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 Along with the rapid development of Internet Plus, big data, and other technologies, 
the construction of smart cities is promoting the transformation and upgrading of mapping 
geographic information models from traditional information services to intelligent services 
with spatial sensing.  At present, however, most of the knowledge needed to provide intelligent 
services is implicit in the form of unstructured text in various books and journal papers in 
related fields, which is difficult to capture, use, analyze, and share.  In particular, geographical 
feature knowledge is one of the types of knowledge that needs to be extracted urgently.  To 
solve this problem, in this paper, we propose a method for the rapid extraction of research 
areas from scientific and technological literature abstracts.  Firstly, with the help of a general 
naming entity identification tool, we propose a method of rapidly annotating place-name 
entities in administrative divisions.  Then, combining the bidirectional long short-term memory 
conditional random field (BiLSTM-CRF) model with a place-name database covering five 
levels of administrative divisions in China, the identification, disambiguation, and relationship 
extraction of place names in different administrative divisions are realized.  On this basis, the 
extraction of research areas is regarded as a two-classification problem, feature vectors such as 
frequency and location are constructed for the names of the extracted administrative divisions, 
and the classification model is constructed with the random forest algorithm to rapidly extract 
research areas.  The experimental results show that the recognition accuracy of place names in 
administrative areas in this study is 92.61% and the recognition accuracy of research areas is 
90.31%.  The results are superior to those of similar algorithms; thus, the proposed method can 
accurately and rapidly extract research areas.

1. Introduction

 After years of hard work, the field of surveying and mapping geographic information has 
built a multiscale basic geographic information database system with timely updates, which 
has played an important role in the construction and application of smart cities.(1,2)  In recent 
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years, with the gradual development of intelligent city construction, we are required to meet 
the personalized application needs of users and provide intelligent services with spatial sensing 
such as the intelligent recommendation of spatial data and the discovery of hotspots to support 
smart city planning, management, and decision-making research.(3)  However, at present, 
massive data, an explosion of information, and hard-to-find knowledge are phenomena in basic 
geographic information services, making it difficult to meet the needs of users of geospatial 
knowledge services and to realize innovation in surveying and mapping science and technology.(4)  
The main reason for these phenomena is that most of the above-mentioned knowledge exists 
implicitly in an unstructured form in various books and journal papers in different fields, which 
makes it difficult to capture, share, and reuse.(5)  Therefore, as the foundation of computer 
understanding of literature, knowledge extraction technology has important research value and 
broad application prospects.(6)  
 Journal papers are important carriers of the knowledge of different disciplines in various 
fields, which condense the excellent research ideas, theories, and achievements of scholars.  
They are the most cutting-edge, authoritative, and easily accessible knowledge resources in 
various research fields, including extensive professional core knowledge such as research 
problems, algorithm models, and other types of knowledge.(7)  Facing the demand for 
geographic information services in the construction of smart cities, where more than 80% of 
all types of information involved in the development of smart cities are related to geospatial 
locations, the simulation space support of a smart city is the geospatial framework of the digital 
city and the geographical framework is the core of a city’s efficient operation.(8)  Therefore, 
geospatial knowledge is an important part of constructing a geographic information system for 
smart city construction.  If geospatial knowledge can be extracted from the massive amount 
of scientific and technological literature, it can provide users with knowledge services such 
as hotspot discovery, location-based spatial data recommendation, and other services through 
simple statistical analysis, association rule mining, and so forth.(9)  According to different 
needs, the geospatial knowledge in the literature can be divided into sampling and research 
areas where scientific research activities are located.  Most scholars are dedicated to extracting 
the names contained in the literature or extracting scientific research events.(10,11)  However, 
the naming entity identification technology cannot determine which place names are related to 
research areas, and the extraction of scientific research events cannot guarantee that all place 
names related to research areas can be extracted.  
 This paper mainly focuses on the extraction of research areas from scientific and 
technological literature abstracts.  First, in view of the inaccuracy of the universal naming 
entity identification tool, a method of rapid name marking is proposed.  By combining the bi-
directional long short-term memory conditional random field (BiLSTM-CRF) model with a 
five-level administrative division place-name database, the extraction, disambiguation, and 
relationship extraction of the administrative division place names in a document abstract 
are realized.  On the basis of place-name entity recognition, research area identification is 
abstracted as a two-classification problem, and the random forest classification module is 
introduced.  The classification model is trained by rapidly constructing feature vectors such as 
the frequency and location of the place names.  As a result, the extraction of research areas has 
high accuracy and practicability.
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2. Related Work

