
	 The ground monitoring data of the PM2.5 concentration in the study were obtained from 
the environmental monitoring stations of China.  PM2.5 monthly mean concentrations were 
calculated by obtaining PM2.5 hourly mean concentrations at 79 monitoring sites from 2015 to 
2019.  The meteorological data were obtained from the Chinese meteorological data network.  
These data mainly include the daily mean data of air pressure (PRE), air temperature (TEM), 
precipitation (PRS), relative humidity (RHU), wind direction and wind speed (WIN), sunshine 
duration (SSD), and ground temperature at 0 cm (GST).  Since the numbers of meteorological 
data and PM2.5 monitoring stations are different and inconsistent in terms of spatial location, 
kriging interpolation was performed on the meteorological data, and the monthly averages of 
the meteorological data were obtained through resampling for subsequent calculation.  MOD/
MYD04_3K (full MODIS Terra/Aqua Aerosol 5-min L2 Swath 3 km) data were provided by 
NASA for Level 2 aerosol products mounted on Terra sensors.  The spatial resolution of this 
dataset is 3 km.  Data on topography, population, and land use types were provided by the Data 
Center for Resources and Environmental Sciences, Chinese Academy of Sciences.

2.2	 Methodology

2.2.1	 S-GTWR model

	 The S-GTWR model is a set of GTWR models for different seasons.  GTWR is an extension 
of GWR with temporal variations and incorporates both spatial and temporal heterogeneity in 
the data.(27)  The temporal and spatial heterogeneity of PM2.5 concentrations is fully considered 
in the S-GTWR modeling process.(28)  At the heart of the GTWR model are temporal and 
spatial weight matrices.  The 3D coordinates (x, y, t) of observation i and other observations are 
used to construct the weight matrix.  GTWR models can be formulated as 

	 0 1 1( ) 2 2( ) 3 3( )( , , ) ( , , ) ( , , ) ( , , )i i i i i i i i i i i i i i i iY u v t u v t X u v t X u v t Xβ β β β= + + + 	

	 4 4( ) ( )( , , ) ( , , )i i i i n i i i n i iu v t X u v t Xβ β ε+ + ⋅ ⋅ ⋅ + + .	 (1)
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	 In the formula, (ui, vi, ti) are the geographical location and time coordinates of the ith sample 
point.  β0(ui, vi, ti) is the intercept value.  β0(ui, vi, ti), β1(ui, vi, ti), β2(ui, vi, ti), β3(ui, vi, ti), …, 
βn(ui, vi, ti) are the coefficients of each characteristic variable involved in modeling, and n is 
the number of characteristic variables involved in modeling.  εi is the random error at position i, 
which obeys εi ~ N(0, δ2).
	 Similarly to that of the GWR model, the regression coefficient ( , , )n i i iu v tβ  of the GTWR 
model can be expressed as a matrix:

	 1ˆ( , , ) ( ( , , ) ) ( , , )T T
i i i i i i i i iu v t X W u v t X X W u v t Yβ −= ,	 (2)

where ( , , )i i iW u v t  is the weight matrix, which can be expressed as
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	 In the formula, w1(ui, vi, ti), w2(ui, vi, ti), …, wn(ui, vi, ti) represent the monotonic decay 
functions of the space-time distance between fitting point i and other modeling points j.  The 
determination of spatiotemporal proximity is crucial for the calculation of spatiotemporal 
weights.

2.2.2	 Screening methods for characteristic variables

	 The regression model mainly relies on the correlation between characteristic variables and 
ground observation sites to estimate the PM2.5 concentrations in areas without monitoring 
sites.  The characteristic variables are chosen by selecting the variables with a significant 
effect on the PM2.5 concentration from multiple characteristic variables, and the variables 
without a significant effect on the accuracy of the model are eliminated.  In this paper, a greedy 
algorithm was used to select the optimal characteristic variables for different seasons and to 
establish regression models with high reliability.  The greedy algorithm is an effective method 
of obtaining the global optimal or approximate global optimal solution by using the local 
optimal solution.(29)  The principle of the greedy algorithm is to search variables one by one 
from the set of characteristic variables.  An evaluation criterion is used to determine the degree 
of contribution of the variables to the accuracy of the model, and it is used as the basis for the 
selection of variables.(30)  Cross-approximate entropy (Cross-ApEn) is used as the evaluation 
basis for the selection of characteristic variables.  Cross-ApEn is an index used to determine the 
similarity degree of two sets of sequences by calculating the conditional probability that they 
have the same pattern.  Its formula is expressed as
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	 1
1( , ) ln ( | )N m

