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	 A bicycle-sharing system not only allows citizens to freely use bicycles installed in specific 
locations but is also a supplement to public transportation.  In this study, we aim to improve the 
accessibility to public bicycles by finding the optimal locations of bicycle-sharing stations based 
on the history and spatial data of public bicycle operations.  IoT sensors record the bicycles’ 
movement information.  Multiple linear regression analysis is used to select the most important 
criteria for a bicycle-sharing system.  The selected criteria are then applied to multiple-criteria 
decision making (MCDM) to rank the potential locations of bicycle-sharing stations.  The top-
ranking locations are finally determined through an optimization stage.

1.	 Introduction

	 There is a growing interest globally in maintaining the environment, and bicycle-sharing 
systems have been launched as an alternative to motorized transportation.  A bicycle-sharing 
system is not only eco-friendly but also a complementary means of transportation.  In particular, 
a bicycle-sharing system complements the shortcomings of existing public transportation 
systems by increasing the mobility of users.  Demand-driven transportation systems, such as 
bicycle-sharing systems, contribute to meeting the demand for highly convenient transportation.(1)  
A successful bicycle-sharing system should be accessible to citizens for use, and the optimal 
locations of bicycle-sharing stations are crucial.(2)

	 In this study, the optimal locations of bicycle-sharing stations were determined.  As the 
experimental data, data records of the bicycle-sharing system called Fifteen provided by 
Goyang City, Gyeonggi Province, Republic of Korea, were used.  The regional characteristics 
of the stations were statistically identified through multiple linear regression analysis to find 
the optimal locations.  The statistically significant factors identified were applied as weights 
to multiple-criteria decision making (MCDM) to rank the potential station locations.  We 
provide alternative locations for current stations that consider changes in urbanized areas such 
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as new housing developments, population movement between regions, and public transport 
infrastructure changes.
	 In Sect. 2, the features of our approach are reviewed on the basis of previous related studies.  
Section 3 presents the experimental data and the proposed method.  The results are discussed in 
Sect. 4.  Finally, Sect. 5 provides some conclusions along with a summary and suggestions for 
future research.
	
2.	 Background

	 The first bicycle-sharing system was the Velib scheme in Paris in 2007, and bicycle-
sharing systems have since been established worldwide.(3)  Previous studies have treated 
location optimization through various methods to increase the accessibility and use of systems.  
Researchers have applied mathematical models using a geographic information system (GIS) 
and MCDM to select station locations.  Experts directly determined the weights of several 
factors and applied them to the analytic hierarchy process (AHP), which is one of the MCDM 
methods used to determine suitable locations.(4)

	 In addition, research has focused on location allocation using a GIS rather than ranking 
within the selected areas.(5,6)  However, previous studies have estimated preferential locations 
by applying the same weights to the criteria.  Bhuyan et al. grouped users by age and analyzed 
each group’s demand and the station density to provide experts with geographic information for 
a bicycle-sharing system.(5)  Loidl et al. performed a kernel density estimation (KDE) analysis 
to extract information on the potential of a bicycle-sharing system by forming and overlaying 
the layers of each criterion.(6)

	 Furthermore, researchers have applied the AHP to a GIS platform.  Kabak et al. quantified 
the criteria influencing bicycle use based on Boolean relationships.(7)  The authors and 
stakeholders set the importance of the criteria and applied them to the AHP.  They created a 
suitability map based on the values obtained from the AHP.  The suitable area and the existing 
stations were ranked through multi-objective optimization by ratio analysis (MOORA), and a 
comparative analysis was also conducted.  Hoang et al. applied criteria calculated using a GIS 
to the AHP to create a set of weights and used principal component analysis (PCA) to find the 
correlations among the criteria to eliminate potential sites with less significant criteria.(8)

	 Studies focusing on origin-destination (OD) analysis have also been conducted for 
transportation planning.  OD trajectory analysis can help to not only identify urban flow 
patterns but also provide a wealth of information on urban flow and transportation demand.(9,10)

	 In this study, we utilize multiple linear regression analysis to determine the critical criteria, 
in contrast to the previous research on manually selecting the criteria.  We also use network 
analysis, such as that of the centrality, to consider the connectivity of bicycle-sharing stations.  
The selected criteria are then subjected to MOORA to determine the optimal locations of the 
stations.
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3.	 Materials and Methods