 The extraction of research areas from literature abstracts mainly refers to the identification 
of geographic entities that appear in them and determines whether they are the research areas 
or where the scientific research activities are located.  The key extraction technologies mainly 
include place-name identification and research area extraction.  
 For the research on text-oriented place-name recognition, the method based on pattern 
matching has been gradually replaced by supervised machine learning methods, such as the 
hidden Markov model (HMM) and conditional random field (CRF) models, because of its 
low recall rate and excessive cost of constructing patterns.(11–13)  In recent years, with the 
rapid development of artificial neural network technology, many scholars have used CRF-
nested neural network models, such as IDCNN-CRF, BiLSTM-CRF, and RNN-CRF, to 
carry out research on the entity recognition of place names.  Among them, BiLSTM-CRF is 
the most popular: BiLSTM can effectively use past and future input features and CRF can 
help use sentence-level label information.  This method can achieve 90% accuracy in certain 
specific fields.(14–16)  However, owing to the lack of research on place-name extraction from 
scientific and technological literature, there is a lack of directly usable annotation data.  In 
addition, because of the layer-by-layer abstraction of human cognition and the diversification 
of expressions, the extracted place names have ambiguities, and the disambiguation rules 
are generally written by linguists.(17,18)  Owing to the limited coverage of the rules, the 
effectiveness of disambiguation by this method is not ideal.(17)  With the increasing growth 
and improvement of the encyclopedia knowledge base, it has become a valuable knowledge 
source for disambiguation, providing rich expressions, rapid updates, and extensive coverage of 
background knowledge, making it a new trend in place-name disambiguation.(19,20)

 There have been very few studies on research area extraction in the literature.  Similar 
research has mainly focused on the extraction of news events.  Early research on the extraction 
of news events directly used the geographical entities identified in the text as the spatial 
location of occurrence or directly used the spatial location information attached to the text to 
assign the location as the place where the news event occurs.  Part of the studies considered 
entity relationships in the extraction process, but they were mainly used in place-name 
disambiguation, the extraction result was still expressed by a single geographic entity, and the 
effectiveness of place recognition was unsatisfactory.(20,21)  In recent years, many scholars have 
carried out work on research area extraction from the aspects of dependency syntax analysis, 
feature construction classification models, and so forth, and have obtained high recognition 
accuracy.  However, the related research corpus is mainly news, Weibo content, and other public 
opinion data, which does not have good universality.  Thus, it is difficult to directly use it with 
scientific literature data.(22–24)

 At present, the main difficulties in identifying geographical entities from scientific research 
literature are how to rapidly construct annotated data sets and the method of place-name 
disambiguation.  Moreover, there are very few related results on research area extraction.  A 
major challenge is how to construct a classification model based on the semantic characteristics 
of the literature study area.  In addition, it is necessary to combine multiple methods in the 
research process and incorporate more domain knowledge resources to reduce labor costs and 
improve research efficiency.
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3. Key Technology

3.1	 Place-name	identification

 In addition to the word segmentation characteristics of common Chinese, the hierarchical 
characteristics of place names and the randomness, diversity, and ambiguity of place names also 
increase the difficulty in recognizing place-name entities.  The multilocation information in the 
literature adds to these difficulties.  The BiLSTM model, which does not rely on dictionaries 
and features, has strong context memory capabilities.  It can solve the problems of unregistered 
words and ambiguity, while the CRF algorithm can control the address annotation output 
through a transition probability matrix.  Therefore, in this paper, we use the BiLSTM-CRF 
model to identify the names of administrative divisions in literature abstracts.