Cross ApEn KkH m r P B A
N m

−
− =

= −
− ∑ ,	 (4)

where m is the pattern dimension, r is the similarity tolerance, N is the length of the sequence, 
both A and B represent the similarity of the sample r values, and PK(B|A) is the similarity 
probability of r.
	 First, the regression model of all the characteristic variables is established to obtain the 
initial Cross-ApEn.  One characteristic variable is removed from all the characteristic variables, 
and the remaining characteristic variables are used to establish the regression model and obtain 
the Cross-ApEn of the group model (the number of regression models established is n if the 
number of characteristic variables is n).  The model with the highest Cross-ApEn is selected 
from these regression models.  A key feature of this method is that the characteristic variables 
can no longer be added to the model if they are eliminated.  

2.2.3	 Accuracy evaluation

	 Cross-validation was used to evaluate the accuracy of the estimation.  The observed PM2.5 
concentration was used to validate the results of downscaling based on R2, mean prediction 
error (MPE), relative prediction error (RPE), and root mean square error (RMSE).(31)  All 
monitoring site data were randomly divided into 10 parts in the modeling process; nine parts 
were used for modeling and one part was used to validate the results.  The corresponding 
evaluation indicator formulas are as follows:

	 *
1

1 [ ( , ) ( , )]N
i i i iiMPE Z x y Z x y

N =
= −∑ ,	 (5)

	 *
1

1 [ ( , ) ( , )]N
i i i iiRMSE Z x y Z x y

N =
= −∑ ,	 (6)

	 100%
ˆ

RMSEPRE
y

= × ,	 (7)

where N is the number of monitoring points, Z(xi, yi) is the measured value of inspection point 
i, Z*(xi, yi) is the predicted value of inspection point i, and (xi, yi) are the position coordinates of 
inspection point i.  
	 The MPE reflects the closeness of the measured and predicted values.  RMSE is a measure 
of modeling accuracy.  Using the valuation sensitivity and extreme value effects of the sample 
data, the optimal modeling method was determined by the RMSE.(32)  A lower MPE and a lower 
RMSE represent a higher prediction accuracy and a lower prediction bias.
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3.	 Results and Discussion

3.1	 Modeling accuracy

	 A large number of observations and research results of atmospheric pollutants showed that 
the mass concentration of air pollutants is not only related to pollution sources but also affected 
by social, economic, and natural factors in the region.  The prediction performance of the 
PM2.5 concentration is also different in different time periods and regions, so the selection of 
characteristic variables directly affects the accuracy of the model.  Figure 2 shows the Cross-
ApEn plotted against the number of iterations during the selection of characteristic variables 
for modeling each season.  In the figure, • represents the global initial mutual approximate 
entropy.  * is the model with the minimum mutual approximate entropy in each iteration, and 
the corresponding variable is the eliminated variable.  × is the iteration termination, and the 
iteration termination condition is that the Cross-ApEn of this iteration is less than or equal to 
that in the previous iteration.

(a) (b)

(c) (d)