3.1	 Area of study and data

	 The bicycle-sharing system data used were from the bicycle-sharing system called Fifteen 
provided by Goyang City, Gyeonggi Province, Republic of Korea.  The data comprised 
departure stations, arrival stations, and times.  Figure 1 presents temporal signatures for the 
data.  Commuting on weekdays is widely seen as the key reason for the use of bicycles in the 
scheme.
	 Additional data (e.g., the number of people using buses or the subway, or the number of 
residents) were combined with the bicycle-sharing data.  Various buffer sizes around the bicycle-
sharing stations were tested for different data combinations.  Finally, we set up a buffer of 
400 m from each station as the spatial range for combining the data because the variables of the 
built environment are the most important in the model.  The buffer size was based on a previous 
study.(11)  Figure 2 shows the 155 bicycle-sharing stations currently installed in Goyang City, 
and Table 1 presents the experimental data used in this study.

Fig. 1.	 Temporal signatures for Fifteen data.

Fig. 2.	 (Color online) Current bicycle-sharing stations.
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3.2	 Multiple linear regression

	 Multiple linear regression analysis involves two or more independent variables and one 
dependent variable.  The influence of the independent variables is determined as a statistical 
value by comparing the absolute values of the regression analysis results.  A positive value 
indicates a positive correlation with the dependent variable, whereas a negative value indicates a 
negative correlation.(12)

	 Using this multiple linear regression model, the effect of the environmental characteristics 
around the stations on the use of public bicycles was analyzed in this study.  Although the 
environmental variables of bicycle-sharing stations were regarded as independent, the number 
of bicycle rentals at each station was regarded as dependent.

3.3	 Centrality

	 In network analysis, the centrality can be used to judge the importance of a node (station).  
The purpose of using the centrality is to express the connectivity between stations and find the 
ones with the most influence.  The weighted PageRank centrality indicates the importance of 
the nodes when applying weights to the strength of the connections but does not consider the 
connections between nodes equally.(13)  A high connection strength between stations means that 
the movement between the stations is high.  Thus, we used the centrality as one of the criteria 
for determining optimal locations.

3.4	 MCDM

	 We applied MOORA to rank the potential sites for a station.  The characteristics of the 
surrounding environment derived from multiple linear regression analysis and the centrality 
derived from network analysis were applied to the MOORA parameters.  This method ranks 
the sum of each variable by applying negative numbers as the cost and positive numbers as 
the benefit based on the weight of the variable.(14)

Table 1 
Overview of variables used in this study.
Variables Description
Dependent variable Number of bicycle rentals per day

Independent variables

Number of passengers at subway stops
Number of passengers at bus stops
Total floor area of residences
Total floor area of workplaces
Total floor area of buildings
Length of bike lanes
Number of schools
Number of residents
Number of residences
Number of workplaces
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4.	 Results

	 Figure 3 presents the top 20 OD trajectories in terms of the frequency of use obtained 
from the Fifteen data records.  When the sum of each station usage was calculated, it was 
confirmed that the top 35 of the 155 stations accounted for most of the total usage.  We 
determined the environmental characteristics of well-used stations and used them for 
location selection criteria.
	 An experiment was conducted for the 35 bicycle-sharing stations with the highest frequency 
of use to determine the conditions for successful locations of bicycle-sharing stations.  The 
initial criteria were the 10 independent variables listed in Table 1.  The experiment utilized 
backward elimination based on Akaike’s information criterion (AIC) in multiple linear 
regression analysis to remove unnecessary parameters.  Table 2 shows the five criteria 
remaining after backward elimination, which are statistically significant variables.  
	 Equation (1) describes the multiple linear regression model.  The adjusted R square value is 
0.697, which indicates a relatively strong relationship.  The p-value of the model is less than 0.05, 
which is highly significant.

	 y = 3662 – 0.87x1 + 1.02x2 + 0.44x3 – 0.47x4 + 1.34x5.	 (1)

Here, x1 is the number of passengers at bus stops, x2 is the number of passengers at subway 

Fig. 3.	 Top 20 OD trajectories with station numbers.