3.1.1 Principles of BiLSTM-CRF model

 The BiLSTM-CRF model is divided into three layers, as shown in Fig. 1: the presentation  
BiLSTM, and CRF layers.  First, a new training data set is generated by labeling a large 
number of place names in the document abstract data, and then training is carried out through 
the Word2vec vector model to form a high-dimensional word vector matrix.  The word vector 
sequence corresponding to each sentence in the training data set is input into the BiLSTM 
module for feature extraction by looking up the table.  Finally, the feature vectors output by the 
BiLSTM module are sequence-labeled through the CRF module to increase the relevance of 
text information and improve the accuracy of label prediction.
 The identification of place-name entities based on BiLSTM-CRF is a typical sequence 
labeling problem.  The model requires large-scale labeling data support to ensure the accuracy 
of recognition.  However, at present, there is a lack of large-scale marking data for the 
identification of place names in scientific and technological literature, and the time and labor 
required for manual marking are very high.  Therefore, we propose a rapid labeling method 
based on an existing word segmentation tool (HanLP) for place-name entities, as shown in Fig. 2.
 The labeling method includes five main steps.  Because the number of raw data is large, if 
the labeling process is carried out directly, it will require a lot of time and labor.  Therefore, 

Fig. 1. (Color online) BiLSTM-CRF model structure.
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the first step is to evenly divide the raw data into multiple sub-data sets.  For example, 5000 
pieces of data are divided into five data sets, each including 1000 pieces of data.  Each data set 
is segmented in order.  After the previous data set is segmented, the user-defined dictionary of 
the word segmentation tool can be optimized to solve the same problem in the next data set, and 
it will be easier to process the next data set, reducing the time and labor required to label data.  
The second step is to use the HanLP word segmentation tool to segment each data set, which is 
a tool based on words.  After importing the abstract, the tool marks words such as place names, 
organization names, and person names with set labels.  This tool can identify more place names 
by optimizing a custom vocabulary.  The third step is to extract the words labeled as place 
names in the second step to obtain a place-name data set.  The abstract is manually read and 
the place names separated by the word segmentation tool are corrected.  If there is an undivided 
place name, it is manually added to the custom dictionary of the word segmentation tool, and 
this place name can be recognized when the next data set is segmented.  The fourth step is to 
perform the second and third steps in sequence on each divided data set to obtain the manually 
corrected place-name data set.  Because some problems cannot be solved by optimizing a 
custom dictionary, we use these corrected data sets as training data and import them into the 
BiLSTM-CRF model based on characters to train the place-name recognition model, so as to 
solve the other problems in HanLP word segmentation.  The fifth step is to accumulate several 
parts of the data into a data set, write an algorithm to match the corrected place names with the 
place names in the abstract, and replace the place names in the abstract with the form “/o place 
name /ns”.  Each word in the abstract is a single line.  When encountering words that start with 
“/o” and end with “/ns”, “B-LOC” is marked after the first word, the next few words are marked 
with “I-LOC”, and all other words are marked with “O”.  

3.1.2 Place-name disambiguation and relation extraction based on place-name database 
of	five-level	administrative	divisions

 Using the BiLSTM-CRF model, place names in the literature can be extracted accurately, 
but because of the nature of the Chinese language, in place-name naming, the ambiguity caused 
by the same place names will reduce the practicality of the extraction results.  In addition, 
the affiliation relationship between place names is a factor that needs to be considered in the 
construction of a research area about place-name characteristics.  Therefore, we propose a 