Fig. 2.	 (Color online) Mutual approximate entropy plotted against number of iterations for each season: (a) spring, 
(b) summer, (c) autumn, and (d) winter.
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	 Up to 10 characteristic variables could be selected in this experiment.  Figure 2(a) shows 
that after 59 iterations, four characteristic variables were eliminated in the spring PM2.5 
concentration estimation model.  The summer model [Fig. 2(b)] was iterated 46 times and three 
characteristic variables were eliminated.  The autumn model [Fig. 2(c)] was iterated 46 times 
and three characteristic variables were eliminated.  The winter model [Fig. 2(d)] went through 
46 iterations and three characteristic variables were eliminated.  The characteristic variables 
finally selected for each seasonal model are shown in Table 1.
	 The S-GTWR models of different seasons in Beijing–Tianjin–Hebei were constructed 
by using the multiple variables selected for different seasons as the auxiliary variables in 
the modeling process.  To clarify the difference between the PM2.5 concentrations estimated 
by different seasonal models and the measured concentrations, the difference between the 
measured and estimated concentrations was calculated, and the results were displayed spatially.  
Figure 3 shows the difference between the observed and estimated PM2.5 concentrations in 
different seasons.
	 By comparing the estimated PM2.5 concentrations of the S-GTWR model with the measured 
PM2.5 concentrations of ground-based monitoring stations in different seasons, it is obvious that 
there is a large gap between the estimated and measured PM2.5 concentrations for the winter 
model.  Considering that winter is cold in North China, coal consumption for heating increases 
during this period, which leads to an increase in PM2.5 concentration.  Because of the effects of 
human factors on PM2.5, the precision of the winter model is slightly lower than that of the other 
models.  The PM2.5 concentration in spring is affected not only by natural and social economic 
factors but also by the lag of the PM2.5 concentration in winter, which makes it difficult to 
reduce the PM2.5 concentration in spring in a short time; therefore, the difference between the 
estimated PM2.5 concentration based on the spring model and the observed PM2.5 concentration 
in some areas is greater than that in winter.  In contrast, the difference between the PM2.5 
concentrations estimated by the summer and autumn models and those measured at monitoring 
sites is relatively small.
	 To evaluate the PM2.5 concentration estimated by the model, the cross-validation method 
is used to test the model accuracy.  At the same time, to further understand the effect of 
spatiotemporal information on the performance of the PM2.5 concentration estimation model, 
in this paper, the kriging interpolation algorithm and GWR model with the same independent 
variables as the S-GTWR model are added to simulate the PM2.5 concentration in different 
seasons in the Beijing–Tianjin–Hebei region.  The results of the cross-validation of the three 
models are shown in Table 2.

Table 1
Results of variable selection for different seasons. 
Season Characteristic variables in S-GTWR
Spring AOD GST SSD TEM WIN PX
Summer AOD GST PRE RHU SSD WIN LC
Autumn AOD PRS RHU SSD TEM WIN LC
Winter AOD GST PRS RHU SSD TEM WIN
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	 By comparing and analyzing the related index results, it is concluded that (1) the kriging 
interpolation method without considering the spatiotemporal variation in PM2.5 exhibits the 
largest MPE and RMSE values, and the model precision is low; the estimated concentration of 
PM2.5 differs greatly from the observed concentration at the ground monitoring stations.  (2) 
The results of the seasonal fitting of the PM2.5 concentration obtained by the GWR model 
considering the geographical location are better than those obtained by kriging, but the results 
of the fitting of the PM2.5 concentration are comparable for all seasons.  The S-GTWR model, 
which considers both time and space factors, is the best among all the models.  The results 
obtained by the S-GTWR model are superior to those obtained by all the other methods.  The 

Fig. 3.	 (Color online) Difference between observed and estimated PM2.5 concentrations in different seasons.

Table 2
Comparison results of the accuracy. 
Season/
method

S-GTWR GWR Kriging
MPE RMSE RPE (%) MPE RMSE RPE (%) MPE RMSE RPE (%)

Spring 0.88 8.13 7.51 1.32 10.71 10.01 1.78 11.67 14.15
Summer 0.67 7.50 8.91 0.81 9.48 9.51 1.23 11.17 12.78
Autumn 0.96 11.20 10.01 1.21 13.57 13.33 1.94 23.50 24.48
Winter 1.36 9.46 10.75 1.53 16.51 16.29 1.89 20.66 20.89
Note: MPE and RMSE units are μg/m3.
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decrease in MPE ranged from 20 to 40% μg/m3, the decrease in RMSE ranged from 30 to 
50% μg/m3, and the decrease in RPE ranged from 3.87 to 11.77%.  (3) The comparison of the 
estimated PM2.5 concentrations in different seasons indicated that the performance of the 
seasonal model in spring and summer is better than that in autumn and winter.  This difference 
is mainly caused by the atmosphere being generally stable over a short time span in cooler 
seasons, which means that PM2.5 estimates are heavily dependent on spatial emissions; in 
warmer seasons, since changes in weather patterns greatly affect the formation and dispersion 
of air pollutants, the estimation of PM2.5 mainly depends on meteorological factors.  The degree 
of precision of the optimized model in autumn and winter is obviously higher than that in spring 
and summer when spatial and time information is added.  The results show that the spatial 
variability information incorporated into the S-GTWR model plays an important role in the 
cold season, while the temporal variability information plays an important role in summer.
	 From the results of the analysis of the existing indices, the R2 values of S-GTWR, GWR, 
and kriging were calculated, and scatter plots were drawn (Figs. 4–6).  This plot was used to 
analyze the relationship between the measured and estimated PM2.5 concentrations for different 
seasons for each method.