4468	 Sensors and Materials, Vol. 32, No. 12 (2020)

stops, x3 is the number of residences, x4 is the total f loor area of workplaces, and x5 is the 
total f loor area of buildings.  
	 Equation (1) indicates that every 1% increase in the number of passengers at bus stops 
is associated with a 0.87% decrease in the number of bicycle rentals per day, and every 1% 
increase in the number of residences is associated with a 0.44% increase in the number of 
bicycle rentals per day.
	 Furthermore, we verified the assumptions of the multiple linear regression model.  The 
non-constant variance (i.e., homogeneity of variance) was 0.23, which is greater than 0.05.  No 
statistically significant difference was shown.  The Durbin–Watson statistic (i.e., independence 
of observations) was 1.67, which is close to 2, and the variance inflation factor values were well 
below 10.  The Shapiro–Wilk statistic for a normal distribution was 0.42, which is greater than 0.05.  
All tests show that the current multiple linear regression model satisfies all assumptions.  
	 Figure 4 shows the centrality of the bicycle-sharing stations and the connectivity 
among the stations.  The size of each point is proportional to the value of centrality, and 
the thickness of each connecting line between points is proportional to the number of 
movements among bicycle-sharing stations.  Only stations with strong connectivity are 
presented in Fig. 4.
	 Nodes with the significant use of bicycles and strong connectivity, as shown in Fig. 4, 
will require additional bike stations when they are relocated in the future.  In this study, we 
added the centrality to the MOORA criteria.  Because the centrality is considered to be an 
important factor in location selection, the weight of the centrality criterion was set to 30% 
of the total weight.  The total of the weights in MOORA must be 1.  Thus, we defined the 
criteria weights of variables x1–x5 as shown in Eq. (2):

	 W = – 0.148x1 + 0.172x2 + 0.074x3 – 0.08x4 + 0.226x5 + 0.3x6, 	 (2)

where x1 indicates the number of passengers at bus stops, x2 is the number of passengers at 
subway stops, x3 is the number of residences, x4 is the total f loor area of workplaces, x5 is 
the total f loor area of buildings, and x6 is the PageRank centrality.
	 The bicycle-sharing stations in Goyang City satisfy the minimum area covered by a 
bicycle-sharing system stipulated in the guidelines developed by the Institute for Transportation 
and Development Policy (ITDP).(15)  According to the guidelines, an appropriate distance 

Table 2
Multiple linear regression coefficients.

Model Coefficients t sigB Std. Error Beta
(constant) 3662.36 588.01 6.228 0.000001
Number of passengers at bus stops −0.013 0.003 −0.87 −3.852 0.0006
Number of passengers at subway stops 0.0008 0.0001 1.02 4.948 0.00003
Number of residences 2.873 0.935 0.44 3.071 0.004
Total floor area of workplaces −0.004 −0.001 −0.47 −3.106 0.004
Total floor area of buildings 0.009 0.001 1.34 7.146 0.0000001
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between stations is approximately 300 m, and thus 3038 stations can be installed in the entire 
area of Goyang City.  Based on each point, the criteria in the 400 m buffer were calculated 
and applied to Eq. (2) to determine the 3038 rankings.  The top 155 stations were selected for 
comparison with the existing stations.  In addition, a bicycle station should be located on the 
sidewalk for better accessibility, and it is more valuable if it is located near a public transport 
station.  We therefore applied optimization steps accordingly.  Figure 5(a) shows a comparison 
between the current and alternative station locations for the same number of stations (i.e., 155), 
and Fig. 5(b) presents the alternative station locations when the number of stations is increased 
to 300.

Fig. 5.	 (Color online) Current and alternative bicycle-sharing stations in the cases of (a) 155 and (b) 300 stations.

Fig. 4.	  Centrality plot. Note that frequencies of more than 30000 are hidden because the rental and return stations 
are the same.

(a) (b)
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5.	 Conclusions

	 The optimal utility of a bicycle-sharing system is closely related to its stations having 
good access for users.  The environment surrounding bicycle-sharing stations was analyzed 
to determine the characteristics required for selecting the optimal locations.  Multiple linear 
regression analysis was conducted to obtain the weights of the derived vital criteria, and 
significant correlations were confirmed.  In addition, the centrality values of the network were 
calculated regarding the connectivity between stations.  Finally, MOORA was performed to 
generate potential locations of bicycle-sharing stations.  
	 This study provided alternative locations for existing stations to respond to changes in 
urbanized areas such as new housing developments, population movement between regions, and 
public transport infrastructure changes.  We attempted to make a more actively used bicycle 
system by increasing citizens’ accessibility and found some differences between the optimal 
locations of bicycle-sharing stations and their current locations.  Future studies should focus on 
the appropriate number of bicycle stations and their allocation.
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