Fig. 2. Flow chart of rapid labeling method for place names in literature abstracts.
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method for the disambiguation and relationship extraction of place names that is based on a 
knowledge graph of administrative divisions.  The knowledge graph of administrative divisions 
is the result of the preliminary work of the project team.  The knowledge graph contains the 
main attributes and affiliations of all place names at the five administrative levels of China: 
province, city, county, township (town), and village.  Relevant knowledge service applications 
have been developed on the basis of this knowledge graph (http://kmap.ckcest.cn/town/
tosearch).  The method of place-name disambiguation and relation extraction is shown in Fig. 3.
 The method mainly includes the following six steps.  Step 1: Using the place-name database, 
accurate, complete, and uniquely matched place names in an abstract are disambiguated.  
Considering that many place names in an abstract use abbreviated forms, the place names of 
the place-name database include the full name and the name without the suffix.  The matching 
process first matches the complete place name; if it cannot match the complete place name, it 
matches the abbreviation, where the abbreviation matching must be unique.  Step 2: The set 
of place names is divided according to the distance between place names in the abstract.  If 
the distance between place names is less than or equal to 1, then these place names may have 
an affiliation relationship (distance = 0) or a level relationship (distance = 1).  These place 
names are divided into subsets with affiliation or level relations, and then they are matched 
in the place-name database by semantic similarity calculation, and the matching names are 
marked.  Step 3: After the first two steps of disambiguation, there may be more than two 
ambiguous items in the place-name database, which can be disambiguated according to the 
distance between them and the names marked in the first two steps.  The shorter the distance, 
the higher the correct rate of disambiguation.  Step 4: If disambiguation cannot be achieved by 
marking place names, the distance between these ambiguous names can also be calculated in 
the place-name database, and the place name with the shortest distance can be selected as the 
correct place name.  Step 5: If a single place name cannot be disambiguated through the above 
four steps, a final disambiguation is performed by considering the administrative division 
scale of the place name to be matched, and the place name with the highest administrative 
division level is selected for disambiguation.  This is because the geographical location of 
higher administrative divisions is more likely to be relevant because of the large population 
and the developed economy.  Step 6: For the place name obtained after the disambiguation, the 
name corresponding to the place-name database can be chosen as its standard name, and its 
relationship in the place-name database is extracted to provide assistance in the next step of 
calculating the characteristics of the research area.

Fig. 3. Flow chart of place-name disambiguation and relation extraction.
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3.2 Research area extraction

3.2.1 Random forest

 Research area extraction is performed to extract the place of scientific research activity 
from the place names extracted from the literature abstract.  An abstract contains at least one 
research area.  In this paper, the extraction of the research area is regarded as a two-category 
problem, that is, a research area is divided into two cases: yes or no. At present, there are 
many classification models, such as naive Bayes, support vector machine, random forest, 
and classification and regression tree.  Among them, the random forest algorithm is easy to 
implement and has high accuracy.  Therefore, we use the random forest model to classify the 
research area.  The classification principle is shown in Fig. 4.
 The random forest is a classifier that contains multiple decision trees.  It uses n decision 
trees for classification and a simple voting method to obtain the final classification results, 
thereby improving the accuracy of classification.  In other words, for classification data with 
an unbalanced distribution, it can also balance the errors generated.  In the random forest 
dichotomy algorithm, the input parameter is the word feature vector.  For the research area 
extraction task, this vector refers to the feature set of each place name in the abstract, including 
frequency and location characteristics, and other characteristics.  Under the premise that the 
purpose of classification is not clear, the place names in the document abstract can be used 
to construct feature vectors from multiple dimensions, such as similarity, word frequency, 
location, distance, and other features.  Generally, the more feature dimensions, the higher the 
classification accuracy, although the time cost also increases.  The main task in this paper is to 

Fig. 4. Schematic diagram of research area extraction based on random forest model.
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rapidly extract the research area, which requires both accuracy and efficiency.  Therefore, three 
important characteristics, place name frequency, whether the place name is in the title, and the 
place name position, are mainly selected for rapid classification.