(a) (b)

(c) (d)

Fig. 4.	 Scatter diagrams showing correlation between ground-monitored PM2.5 concentration and estimated 
concentration for S-GTWR: (a) spring, (b) summer, (c) autumn, and (d) winter.
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	 It was found with a 95% confidence level that the correlation between the estimated seasonal 
PM2.5 concentration obtained by the S-GTWR model and the PM2.5 concentration observed 
at ground monitoring stations was improved compared with that of GWR and kriging.  The 
following conclusions were obtained by comparing the estimated PM2.5 concentrations in 
different seasons obtained by the S-GTWR model.  The R2 values of all four models exceeded 
0.89 [Figs. 4(a)–4(d)], while those of all four models of the other methods were below 0.88.  
The above results showed that the accuracy of the S-GTWR model for estimating the PM2.5 
concentration in each season is higher than those of the other models.  The S-GTWR model can 
accurately estimate the concentration of PM2.5 in the Beijing–Tianjin–Hebei region in different 
seasons from 2015 to 2019.
	 The difference between the measured and estimated PM2.5 concentrations in each season 
and the cross-validation results of each model were compared.  The conclusions were as follows.  
The most accurate model for estimating the PM2.5 concentration in summer is the S-GTWR 
model; although the accuracy of the estimated PM2.5 concentration of the winter model is 
relatively low, those of the spring and autumn models are high.  Previous studies have shown 
that the contaminants from fossil fuel combustion, agricultural incineration, and automobile 

Fig. 5.	 Scatter diagrams showing correlation between ground-monitored and estimated PM2.5 concentrations for 
GWR: (a) spring, (b) summer, (c) autumn, and (d) winter.

(a) (b)

(c) (d)
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emissions account for more than 60% of the PM2.5 concentration.(33)  Autumn and winter are the 
periods of heating in northern cities.  PM2.5 pollutants released from fossil fuel combustion into 
the air increase nearly sevenfold during this period, directly leading to a significant increase 
in PM2.5 concentration in autumn and winter.(34)  At the same time, the different climatic 
characteristics in different seasons, such as differences in rainfall and temperature, have been 
shown to affect the production of PM2.5 pollutants.(35,36)  The Beijing–Tianjin–Hebei region has 
a temperate monsoon climate, with low temperatures, limited precipitation, high emissions, and 
the poor diffusion of pollutants in winter.  These characteristics can cause the accumulation of 
PM2.5 in the air.  The concentration of PM2.5 in winter is mainly affected by the climate, and 
natural factors such as meteorological factors are added to the evaluation model in this paper 
to study their effect on the accuracy of PM2.5 concentration estimation.  In summer, the high 
temperature and abundant rainfall are conducive to the volatilization and removal of PM2.5.  The 
probability of extreme weather problems in summer, such as sandstorms and dust, is very low, 
and there is no demand for heating.  Therefore, the model established by using meteorological 
factors as characteristic variables to estimate the concentration of PM2.5 has improved accuracy 
in summer.

(b)(a)

(c)

Fig. 6.	 Scatter diagrams showing correlation between ground-monitored and estimated PM2.5 concentrations for 
kriging: (a) spring, (b) summer, (c) autumn, and (d) winter.

(d)
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	 Fine matter (PM2.5) is a mixture of various chemical substances (such as water-soluble 
inorganic ions and organic matter) from natural and manmade sources.(37)  A study of the 
chemical characterization and sources of PM2.5 will help improve the PM2.5 concentration 
estimation accuracy of the model.  As the main components, chemical substances such as SO2, 
NO3, and NH4 in fine particles play an essential role in the formation of fine particles.(38,39)  
Therefore, in the future, the sources and some chemical components of PM2.5 in different 
seasons will be analyzed, and the analysis results will be added to the model for estimating 
the PM2.5 concentration.  To further evaluate the contribution of characteristic variables to the 
model in different seasons, in a follow-up study, the contribution of characteristic variables 
participating in the model in each season will be further measured, and the effect of each 
variable on the model accuracy will be analyzed.