3.2.2	 Classification	feature	construction

(1) Frequency characteristics of place names
 If a place name appears multiple times in the abstract and more frequently than other place 
names, then this place name is probably the research area of this article.  If two place names 
have an inclusive relationship, the frequency of place names with high administrative divisions 
is added to that of place names with low divisions.  We take “Beijing” and “Xicheng District” as 
examples.  Xicheng District is part of Beijing, so the frequency of “Beijing” is added to that of 
“Xicheng District”.  Assuming that the abstract contains three place names a, b, and c, and a is 
part of b, the frequency calculation formulas of the three place names are as follows:
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where f(a), f(b), and f(c) are the frequencies of place names a, b, and c in the abstract, and pa, pb, 
and pc represent the numbers of place names a, b, and c, respectively.
 To verify the rationality of feature settings, 150 data were extracted for an experiment, 
in which the frequency of all place names was first calculated, and then they were classified 
according to whether they were research areas, as shown in Fig. 5, where the ordinate is the 
frequency of place names.  It can be seen that in the literature, the frequency of place names 
in the research area is generally greater than that in the non-research area.  Therefore, the 
frequency of place names can be used as a characteristic value of the research area.

Fig. 5. (Color online) Statistical analysis of frequency characteristics of place names.
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(2) Whether the place name is in the title
 If an abstract is a condensed summary of the document, then the title can be considered to 
be a condensed summary of the abstract.  The place name mentioned in the title is likely to be 
the research area.  Because the titles of some scientific research documents directly express 
research at a certain place, whether the place name appears in the title can also be used as a 
basis for judging whether the place name is a research area.  The existence and title of place 
name a can be expressed by the following formula:
 

 ( ) 0 Title does not contain place name
1 Title contains place name 

H a


= 


, (2)

where H(a) represents whether the place name is in the title: a value of 0 means that the title 
does not contain place name a, and a value of 1 means that the title contains place name a.  To 
verify the rationality of the feature setting, 200 pieces of data were extracted for statistical 
analysis, and the results are shown in Fig. 6.  Place names were randomly sampled and 
calculated.  The probability that they existed in the title and were the research area was 55%, 
and the probability that they existed in the title but were not the research area was 6%, as 
shown in the figure.  It can be seen that the existence of a place name in the title can be used to 
distinguish whether the place name is a research area, so it can be set as a characteristic value in 
research area classification.

(3) Location characteristics of place names
 In an abstract, the location of the research area also has certain regularity, mostly appearing 
at the beginning of the abstract and occasionally at the end, so the location characteristics of 
the place name in the abstract can also be used as a basis for judging whether the place name is 
the research area.  Because the same place name may be distributed throughout the abstract, we 
only calculate the position where the place name first appears.
 The calculation formula for the place-name position is
 

 ( )                   Faw a
Fn

= , (3)

Fig. 6. (Color online) Statistical analysis of whether place name in title is research area. 
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where w(a) represents the location feature value of place name a, Fa is the word number where 
place name a first appears, and Fn is the total number of words in the abstract.
 To verify the rationality of the feature setting, 170 pieces of data were extracted for 
statistical analysis, and the results are shown in Fig. 7.  It can be seen that the feature values of 
place names in the research area are generally small, that is, they are generally at the front of 
the abstract, and individual feature values are close to 1, that is, near the end of the abstract.  
Therefore, the feature of a place name can also be used as a feature value of the research area.

4. Experiment and Discussion

4.1 Experimental material

 The data used in this research was from the geographic information professional knowledge 
service platform.  At present, the platform has collected more than 10 million articles on 
surveying and mapping geographic information and related fields (covering the period 1991–
2018).  We randomly selected 10000 literature abstracts as corpus data.  The literature metadata 
consisted of several fields, such as title, abstract, time, and author.  The HanLP tool was used to 
segment the abstract and select the place names based on the part of the text, and then a second 
accurate labeling was performed through manual correction.  Among the data, 5000 pieces of 
data were used in an entity recognition experiment on place names.  The corpus ratio of the 
CRF model training set to the test set was about 10:1.  The remaining 5000 pieces of data were 
used in a research area identification experiment and the research area was manually marked.  
The data volume ratio of the random forest model training set to the test set was about 5:1.

4.2 Experimental

4.2.1 Experimental setup

 The configuration of the computer hardware and software and the main parameters of the 
BiLSTM-CRF and random forest models are shown in Tables 1–3, respectively.

Fig. 7. (Color online) Location characteristics of place names.
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4.2.2	 Model	evaluation	indicators

 By comparing the indicators, the effectiveness of the model is evaluated.  We set the recall 
rate (Recall), precision (Precision), and F1 value to evaluate the named entity recognition 
model.  The main evaluation indicators are these three indicators and accuracy.  For the two-
class model, it is inaccurate to judge the accuracy of the research area only, so two indicators, 
the average (macro avg) and the weighted average (weighted avg), are added.  The average value 
index is used when the sample ratio of the research area to the non-research area is about 1:1, 
and the weighted average value index is used when the ratio is out of balance.
 The formula for calculating the recall rate R is

 R = TA / FB, (4)

where TA is the number of toponyms correctly identified as the study area and FB is the total 
number of toponyms of the study area.
 The formula for calculating the accuracy rate P is

 P = TA / FA, (5)

where FA is the number of samples.
 The formula for calculating the F1 value is

 F1 = 2 × P × R / (P + R). (6)

Table 1 
Experimental configuration and framework.
Parameter Value
CPU Intel Core i7-6700HQ CPU @ 2.60 GHz tetranuclear
GPU Nvidia GeForce GTX 950M 4G
Operating system Windows 10 64 bits
Programming language Python
Deep learning framework TensorFlow

Table 2 
Parameters of BiLSTM-CRF model.
Parameter Value
batch_size 64
epoch 20
hidden_dim 300
dropout 0.5
optimizer Adam
embedding_dim 300
learning rate 0.001

Table 3 
Parameters of random forest model.
Parameter Value
max_depth None
max_features Auto
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
n_estimators 15
n_jobs None
verbose 0
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5. Experimental Results and Analysis

5.1 Place-name recognition results

 The batch size of the model represents the amount of data read in the model training 
network, and the epoch represents the number of iterations.  The two parameters mainly affect 
the time cost and performance of the model training.  First, we select 1000 pieces of training 
data to tune the two parameters.  The 1000 pieces of data are independent of the 10000 pieces 
of data used for modeling mentioned in the next paragraph.  When the batch size is 64 and the 
epoch is 20, the model can obtain the local optimal solution with the lowest time cost.  The 
number of nodes (H) and the learning rate (LR) are the two training parameters that mainly 
affect the training accuracy of the model.  To obtain the best experimental results, we set the 
batch size to 64 and the epoch to 20, and select 1000 pieces of training data for parameter-
tuning experiments.  The training accuracy for four different parameter configurations is shown 
in Table 4.
 It can be seen that when H is 300 and LR is 0.001, the accuracy of place-name recognition 
of the model is the highest.  To verify the superiority of the proposed method, in the next 
experiment, the optimal model parameters are used, 5000 training data sets are selected, and 
the CRF, BiLSTM, and LSTM-CRF models are used for comparison with the BiLSTM-CRF 
model.  The performance characteristics of the four models are shown in Table 5.
 According to Table 5, the accuracy indicators of the CRF and BiLSTM models are relatively 
close.  The accuracy indicators of the LSTM-CRF model are better than those of the first 
two single models, but because the LSTM network in the sequence-labeling model can only 
extract context features, the extraction model does not achieve the best results.  Compared 
with the other three model methods, the BiLSTM-CRF model has higher precision and recall 
rates, which shows that the method based on the BiLSTM-CRF model is superior to the other 
methods.