3.2	 Spatial validation

	 The characteristics of the spatiotemporal variation of the PM2.5 concentration can be 
obtained from ground-level observations.  However, these characteristics can only reflect the 
changes in PM2.5 concentration near monitoring stations and cannot reflect the spatiotemporal 
distribution characteristics of PM2.5 in the Beijing–Tianjin–Hebei urban agglomeration.  
Therefore, in this section, we discuss spatially continuous PM2.5 concentration results obtained 
through simulation using different models, with which the characteristics of the continuous 
spatial distribution of the PM2.5 concentration are studied.  Figure 7 shows the spatially and 

Fig. 7.	 (Color online) Spatially and temporally continuous distributions of seasonal mean of PM2.5 concentrations 
obtained by GTWR and GWR models, and kriging for each season in Beijing–Tianjin–Hebei urban agglomeration 
from 2015 to 2019. (A) GTWR.

(A)
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temporally continuous distributions of the seasonal mean PM2.5 concentrations obtained by 
the GTWR and GWR models, and kriging for each season in the Beijing–Tianjin–Hebei urban 
agglomeration from 2015 to 2019.

(B)

Fig. 7.	 (Color online) (Continued) (B) GWR and (C) kriging.

(C)
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	 Spatially, the PM2.5 concentration in the Beijing–Tianjin–Hebei urban agglomeration 
generally gradually increases from north to south and from east to west.  The PM2.5 
concentration in the northern part of the region is low, with the concentration in each season 
below 50 g/m³.  The northern part of the Beijing–Tianjin–Hebei region is mostly mountainous 
with a high altitude.  Under the comprehensive effects of terrain and topography, the airflow 
is relatively intense and most PM2.5 pollutants move to the south.  The coastal area in the east 
of the region has a low PM2.5 concentration.  This is because the amount of moisture in the 
air near the ocean increases at a higher air humidity, which increases the absorption of PM2.5 
pollutants.  In addition, the coastal areas have strong wind waves and a high air mobility, which 
promote the rapid diffusion of PM2.5 pollutants and play a role in alleviating PM2.5 pollution.  
The southeastern part of the Beijing–Tianjin–Hebei region is mostly plain and the northern 
part of the region has a relatively high altitude, which make it difficult for PM2.5 pollutants 
to disperse after gathering.  The spatiotemporal distribution characteristics of the continuous 
PM2.5 concentration obtained by the estimation models are consistent with those obtained from 
monitoring stations.  The spatiotemporal distribution of the PM2.5 concentration obtained by 
the GTWR model is more similar to the ground-measured observations than the distributions 
obtained by the GWR model and kriging.  In addition, it can reflect details of the changes in 
PM2.5 concentration and show relatively smooth changes.  This is consistent with the actual 
PM2.5 concentration distribution and its changes over the study area.  

4.	 Conclusions

	 This study was conducted to accurately estimate the PM2.5 concentration in the Beijing–
Tianjin–Hebei region in different seasons based on data from both satellite sensors and ground-
level observations.  A multivariate variable group with optimal characteristics was selected by a 
greedy algorithm as the independent variables during model construction.  The seasonal PM2.5 
concentration from 2015 to 2019 was estimated using the established GTWR model.  Through 
the validation of the S-GTWR evaluation accuracy, the following conclusions were obtained:  (1)
the S-GTWR model with the optimal multivariate complex characteristic variables has good 
estimation performance, its RMSE is small, and R2 exceeds 0.89 for every season.  (2) By index 
comparison between the predicted and measured PM2.5 concentrations, we found that the model 
has best performance for summer, followed by spring, autumn, and winter.
	 The climatic characteristics in winter have an impact on the PM2.5 concentration distribution.  
Heating in winter produces a large amount of pollutant gases, which can strongly affect the 
PM2.5 concentration distribution, thus reducing the accuracy of the model.  Although the 
accuracy of the S-GTWR model is significantly improved compared with that of the existing 
model, there is still room for improvement in future research.  For example, the accuracy and 
resolution of the input data will affect the performance of the model.  The complex causes of 
the PM2.5 concentration can be affected by natural and human factors, but the variables in the 
mathematical model and the availability of data for the PM2.5 concentration estimation model 
are still limited.  A more comprehensive and effective factor integration model will further 
improve the modeling accuracy and the understanding of the spatiotemporal distribution 
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characteristics of PM2.5.  Furthermore, the characteristic variables used for modeling also have 
uncertainty, which will affect the accuracy of the estimation results of the ground-level PM2.5 
concentration.  All these issues will be addressed in future research.  
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