Table 4
Recognition performance of model for different training parameters.
Parameters Precision (%) Recall (%) F1 (%)
H = 200, LR = 0.001 63.23 71.57 67.10
H = 200, LR = 0.003 72.62 67.83 70.13
H = 300, LR = 0.001 75.35 74.77 75.06
H = 300, LR = 0.003 71.28 69.43 70.34

Table 5
Experimental results for test set obtained with different models.
Model Precision (%) Recall (%) F1 (%)
CRF 83.74 83.96 83.63
BiLSTM 87.31 86.64 85.65
LSTM-CRF 89.99 88.12 89.64
BiLSTM-CRF 92.38 92.45 92.61
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5.2 Extraction results for the research area

 The random forest model has many parameters, with three parameters, n_estimators, 
max_depth, and max_features, having an important impact on the accuracy of the model.  
n_estimators represents the maximum number of iterations of the learner.  Generally, if the 
value is very small, underfitting may occur.  If it is very large, the cost will increase and 
the performance will not significantly increase.  By selecting 1000 training data for many 
experiments, we find that setting this value to 15 gives the best performance.  Max_depth 
and max_features respectively represent the maximum number of features considered when 
constructing the optimal model of the decision tree and the maximum depth of the decision tree.  
On this basis, only three features are selected in the next experiment.  Therefore, the maximum 
value of both parameters is selected without limitation.  Max_depth and max_features are 
respectively set to None and Auto.  To verify the superiority of the proposed method, a training 
set of 5000 data is selected under the above-mentioned optimal model parameter configuration, 
with the naive Bayes model, K-proximity method model, decision tree model, and SVC used for 
comparison with the random forest model.  The results for the five models are given in Table 6.
 The random forest algorithm has the best classification performance.  Among the five 
algorithms, the naive Bayes algorithm is the simplest.  It is generally used in text classification, 
but it does not perform well for the research area/non-research area dichotomy problem in 
this article.  The algorithm of the K-nearest method of the SVC model has better classification 
performance than the naive Bayes algorithm and also requires fewer samples than the SVC 
model to achieve the same accuracy.  For a given sample size, the K-proximity method gives 
superior results to the SVC model.  The decision tree model achieves good results for large 
data sources in a relatively short time.  The size of the training set in this experiment is 5000, 
so the accuracy of the algorithm is higher than those of the SVC and K-proximity methods.  
However, because a large amount of training data is prone to noise, the decision tree is prone 
to using noisy data as the separation standard, which often leads to overfitting.  The random 
forest algorithm uses the voting mechanism of multiple decision trees to reduce the overfitting 
problem of the decision tree, and the classification performance result is better than that of the 
decision tree model.

Table 6
Results for different models.
Algorithm Precision (%) Recall (%) F1 (%)
Naive Bayes 77.31 76.64 75.65
SVC 82.11 82.24 81.77
K-proximity 83.99 84.12 83.64
Decision tree 86.15 87.20 86.64
Random forest 91.38 90.55 90.31
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6. Conclusion

 Aiming to solve the problem of the overflow of information and the lack of knowledge 
faced by intelligent geographic services with spatial sensing, we propose a method of extracting 
knowledge on the location of research areas from scientific and technological literature.  Place-
name recognition is an important basic task in extracting research areas.  Therefore, we carried 
out the first ever recognition of place names using the BiLSTM-CRF model.  The method of 
NER combined with manual correction can ensure the accuracy of place-name recognition 
and greatly reduce labor costs.  With the help of a five-level place-name knowledge map to 
disambiguate the recognized place names and extract relations, we can further improve the 
practicability of place-name recognition.  On this basis, we construct the characteristics of the 
frequency and location of place names in the research area using the random forest classification 
algorithm, which rapidly and accurately extracts the study area of the literature abstract, and 
the data with greater accuracy is better than similar algorithms.  Although the place names of 
the research areas extracted in this paper are those of administrative districts, there are also 
natural geographical entities such as water systems and mountain ranges in the scientific and 
technological literature.  Therefore, in the next step of this research, a large amount of labeling 
data needs to be added with the help of a larger geographical knowledge atlas to realize the 
recognition, disambiguation, and relation extraction of place names.  In addition, it is necessary 
to construct more comprehensive and easy-to-implement classification features to further 
improve the accuracy of research area identification.
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